MODIFIED WIENER INDICES OF THORN TREES

Bo Zhou

Department of Mathematics, South China Normal University, Guangzhou 510631, P. R. China (e-mail: zhoubo@scnu.edu.cn)

(Received December 14, 2004)

Abstract. The λ -modified Wiener index ${}^m\!W_\lambda$ provides a class of structure–descriptors to measure the branching of the carbon-atom skeleton molecules. A thorn tree is formed by attaching some new vertices of degree one to each vertex of the parent tree. An explicit expression is deduced enabling the calculation of the k-modified Wiener index of a type of thorn tree in terms of the i-modified Wiener indices of the parent tree for any natural number k with $0 \le i \le k$.

1. INTRODUCTION

The Wiener index (W) is one of the oldest molecular-graph-based structuredescriptors [1, 2]. It is the sum of distances between all unordered pairs of vertices in the graph. Let T be a tree on n vertices and let e be one of its edges. Let $n_{T,1}(e)$ and $n_{T,2}(e)$ be the numbers of vertices of T lying on the two sides of the edge e. Then [1]

$$W(T) = \sum_{e} n_{T,1}(e) \cdot n_{T,2}(e)$$

where the summation goes over all edges of T.

Recently, Gutman et al. [3] put forward the λ -modified Wiener index ${}^m\!W_{\lambda}$, defined as

$${}^{m}W_{\lambda}(T) = \sum_{e} [n_{T,1}(e) \cdot n_{T,2}(e)]^{\lambda}$$

where λ is a real number. Clearly, 1-modified Wiener index ${}^m\!W_1$ is just the ordinary Wiener index W. Note that -1-modified Wiener index ${}^m\!W_{-1}$ has been studied in [4, 5]. If T is a tree on n vertices, different from the n-vertex path P_n and the n-vertex star S_n , it has been proven that [3]

$${}^{m}W_{\lambda}(P_{n}) > {}^{m}W_{\lambda}(T) > {}^{m}W_{\lambda}(S_{n})$$

when $\lambda > 0$, and

$${}^{m}W_{\lambda}(P_{n}) < {}^{m}W_{\lambda}(T) < {}^{m}W_{\lambda}(S_{n})$$

when $\lambda < 0$. Hence for different $\lambda \neq 0$, ${}^m\!W_{\lambda}$ measures the extent of branching of the molecular carbon–atom skeleton, and can thus be viewed as a class of structure–descriptors [2].

The thorn graph $G^* = G^*(p_1, p_2, \dots, p_n)$ of a graph G on n vertices v_1, v_2, \dots, v_n is formed by attaching $p_i \geq 0$ new vertices of degree one to each vertex v_i of G [6, 7]. For G being a tree T, T^* is called a thorn tree. Special cases of thorn graphs have been already considered by Cayley [8] and later by Pólya [9]. Gutman [6] established relations between $W(G^*)$ and W(G) for a connected graph G.

Let T be a tree on n vertices v_1, v_2, \ldots, v_n . In this paper, we consider the thorn tree $T_{a,b}^{\star} = T^{\star}(p_1, p_2, \ldots, p_n)$ with $p_i = ad_i + b$, $i = 1, 2, \ldots, n$ where d_i is the degree of vertex v_i , and a and b are real numbers such that each $p_i \geq 0$ is an integer. For three special classes of thorn trees $T_{a,b}^{\star}$ with a = 0, or a = 1 and b = 0, or a = -1, Vukičević and Graovac [10] have recently found explicit formulae for ${}^m\!W_{\lambda}(T_{a,b}^{\star})$ in terms of μ -modified Wiener indices of T, where λ, μ are natural numbers with $0 \leq \mu \leq \lambda$ if a = 1 and b = 0, or if a = -1, and $\lambda = \mu$ is a real number if a = 0.

We present an explicit formula to calculate ${}^m\!W_k(T_{a,b}^{\star})$ in terms of *i*-modified Wiener indices of T for any natural number k with $0 \le i \le k$, and thus generalize the results in [10].

2. THE RESULT

Theorem 1. If $T^* = T^*_{a,b}$ is the thorn graph of a tree T on n vertices and k is a natural number, then

$${}^{m}W_{k}(T^{\star}) = \sum_{i=0}^{k} \left[\binom{k}{i} \left(-a(2a+b+1)n + a^{2} \right)^{k-i} \cdot (2a+b+1)^{2i} \cdot {}^{m}W_{i}(T) \right] + \left[(2a+b)n - 2a \right] \cdot \left[(2a+b+1)n - 2a - 1 \right]^{k}.$$

$$(1)$$

In particular,

$$W(T^{\star}) = (2a+b+1)^2 W(T) + (a+b)(2a+b+1)n^2 - (5a^2+3ab+3a+b)n + 3a^2 + 2a.$$
 (2)

Proof. Let V(T) and E(T) be the vertex set and edge set of T, respectively. We have

$${}^m\!W_k(T^\star) = \sum_{e \in E(T)} \left[n_{T^\star,1}(e) \cdot n_{T^\star,2}(e) \right]^k + \sum_{e \in E(T^\star) \backslash E(T)} \left[n_{T^\star,1}(e) \cdot n_{T^\star,2}(e) \right]^k \,.$$

For any vertex v of T, let d_v be the degree of v in T. It is easy to see that the number of vertices of T^* is $n + a \sum_{i=1}^n d_i + nb = (2a + b + 1)n - 2a$, and then $E(T^*) \setminus E(T)$ contains exactly (2a + b)n - 2a edges. So

$$\sum_{e \in E(T^*) \setminus E(T)} \left[n_{T^*,1}(e) \cdot n_{T^*,2}(e) \right]^k = \left[(2a+b)n - 2a \right] \cdot \left[(2a+b+1)n - 2a - 1 \right]^k.$$

Let $x = -ayn + a^2$, y = 2a + b + 1. To prove (1), we only need to show

$$\sum_{e \in E(T)} \left[n_{T^*,1}(e) \cdot n_{T^*,2}(e) \right]^k = \sum_{i=0}^k \binom{k}{i} x^{k-i} y^{2i} \cdot {}^m W_i(T) . \tag{3}$$

Let $T_1(e)$ be the component of T - e with $n_{T,1}$ vertices. Note that for each $e \in E(T)$,

$$n_{T^*,1}(e) = n_{T,1}(e) + \sum_{u \in V(T_1(e))} (ad_u + b)$$

$$= n_{T,1}(e) + a \sum_{u \in V(T_1(e))} d_u + bn_{T,1}(e)$$

$$= n_{T,1}(e) + a \left[2 \left(n_{T,1}(e) - 1 \right) + 1 \right] + bn_{T,1}(e)$$

$$= y \cdot n_{T,1}(e) - a,$$

and similarly,

$$n_{T^{\star},2}(e) = y \cdot n_{T,2}(e) - a$$
.

So

$$n_{T^*,1}(e) \cdot n_{T^*,2}(e) = y^2 \cdot n_{T,1}(e) \cdot n_{T,2}(e) - ay \cdot [n_{T,1}(e) + n_{T,2}(e)] + a^2$$

= $y^2 \cdot n_{T,1}(e) \cdot n_{T,2}(e) + x$,

and it follows that

$$\sum_{e \in E(T)} [n_{T^*,1}(e) \cdot n_{T^*,2}(e)]^k = \sum_{e \in E(T)} [y^2 \cdot n_{T,1}(e) \cdot n_{T,2}(e) + x]^k
= \sum_{e \in E(T)} \sum_{i=0}^k {k \choose i} x^{k-i} [y^2 \cdot n_{T,1}(e) \cdot n_{T,2}(e)]^i
= \sum_{i=0}^k {k \choose i} x^{k-i} y^{2i} \cdot \sum_{e \in E(T)} [n_{T,1}(e) \cdot n_{T,2}(e)]^i
= \sum_{i=0}^k {k \choose i} x^{k-i} y^{2i} \cdot {}^mW_i(T).$$

This proves (3). Hence (1) follows. By setting k = 1 in (1), we have (2).

Corollary 2. [10] If T is a tree with n vertices, then for any natural number k,

$${}^{m}W_{k}(T_{1,0}^{\star}) = \sum_{i=0}^{k} \left[\binom{k}{i} (1-3n)^{k-i} 9^{i} \cdot {}^{m}W_{i}(T) \right] + (2n-2)(3n-3)^{k},$$

$${}^{m}W_{k}(T_{-1,b}^{\star}) = \sum_{i=0}^{k} \left[\binom{k}{i} ((b-1)n+1)^{k} - i(b-1)^{2i} \cdot {}^{m}W_{i}(T) \right]$$

$$+ \left[(b-2)n+2 \right] \left[(b-1)n+1 \right]^{k}.$$

If a = 0 and λ is a real number, then replacing the integer k by λ and noting that x = 0 in the proof of Theorem 1, we may easily have the following.

Corollary 3. [10] If T is a tree with n vertices, then for any λ ,

$${}^{m}W_{\lambda}(T_{0,b}^{\star}) = (b+1)^{2\lambda} \cdot {}^{m}W_{\lambda}(T) + bn[(b+1)n-1]^{\lambda}$$
.

Acknowledgements: This work was supported by the National Natural Science Foundation (No. 10201009) and the Guangdong Provincial Natural Science Foundation (No. 04010389) of China.

References

- [1] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. **69** (1947), 17–20.
- [2] R. Todeschini, V. Consonni, *Handbook of Molecular Descriptors*, Wiley–VCH, Weinheim, 2000.
- [3] I. Gutman, D. Vukičević, J. Žerovnik, A class of modified Wiener indices, Croat. Chem. Acta 77 (2004), 103–109.
- [4] S. Nikolić, N. Trinajstić, M. Randić, Wiener index revisited, Chem. Phys. Lett. 333 (2001), 319–321.
- [5] I. Gutman, J. Žerovnik, Corroborating a modification of the Wiener index, Croat. Chem. Acta **75** (2002), 603–612.
- [6] I. Gutman, Distance in thorny graphs, Publ. Inst. Math. (Beograd) 63 (1998), 31–36
- [7] D. Bonchev, D. J. Klein, On the Wiener number of thorn trees, stars, rings, and rods, Croat. Chem. Acta **75** (2002), 613–620.
- [8] A. Cayley, On the mathematical theory of isomers, Phil. Magazine 47 (1874), 444–446.
- [9] G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937), 145–254.
- [10] D. Vukičević, A. Graovac, On modified Wiener indices of thorn graphs, MATCH Commun. Math. Comput. Chem. **50** (2004), 93–108.