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Abstract. In this paper we give construction of a new class of lattices from one lattice and
application of this result in coding theory.

1. PRELIMINARIES

Let L be a finite complete lattice. Let denote operation infimum by ∧, operation

supremum by ∨, order relation on L by ≤, minimal element of L by 0 and maximal

element of L by 1.

If S is nonempty set and L a complete lattice, than function A : S → L is L-fuzzy

set on S. A(x) is degree of belonging of the element x ∈ S to the fuzzy set A. For

A : S → L we define p-level subset (or p-cutting) of A with

Ap = {x ∈ S : A(x) ≥ p}.

1Research supported by Science Fund of Serbia under Grant 1457.



186

Function Ap : S → {0, 1} is suitable to the set Ap, such that Ap(x) = 1 if and

only if A(x) ≥ p. Ap is characteristic function of p-level subset.

For L-value fuzzy set on S, A : S → L, we denote set of values of fuzzy set A

with A(S).

Element a ∈ L, a 6= 1 is meet-irreducible (or i-irreducible) if and only if

a = b ∧ c implies a = b or a = c. Every element of the finite lattice L can be

represented as infimum of meet-irreducible elements.

Theorem 1 ([7]). Let L be a lattice of finite length, and let A : S → L be an

L-valued fuzzy set. Necessary and sufficient conditions under which all p-cuts of A

are different are that the set of all meet-irreducible elements of L is a subset of A(S).

Set of level functions of fuzzy set A : S → L for set S = {1, 2, . . . , n} is binary

block-code of length n, denoted by VA. For every fuzzy set A there is one corre-

spondent code VA (V for short), but for every code there can be more correspondent

fuzzy sets.

For every fuzzy set A : S → L there is a correspondent code of maximal cardinality

|L|.

Theorem 2 ([7]). Necessary and sufficient condition under which for L-valued

fuzzy set suitable code V such that |L| = |V | is the set of all meet-irreducible elements

of L is a subset of A(S).

2. RESULTS

Let L be a lattice with |L| = m elements. Let i ∈ N and i < m be the number

of meet-irreducible elements of lattice L. For this lattice L, fuzzy set A : S → L can

be constructed, with correspondent code V of maximal cardinality m = |L| = |V |.

Minimal length of that code V is equal to the member of meet-irreducible elements

of lattice L, so |A(S)| = i (Theorem 2).

Our goal is to construct a new lattice with minimal increment of its code length

and maximal increment of its code cardinality. This can be achieved by using the
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following algorithms for construction of new lattices based on given lattice L. In the

following, we describe these algorithms, named multiplicity and power of lattice L.

2.1. MULTIPLICITY OF LATICES

Let L, |L| = m, be a lattice and let L1, L2, . . . , Li, . . . , Lj, . . . , Ln−1 be different

lattices with common zero (0) and isomorph with L. Let ϕij : Li → Lj be isomorphism

from Li to Lj (i, j = 1, . . . , n−1, and ϕij(0) = 0). Lattice L∗, |L∗| = m, is constructed

in the following way.

Let f i : Li → L∗ be isomorphism (i = 1, . . . , n − 1) defined with f i(0) = 0 and

f i(x) = X for all x ∈ Li, x 6= 0 such that:

(1) x < X;

(2) for all y ∈ Li such that y > x or y ‖ x follows y ‖ X; 2

(3) for all X,Y ∈ L∗ x, y ∈ Li exist such that f i(x) = X and f i(y) = Y , it follows

X ∨ Y = f i(x ∨ y) and X ∧ Y = f i(x ∧ y).

From relations

f j(ϕij(x)) = (ϕij ◦ f j)(x) = f i(x)

follows that

f i(x) = X ∈ L∗

for all x ∈ Li (i = 1, . . . , n− 1).

Proposition 1. If L is a lattice and Ln = L1 ∪ L2 ∪ . . . ∪ Ln−1 ∪ L∗, then Ln is

a lattice.

Proof. By procedure of lattice L∗ construction described above, it follows that

set Ln is partially ordered set. We shall prove that ordering on Ln is lattice ordering.

If x, y ∈ Ln and there is i ≤ n such that x, y ∈ L∗ or x, y ∈ Li then x ∧ y is

infimum and x ∨ y supremum in lattice L∗ or Li.

2Here we use symbol ‖ to denote that elements x and y are incomparable.
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If x, y ∈ Ln and x ∈ Li, y ∈ Lj, i 6= j then there is z ∈ Li such that ϕij(z) = y

and

x ∧ y = 0,

x ∨ y = x ∨ ϕij(z) = f i(x) ∨ f j(ϕij(z)) = f i(x) ∨ f i(z) = f i(x ∨ ϕji(y)).

If x, y ∈ Ln, x ∈ Li, y ∈ L∗ we have

x ∨ y = f i(x) ∨ y and

x ∧ y =

{

0, f i(x) ‖ y;
x, f i(x) ≤ y. ¤

Lattice Ln ≡ [n · L], n ∈ N will be called n-th product of lattice L.

From construction of lattice Ln it is obvious that it has common 0 and 1 with

lattice L∗, thus L∗ is sublattice of Ln. Also, from procedure described above it follows

that every lattice from set {L1, L2, . . . , Ln−1, L∗} has m elements, but 0 is common

element (other elements are different) and |Ln| = n ·m− (n− 1) = n · (m− 1) + 1.

Example 1.

(i) Let L be a lattice with seven elements, given in the Fig. 1.

Fig. 1.

(ii) L2 = [2 · L] is given in the Fig. 2.

Fig. 2.
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(iii) L3 = [3 · L] is given in the Fig. 3.

Fig. 3.

(iv) L5 = [5 · L] is given in the Fig. 4.

Fig. 4.

2.2. POWER OF LATTICE

Let L be a lattice, and |L| = m. Let Ln be a mode lattice obtained by procedure

given above. If that procedure is applied on lattice Ln k-times, then we have a new

lattice

(Ln)k = [k · Ln] = Lnk

called k-th product of lattice Ln or nk power of L.

Proposition 2. If L is a lattice, |L| = m, Ln is n-th product of L, and (Ln)k ≡

Lnk is nk power of L (n, k ∈ N), then

|Lnk | = nk · (m− 1) + 1.
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Proof. Proof is obtained by induction for k ∈ N . For |L| = m and k = 1, lattice

Ln has n · (m− 1) + 1 elements and formula |Lnk | = nk(m− 1) + 1 holds true.

If lattice Lnk−1 has nk−1(m− 1) + 1 elements then from Lnk = [n · Lnk−1 ] follows

|Lnk | = n · (nk−1 · (m− 1) + 1− 1) + 1 = nk(m− 1) + 1

and our formula holds true for all k ∈ N . ¤

Example 2. In the Fig. 5. lattice L32 is given, where L3 is lattice from example

1(iii).

Fig. 5.

2.3. PRODUCT AND POWER OF LATTICES AND CODING

Proposition 3. Let i, in and ink (n, k ∈ N) be numbers of meet-irreducible

elements of lattices L, Ln and Lnk respectively. Then the next formulas hold:

(a) in = i + n− 1;

(b) ink = i + k · (n− 1).

Proof.

(a) From construction of n-th product of L it obviously follows that meet-irreducible

elements of lattice L remain meet-irreducible in sublattice L∗ and also in lattice

Ln. Further, top elements of sublattices L1, L2, . . . , Ln−1 are meet-irreducible

elements in Ln, and our formula holds true.
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(b) Straightforwardly, using (a) and induction by k. ¤

Let A : S → L be a fuzzy set and A(S) be a set of meet-irreducible elements

of lattice L. Then code V with length |A(S)| and cardinality |V | = |L| = m is

correspondent to fuzzy set A (Theorem 2).

Also, from facts given above, holds:

(a) lattice Ln may have correspondent code Vn with length i+n−1 and cardinality

|Vn| = |Ln| = n · (m− 1) + 1;

(b) lattice Lnk may have correspondent code Vnk with length i + k · (n − 1) and

cardinality

|Vnk | = |Lnk | = nk · (m− 1) + 1.

By products and powers of lattice L (and their combinations) described in this

paper, we can construct lattices with larger desired cardinality of a given lattice L, but

with slowly increasing number of meet-irreducible elements. This fact is important

for coding theory, because base lattice L and described procedure can be used as the

key for new codes.
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