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Abstract. In this paper we give some conditions of existence quasiperiodic solutions to
the ordinary homogeneous linear differential equation of first and second order. We note
that the considered problem in this paper is examined with a method different than the
methods in [1] and [2].

1. INTRODUCTION

Definition 1.1 We say that y = ϕ(x), x ∈ I ⊆ Dϕ ⊂ R is a quasi-periodic function

(QPF) if there are: a function ω(x) and a coefficient λ = λ(ω(x)) such that the

relation

ϕ(x + ω(x)) = λϕ(x), x, x + ω(x) ∈ I (1)

is satisfied. The function ω(x) is called a quasi-period (QP) and λ is said to be a

quasi-periodic coefficient (QPC) of the function ϕ(x).
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Example 1.1 ϕ(x) = e−2x sin x is QPF with QP ω = 2π and QPC λ = e−4π, since:

∀x ∈ R, ϕ(x + 2π) = e−2(x+2π) sin(x + 2π) = e−4πe−2x sin x = e−4πϕ(x).

Example 1.2 ψ(x) = ex2
sin x2 is QPF with QP ω = −x +

√
x2 + 2π and QPC

λ = e2π, since:

∀x ∈ R, ψ(x + ω) = e(x+ω)2 sin(x + ω)2 = e2πex2

sin x2 = e2πψ(x).

Remark 1.1

1. In the general case, when λ = λ(x, ω(x)), the existence of the relation (1) is

very complex problem.

2. If ω(x) = ω∗ = const and λ = 1 for x ∈ I, then (1) is a definition for a periodic

function in a classical sense.

3. If ω = ω(x) 6= const and λ = 1 for x ∈ I, then (1) is a generalization of the

definition for a periodic function and in this case ω = ω(x) is a function of

”repeating values” of y = ϕ(x).

2. PROBLEM FORMULATION

Suppose that the function y(x) is given implicitly with the linear differential equa-

tion

F (x, y, y′, y′′, ..., y(n), f(x), g(x), ..., h(x)) = 0 (2)

where f(x), g(x), h(x) are continuous and (n− 1)− times differentiable functions on

I ⊆ Df ∩Dg . . . ∩Dh ∩Dy. Let y(x) be a QPS to (2), with QP ω = ω(x) and QPC

λ, i.e.:

y(x + ω(x)) = λy(x), (3)

where ω = ω(x) ∈ Cn
I , λ > 0, λ 6= 1, x, x + ω(x) ∈ I.

We describe the problem of existence QPS to (2) by the system




F (x, y, y′, y′′, ..., y(n), f(x), g(x), ..., h(x)) = 0
y(x + ω) = λy(x)
y(x + ω)(k) = λy(k)(x), k = 1, 2, ..., n

(4)
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Using the above system (4), we transform the equation (2) to a differential equa-

tion that generally is a linear differential equation of (n − 1) – order to y , but it is

nonlinear to ω(x).

In this paper we consider the problem of existence QPS for homogeneous linear

differential equations of first and second order.

3. QUASIPERIODICITY TO A HOMOGENEOUS LINEAR DIFFERENTIAL
EQUATION OF FIRST ORDER

Let (2) be a linear differential equation of first order in the form

y′ + a(x)y = 0 (5)

where a(x) is a continuous and differentiable function on I ⊆ Da ∩Dy.

Lemma 3.1 Let y(x) be QPS to the differential equation of first order (5), with QP

ω = ω(x) and QPC λ such that λ > 0, λ 6= 1. If 1 + ω′ 6= 0 then (5) is reduced to the

equation

y[a(x + ω)(1 + ω′)− a(x)] = 0 (6)

Proof. For (5) the system (4) has a form





y′ + a(x)y = 0
(y(x + ω))′ + a(x + ω)y(x + ω) = 0
y(x + ω) = λy(x)
y′(x + ω)(1 + ω′) = λy′

(7)

Under the condition 1 + ω′ 6= 0 we can eliminate y′(x), y(x + ω), y′(x + ω) from (7).

Thus we obtain (6). 2

Theorem 3.1 The differential equation of first order (5) has a nontrivial QPS with

QP ω and QPC λ, (λ > 0, λ 6= 1) if the primitive function A(x) for a(x) satisfies the

relation

A(x + ω) = A(x) + ln
1

λ
, λ > 0 (8)

where λ = e−c1, c1 ∈ R
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Proof. Let y(x) be a nontrivial QPS with QP ω. As we supposed that a(x) is a

continuous function, there is the indefinite integral

∫
a(x)dx = A(x) + C1.

Then, with the substitution

x + ω = z(x),

from Lemma 3.1 we obtain

A(x + ω) = A(x) + c1, c1 ∈ R (9)

At the other side, since the solution for (5) is

y(x) = CeA(x)

we obtain that y(x) is a QPS for (5) if

e−(A(x+ω)−A(x)) = λ, λ > 0,

i.e.

A(x + ω) = A(x) + ln
1

λ
, λ > 0. 2

Corollary 3.1 If the equation (5) has QPS with QP ω = ω(x) and QPC λ = 1, then

the primitive function A(x) to a(x) is QPF with the same QP ω = ω(x) and QPC

µ = 1, i.e.,

A(x + ω) = A(x). (10)

Corollary 3.2 If A(x) is a periodic function with a period ω = $ = const, then the

solution y(x) to (5) is a periodic function with a period ω = $ (the known result).

Remark 3.1 If a(x) is a periodic function, but its primitive function A(x) is not a

periodic one, then the solution y(x) is a quasiperiodic function.

Example 3.1 Let

y′ + (1 + cos x)y = 0.
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The coefficient a(x) = 1 + cos x is a periodic function with a base period ω = 2π, but

its primitive function A(x) = x + sin x is not a periodic one, i.e., it holds

A(x + 2π) = A(x) + 2π.

Thus the solution y = Ce−(x+sin x) is QPF: y(x + 2π) = e−2πy(x).

Corollary 3.3 If the equation (5) has QPS with QP ω and QPC λ(λ > 0, λ 6= 1)

and the primitive function A(x) for a(x) (a(x) 6= 0) is a monotonous one, then QP

ω is given by:

ω(x) = −x + A−1
(
A(x) + ln

1

λ

)
,

where A−1 is the inverse function of A.

Example 3.2 Let

y′ + exy = 0. (11)

The primitive functions of a(x) = ex are A(x) = ex + C, that are monotonous

functions. Hence, (11) has QPS y = Ce−ex
with QP ω(x) = −x + ln(ex − c1) and

QPC λ = ec1C, for x > ln c1.

Example 3.3 Let

y′ + xctgx2 · y = 0 (12)

The primitive function of a(x) = xctgx2 is A(x) =
1

2
ln sin x,

x2 ∈ (2kπ, (2k + 1)π), k ∈ Z,

that satisfies the relation (8) for

ω(x) = −x±
√

Arcsin(
1

λ2
sin x2), λ = ec2 , c2 ∈ R.

Then y =
C√

sin x2
are QPS for (12).
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4. CONDITIONS OF EXISTENCE QPS TO HOMOGENEOUS DIFFERENTIAL
EQUATIONS OF SECOND ORDER

Let (2) be a linear differential equation of second order

y′′ + f(x)y′ + g(x)y = 0 (13)

where f(x) and g(x) are continuous and two times differentiable functions on

I ⊆ Df ∩Dg ∩Dy.

Theorem 4.1 Let y(x) be QPS to the equation (13) with QP ω = ω(x) and QPC λ

such that λ > 0, λ 6= 1. If 1 + ω′ 6= 0 then (13) is reduced to the equation

y′[f(x + ω) · (1+ω′)2 − f(x) · (1 + ω′)− ω′′]

+y · [g(x + ω) · (1 + ω′)3 − g(x)(1 + ω′)] = 0,
(14)

i.e.
y′

y
= − g(x + ω) · (1 + ω′)3 − g(x)(1 + ω′)

f(x + ω) · (1 + ω′)2 − f(x)(1 + ω′)− ω′′
. (15)

Proof. For (13) the system (4) is





y′′ + f(x)y′ + g(x)y = 0
(y(x + ω))′′ + f(x + ω) · (y(x + ω))′ + g(x + ω) · y(x + ω) = 0
y(x + ω) = λy(x)
y′(x + ω)(1 + ω′) = λy′(x)
y′′(x + ω)(1 + ω′)2 + y′(x + ω)ω′′ = λy′′(x)

(16)

For 1 + ω′ 6= 0 we can eliminate y′′(x), y′′(x + ω), y′(x + ω), y(x + ω) from (16). Thus

we reduce the equation (13) to the equation (14), i.e. (15). 2

Remark 4.1 The right-hand side in (15) is a function of f = f(x), g = g(x) and

ω = ω(x). If we denote

F (x) = F (x, f, g, ω) =
g(x + ω) · (1 + ω′)3 − g(x)(1 + ω′)

f(x)(1 + ω′)− f(x + ω) · (1 + ω′)2 + ω′′
(17)

then (15) is
y′

y
= F (x, f, g, ω). (18)
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and if f, g, ω are known functions we can find the solution to (13) in the form

y = Ce

x∫
x0

F (t,f,g,ω)dt

(19)

It follows that quasiperiodicity to the solution of (13) depends on the functions f and

g. Since (14) is a functional differential equation of ω, it follows that in a general case

it is not easy solvable.

Here we consider the problem of existence QPS to (13) if ω = $ = const.

Lemma 4.1 Let y(x) be QPS to (13) with a constant QP $ and QPC λ such that

λ > 0, λ 6= 1. Then it holds

y′[f(x + $)− f(x)] + y · [g(x + $)− g(x)] = 0. (20)

Proof. Substituting ω = $, $′ = $′′ = 0 in (14) we obtain (20). 2

Theorem 4.2 Let the coefficients f = f(x) and g = g(x) be QPF with a constant

QP $ and QPC µ, ν respectively, such that µ 6= ν and µ 6= 1, ν 6= 1. The equation

(13) has QPS y(x) with QP $ and QPC λ(λ > 0, λ 6= 1), if:

G∗(x + $)−G∗(x) = ln
1

λ
, G∗ = −ν − 1

µ− 1

∫ g

f
; and (21)

( g

f

)′ −
(ν − 1

µ− 1

)
·
( g

f

)2 − µ− ν

ν − 1
· g = 0. (22)

Proof. From

f(x + $) = µf(x), g(x + $) = νg(x), µ 6= ν, µ 6= 1, ν 6= 1,

using the Lemma 4.1., we reduce (13) to the equation

y′ +
ν − 1

µ− 1
· g

f
· y = 0. (23)

From the Theorem 4.1. we obtain that the last equation has QPS with QP $ and

QPC λ if the condition (21) holds. At the other hand, using the fact that the solution

for (23) is also a solution for (13), both of these equations should be satisfied. Thus,

after short transformation we obtain that if y is QPS to (13) then f and g have to

be related by (22). 2
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Theorem 4.3 Let the coefficient f(x) be a periodic function with a period $. If

the equation (13) has QPS y(x) with QP $ and QPC λ (λ > 0, λ 6= 1), then the

coefficient g(x) is also a periodic function.

Proof. Let f(x + $) = f(x). Then from Lemma 4.1. we obtain the equation

y · [g(x + $)− g(x)] = 0.

If y(x) is a nontrivial solution for (13), the last equation is satisfied if

g(x + $) = g(x). 2

Example 4.1 The coefficients of the equation

y′′ + (1− sin x)y′ − cos x · y = 0

are periodic functions with a period $ = 2π. The solution y = Ce−(x+cos x) is a QPF

with QP $ = 2π and QPC λ = e−2π.
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