THE CONNECTION BETWEEN A (3,2)-SEMIGROUP AUTOMATON AND A SEMIGROUP AUTOMATON

Violeta Manevska

Faculty of Technical Sciences, St. Clement Ohridski University, Ivo Lola Ribar b.b., PO Box 99, 7000 Bitola, Macedonia
(e-mail: violeta.manevska@uklo.edu.mk, manevskav@mt.net.mk)

(Received October 30, 2006)

Abstract. The aim of the talk is to give a connection between a (3,2)-semigroup automaton and the semigroup automaton which is constructed from himself, using the recognizable languages for themselves.

1. INTRODUCTION

The notion of semigroup automaton is introduced in [1]. Here we recall the necessary definitions and known results on (3,2)-semigroup automata.

From now on, let B be a nonempty set and let (B, \cdot) be a semigroup, where \cdot is a binary operation. The clasical notion of semigroup automata is the following.

A semigroup automaton is a triple $(S, (B, \cdot), f)$, where S is a set, (B, \cdot) is a semigroup, and $f: S \times B \to S$ is a map satisfying

$$f(f(s,x),y) = f(s,x \cdot y) \text{ for every } s \in S, \ x,y \in B.$$
(1)

The set S is called the set of states of $(S, (B, \cdot), f)$ and f is called the transition function of $(S, (B, \cdot), f)$.

A nonempty set B with the (3,2)-operation $\{\}: B^3 \to B^2$ is called a (3,2)semigroup iff the following equality

$$\{\{xyz\}t\} = \{x\{yzt\}\}$$
(2)

is an identity for every $x, y, z, t \in B$. It is denoted with the pair $(B, \{ \})$.

Example 1.1. Let $B = \{a, b\}$. Then the (3,2)-semigroup $(B, \{\})$ is given by Table 1.

(b,a)
(a,a)
(a,a)
(b,a)
(a,a)
(b,a)
(b,a)
(a,at)

Table 1

A (3,2)-semigroup automaton is a triple $(S, (B, \{ \}), f)$, where S is a set, $(B, \{ \})$ is a (3,2)-semigroup, and $f: S \times B^2 \to S \times B$ is a map satisfying

$$f(f(s, x, y), z) = f(s, \{xyz\}) \text{ for every } s \in S, \ x, y, z \in B.$$
(3)

The set S is called the set of **states** of $(S, (B, \{ \}), f)$ and f is called the **transition** function of $(S, (B, \{ \}), f)$.

The transition function f of a (3,2)-semigroup automaton $(S, (B, \{ \}), f)$ can be given by a table or by a graph. When we examine a graph of a (3,2)-semigroup automaton, then the nodes of graph are the states, and the arrows of the graph are the pairs of letters.

1.1⁰ Let $(S, (B, \cdot), \varphi)$ be a semigroup automaton. Then $(S, (B, \{ \}), f)$ is a (3,2)-semigroup automaton with (3,2)-operation $\{ \} : B^3 \to B^2$ defined by $\{xyz\} = (x \cdot y, z)$ and the transition function $f : S \times B^2 \to S \times B$ defined by $f(s, x, y) = (\varphi(s, x), y)$.

 $\mathbf{1.2^0}$ If $(S,(B,\{\ \}),f)$ is a (3,2)-semigroup automaton, then:

i) $(B^2, *)$ is a semigroup, where the operation * is defined by $(x, y)*(u, v) = \{xyuv\}$ for every $(x, y), (u, v) \in B^2$;

(ii) $(S \times B, (B^2, *), \psi)$ is a semigroup automaton, where the transition function $\psi: S \times B \times B^2 \to S \times B$ is defined by $\psi((s, x), (y, z)) = f(s, \{xyz\})$.

Example 1.2. Let $(B, \{ \})$ be a (3,2)-semigroup given by Table 1 from Example 1.1 and $S = \{s_0, s_1, s_2\}$. A (3,2)-semigroup automaton $(S, (B, \{ \}), f)$ is given by the Table 2 and the analogy graph by Figure 1.

f	(a,a)	(a,b)	(b,a)	(b,b)
s_0	(s_1,b)	(s_2, b)	(s_2, b)	(s_1,b)
s_1	(s_1,b)	(s_0,a)	(s_2, b)	(s_1,b)
s_2	(s_2,b)	(s_0, b)	(s_1,b)	(s_2, b)

(a,b)/a	\square
S ₀	(s ₁)
(a,a)/b	(a,a)/b
[1] (b,b)/b (b,b)/b	(b,b)/b
(a,b) (b, a) (b,	
J'B	
(s ₂)	
(\bigcirc)	
(b,b)/b	
(a,a)/b	

Table 2

Figure 1:

2. (3,2)-LANGUAGES

Let (Q, []) be a free (3,2)-semigroup with a basis constructed in [2].

Any subset $L^{(3,2)}$ of the universal language $Q^* = \bigcup_{p \ge 1} Q^p$, where (Q, []) is a free (3,2)-semigroup with a basis B is called **a** (3,2)-language on the alphabet B.

A (3,2)-language $L^{(3,2)} \subseteq Q^*$ is called **recognizable** if there exists:

- (1) a (3,2)-semigroup automaton $(S, (B, \{ \}), f)$, where the set S is finite;
- (2) an initial state $s_0 \in S$;
- (3) a subset $T \subseteq S$; and
- (4) a subset $C \subseteq B$,

such that

$$L^{(3,2)} = \{ w \in Q^* \mid \overline{\varphi}(s_0, (w, 1), (w, 2)) \in T \times C \},$$
(4)

where $(S, (Q, []), \bar{\varphi})$ is the (3,2)-semigroup automaton constructed in [4] for the (3,2)semigroup automaton $(S, (B, \{\}), f)$.

We also say that the (3,2)-semigroup automaton $(S, (B, \{ \}), f)$ recognizes $L^{(3,2)}$, or that $L^{(3,2)}$ is recognized by $(S, (B, \{ \}), f)$.

Example 2.1. Let $(S, (B, \{ \}), f)$ be a (3,2)-semigroup automaton given in Example 1.2. We construct the (3,2)-semigroup automaton $(S, (Q, []), \overline{\varphi})$ for the (3,2)-semigroup automaton $(S, (B, \{ \}), f)$. A (3,2)-language $L^{(3,2)}$, which is recognized by the (3,2)-semigroup automaton $(S, (B, \{ \}), f)$, with initial state s_0 and terminal state (s_2, b) is

$$L^{(3,2)} = \{ w \in Q^* | w = w_1 w_2 \dots w_q, q \ge 3, \text{ where } w_l = \begin{cases} (u_1^n, i), n \ge 3, u_\alpha \in Q \\ (a^* b^*)^* \end{cases}, l \in \{1, 2, \dots, q\}, \text{ and:} \end{cases}$$

a) If
$$i = 1$$
, then:
a1) $(u_1^n, 1) = a$, where $\psi_{p-1}(u_1) \dots \psi_{p-1}(u_n) = a^t b^j a^r b^h$ and
 $t + r = 2k, \quad t + j + r + h = n, \quad t, j, r, h, k \in \{0, 1, 2, ...\}, \quad k \ge 1;$
a2) $(u_1^n, 1) = b$, where $\psi_{p-1}(u_1) \dots \psi_{p-1}(u_n) = a^t b^j a^r b^h$ and
 $t + r = 2k + 1, \quad t + j + r + h = n, \quad t, j, r, h, k \in \{0, 1, 2, ...\}, \quad k \ge 1$
a) If $i = 2$, then $(u_1^n, 2) = a$, where $\psi_{p-1}(u_1) \dots \psi_{p-1}(u_n) = (a^*, b^*)^*$ and

;

$$\psi_p(w_1) \dots \psi_p(w_q) = b^* (ab^*)^{2k+1} \}.$$

For the (3,2)-semigroup automaton $(S, (B, \{ \}), f)$, according Proposition 1.2⁰ it is possible to construct semigroup automaton $(S \times B, (B^2, \cdot), \zeta)$, where the transition function $\zeta: S \times B \times B^2 \to S \times B$ is defined with $\zeta((s, x), (y, z)) = f(s, \{xyz\})$. The appropriated table and graph of the transition function are given by Table 3 and Figure 2.

ς	(a,a)	(a,b)	(b,a)	(b,b)
(s_0,a)	(s_2,b)	(s_1,b)	(s_1,b)	(s_2,b)
(s_0, b)	(s_1,b)	(s_2,b)	(s_2,b)	(s_1,b)
(s_1,a)	(s_2,b)	(s_1,b)	(s_1,b)	(s_2, b)
(s_1,b)	(s_1,b)	(s_2,b)	(s_2, b)	(s_1,b)
(s_2,a)	(s_1,b)	(s_2,b)	(s_2, b)	(s_1,b)
(s_2,b)	(s_2,b)	(s_1,b)	(s_1,b)	(s_2, b)

Table 3

If we replace (a, a) = x, (a, b) = y, (b, a) = z, (b, b) = t, where $B' = B^2 = b^2$ $\{x, y, z, t\}$ and $(s_0, a) = s'_0$, $(s_0, b) = s''_0$, $(s_1, a) = s'_1$, $(s_1, b) = s''_1$, $(s_2, a) = s'_2$, $(s_2, b) = s''_1$, where the set of states is $S' = \{s'_0, s''_0, s'_1, s''_1, s'_2, s''_2\}$, the transition function ζ for the semigroup automaton $(S', (B', \cdot), \zeta)$ is given with Table 4, and the semigroup (B', \cdot) is given with Table 5.

					-										
ς	х	У	\mathbf{Z}	\mathbf{t}											
s'_0	s_2''	s_1''	s_1''	s_2''						ſ		х	у	Z	
s_0''	s_1''	s_2''	s_2''	s_1''							х	х	Z	Z	
s'_1	s_2''	s_1''	s_1''	s_2''						ſ	у	\mathbf{Z}	х	х	
s_1''	s_1''	s_2''	s_2''	s_1''						Γ	\mathbf{Z}	\mathbf{Z}	х	х	
s'_2	s_1''	s_2''	s_2''	s_1''						ſ	t	х	Z	Z	
s_2''	s_2''	s_1''	s_1''	s_2''											
Table 4									r	Fabl	e 5				

Table 5

The language $L^{(2,1)}_{B'}$ which is recognized by the semigroup automaton $(S', (B', \, \cdot \,), \zeta)$ in initial state s_0 and terminate state (s_2, b) is of the form

$$L_{B'}^{(2,1)} = \{ w \in B'^* \mid w = (x \cup t)^* (((y \cup z)(x \cup t)^*)^2)^* \}.$$

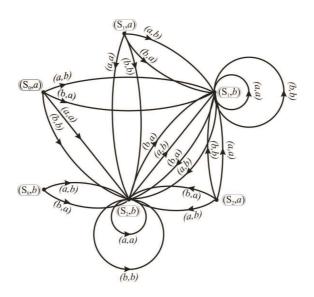


Figure 2:

If we return on the introduced replacement x = (a, a), y = (a, b), z = (b, a), t = (b, b), we will get the (3,2)-language

$$L_{B'}^{(3,2)} = \{ w \in B^* \mid w = (aa \cup bb)^* (((ab \cup ba)(aa \cup bb)^*)^2)^*, \ |w| \ge 3 \}$$

2.1⁰ Let $L^{(3,2)}$ be a (3,2)-language on the set B recognized by the (3,2)-semigroup automaton $(S, (Q, []), \overline{\varphi})$. Let $(S, (Q, []), \overline{\varphi})$ be a (3,2)-semigroup automaton with an initial state s_0 and a set of terminal states $T \times C \subseteq S \times B$. Then $x \tilde{L}^{(2,1)} \subseteq L^{(3,2)}$ for each $x \in Q$ and for any language $L^{(2,1)}$, which is recognized by the semigroup automaton $(S \times Q, (Q^2, *), \psi)$ with an initial state $s'_0 = (s_0, x)$ and a set of terminal states $T \times C$, where $\psi : S \times Q \times Q^2 \to S \times Q$ is a transition function defined by $\psi((s, x), (u, v)) = \overline{\varphi}(s, \{xuv\})$ and $\tilde{L}^{(2,1)} = \{\tilde{w} | w \in L^{(2,1)}\}.$

Proof. $L^{(3,2)}$ is a recognizable (3,2)-language on the set B by the (3,2)-semigroup automaton $(S, (Q, []), \overline{\varphi})$ with initial state s_0 and a set of terminal states $T \times C$, for $T \subseteq S$ and $C \subseteq B$, so

 $L^{(3,2)} = \{ w \in Q^* \mid \overline{\varphi}(s_0, (w, 1), (w, 2)) \in T \times C \}.$

By Proposition 1.2⁰, $(S \times Q, (Q^2, *), \psi)$ is a semigroup automaton and Q^2 is a semigroup. It recognizes a language $L^{(2,1)}$ with an initial state $s'_0 = (s_0, x)$ and a set

of terminal states $T \times C$, so it is of the form

 $L^{(2,1)} = \{ w \in (Q^2)^* \mid \psi(s'_0, w) \in T \times C \}.$

Let $w \in L^{(2,1)}$. It follows that $w \in (Q^2)^*$ and $\psi(s'_0, w) \in T \times C$. But $s'_0 = (s_0, x)$, so

$$\overline{\varphi}(s_0, (x\tilde{w}, 1), (x\tilde{w}, 2)) = \overline{\varphi}(s_0, \{xw\}) = \psi((s_0, x), w) = \psi(s'_0, w) \in T \times C.$$

Thus $x\tilde{w} \in L^{(3,2)}$, i.e. $x\tilde{L}^{(2,1)} \subseteq L^{(3,2)}$.

2.2⁰ Let $L^{(3,2)}$ be a (3,2)-language on the set B recognizabled by (3,2)-semigroup automaton $(S, (Q, []), \overline{\varphi})$ with the initial state s_0 and a set of terminal states $T \times C \subseteq$ $S \times B$, where $(B, \{ \})$ is a (3,2)-semigroup. Let $x \tilde{L}^{(2,1)} \subseteq L^{(3,2)}$ where $\tilde{L}^{(2,1)} = \{\tilde{w} | w \in$ $L^{(2,1)}\}$, for every $x \in Q$ and for the language $L^{(2,1)}$ recognizabled by the semigroup automaton $(S \times Q, (Q^2, *), \psi)$ with initial state $s'_0 = (s_0, x)$ and a set of terminal states $T \times C$, where $\psi : S \times Q \times Q^2 \to S \times Q$ be a transition function defined by

 $\psi((s,x),(u,v)) = \bar{\varphi}(s,\{xuv\}).$

Then for the infinite semigroup automaton $(S \times Q, (Q^2, *), \psi)$ exists finite semigroup automaton (S', B', f') with initial state s' = (s, b) for $b \in B$ and a set of terminal states $T \times C \subseteq S \times B$, which recognizes the language $L_1^{(2,1)} \subseteq (B^2)^*$ and $b\tilde{L}_1^{(2,1)} \subseteq L^{(3,2)}$.

Proof. $L^{(3,2)} = \{ w \in Q^* \mid \overline{\varphi}(s_0, (w, 1), (w, 2)) \in T \times C \},$ during

 $L^{(2,1)} = \{ w \in (Q^2)^* \mid \, \psi(s_0',w) \in T \times C \}.$

Let $S' = S \times B$, $B' = (B^2)^*$, and $f' = \psi|_{B^2}$. S' is a finite set because S and B are finite sets. For f' there is

 $f'((s,b),(u,v)) = \psi|_{B^2}((s,b)(u,v)) = \bar{\varphi}|_{B^2}(s,\{buv\}) = f(s,\{buv\}).$

On the other hand,

$$\begin{aligned} f'((s,b), \{uvtp\}) &= f(s, \{buvtp\}) = f(s, \{\{buv\}tp\}) = f(f(s, \{buv\}), (t, p)) \\ &= f(f'(s,b), (u,v)), (t,p)) = f'(f'((s,b), (u,v)), (t,p)). \end{aligned}$$

From this it follows that f' is a transition function for the finite semigroup automaton (S', B', f'). The language which is recognized by this semigroup automaton looks like

$$L_1^{(2,1)} = \{ w \in L^{(2,1)} | w \in (B^2)^* \}.$$

Because $x\tilde{L}^{(2,1)} \subseteq L^{(3,2)}$ for every $x \in Q$, and $L_1^{(2,1)} \subseteq L^{(2,1)}$ and $B \subseteq Q$, it follows that $b\tilde{L}_1^{(2,1)} \subseteq L^{(3,2)}$ for $b \in B$.

2.3⁰ Let $L^{(2,1)}$ be a recognizable language on the set B by a semigroup automaton $(S, (B, \| \|), \xi)$ with an initial state $s_0 \in S$ and a set of terminal states $T \subseteq S$, and $(S, (B, \{ \}), f)$ be a (3,2)-semigroup automaton. Let $f : S \times B^2 \to S \times B$ is a transition function defined by $f(s, x, y) = (\xi(s, x), y)$. Then $L^{(2,1)}a \subseteq L^{(3,2)}$, for each $a \in B$, where $L^{(3,2)}$ is a recognizable (3,2)-language on the set B by the (3,2)-semigroup automaton $(S, (Q, []), \bar{\varphi})$ with an initial state $s_0 \in S$ and a set of terminal states $T \times \{a\}$.

Proof. A language $L^{(2,1)}$ is recognizable by a semigroup automaton $(S, (B, \| \|), \xi)$ with initial state $s_0 \in S$ and a set of terminal states $T \subseteq S$, so

 $L^{(2,1)} = \{ w \in B^* | \, \xi(s_0, w) \in T \}.$

By Proposition 1.1⁰, $(S, (B, \{ \}), f)$ is a (3,2)-semigroup automaton. We construct a (3,2)-semigroup automaton $(S, (Q, []), \overline{\varphi})$, where $Q = \varphi(\overline{B})$ and $\overline{\varphi} : S \times Q^2 \to S \times Q$ is a transition function defined by

 $\overline{\varphi}(s,(u_1^n,i),(v_1^k,j)) = \tau_p(s,(u_1^n,i),(v_1^k,j)) = f(s,\psi_p(u_1^n,i),\psi_p(v_1^k,j)).$

It follows that a recognizable (3,2)-language $L^{(3,2)}$ on the set B by the (3,2)semigroup automaton $(S, (Q, []), \bar{\varphi})$, with an initial state $s_0 \in S$ and a set of terminal states $T \times \{a\}$ is of the form

$$\begin{split} L^{(3,2)} &= \{ w \in Q^* \mid \overline{\varphi}(s_0, w) \in T \times \{a\} \}.\\ \text{Let } w \in L^{(2,1)} \text{ and } a \in B. \text{ Then}\\ \overline{\varphi}(s_0, (wa, 1), (wa, 2)) &= \overline{\varphi}(s_0, (w, a)) = (\xi(s_0, w), a) \in T \times \{a\}.\\ \text{Thus } wa \in L^{(3,2)}, \text{ i.e } L^{(2,1)}a \subseteq L^{(3,2)}. \end{split}$$

Acknowledgements: This paper contains parts of the autor's dissertation which was done under the guidance of Professor Donco Dimovski. I express thanks to Professor Dimovski for his suggestions and continuous support.

References

[1] A. Salomaa, *Theory of automata*, Pergamon Press, Oxford (1969).

- [2] D. Dimovski, Free vector valued semigroups, Proc. Conf. "Alegbra and Logic", Cetinje, p. 55–62.
- [3] K. Trenčevski, D. Dimovski, Complex commutative vector valued groups, Maced.
 Acad. Sci. and Arts, Skopje (1992).
- [4] G. Čupona, N. Celakovski, S. Markovski, D. Dimovski, Vector valued groupoids, semigroups and groups, Maced. Acad. Sci. and Arts, Skopje (1988), p. 3–73.