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Abstract. Let (S, =, 6=, ·, s) be an ordered semigroup under an antiorder s. If S is a
subdirect product of the ordered semigroup {Si : i ∈ I}, then there exists a family {σi : i ∈
I} of quasi-antiorders on S which separates the elements of S. Conversely, if {σi : i ∈ I} is
a family of quasi-antiorders on S which separates the elements if S, then S is a subdirect
product of the ordered semigroups {S/(σi ∪ (σi)−1) : i ∈ I}.

This investigation is in constructive algebra. Throughout this paper,

S = (S, =, 6=, ·) always denotes a semigroup with apartness in the sense of the books

[1], [3], [8], [9] and papers [4], [5, ], [6] and [7]. The apartness 6= on S is a binary relation

with the following properties ([1], [9]): For every elements x, y and z in S hold

¬(x 6= x), x 6= y ⇒ y 6= x, x 6= y ∧ y = z ⇒ x 6= z, x 6= z ⇒ (∀y ∈ S)(x 6= y ∨ y 6= z).

For apartness 6= we say that it is tight ([8]) if and only if (∀x, y ∈ S)(¬(x 6= y) ⇒
x = y). It takes ([3], [5], [8]) that semigroup operation is strongly extensional in the

sense

(∀a, b, x, y 6= S)(ay 6= by ⇒ a 6= b ∧ xa 6= xb ⇒ a 6= b).
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Let x be an element of S and A subset of S. We write x]Aiff(∀a ∈ A)(x 6= a), and

A′ = {x 6= S : x]A}(A′ is the strongly compliment of A). Let q be a relation on

semigroup S. For q we say that it is coequality relation ([4], [6], [7]) if and only if it is

consistent, symmetric and cotransitive relation on S : q ⊆6=, q−1 = q and for elements

x, y and z of S hold (x, z) 6= q ⇒ (∀t ∈ S)((x, t) ∈ q
∨

(t, z) ∈ q), (x, y) ∈ q
∧

y = z ⇒
(x, z) ∈ q. If the coequality relation q compatible with the semigroup operation in

the next sense

(∀x, y, a, b ∈ S)((axb, ayb) ∈ q ⇒ (x, y) ∈ q),

we say that q is anticongruence on S. Coequality relation and anticongruence studied

by the author in [4], [6]and [7].

A relation α on S is antiorder on S if and only if

(α ⊆6=),
(∀x, y, z ∈ S)((x, z) ∈ α ⇒ (x, y) ∈ α ∨ (y, z) ∈ α)

(∀x, y ∈ S)(x 6= y ⇒ (x, y) ∈ α ∨ (y, x) ∈ α),
(∀x, y, z ∈ S)((xz, yz) ∈ α ⇒ (x, y) ∈ α ∧ (zx, zy) ∈ α ⇒ (x, y) ∈ α).

Let α be an antiorder relation on S. A relation s is a quasi-antiorder on S([4], [6], [7])

if and only if

s ⊆ α
(∀x, y, z ∈ S)((x, z) ∈ s ⇒ (x, y) ∈ s ∨ (y, z) ∈ s),

(∀x, y, z ∈ S)((xz, yz) ∈ s ⇒ (x, y) ∈ s ∧ (zx, zy) ∈ s ⇒ (x, y) ∈ s).

In this short note we will give description of family of quasi-antiorder relations on

ordered semigroup under antiorder relation.

Lemma 0. Let s be a quasi-antiorder relation on ordered semigroup (S, =, 6=, ·, α)

under antiorder relation α. Then q = s ∪ s−1 is an anticongruence on S such that

S/q is an ordered semigroup under antiorder relation β defined by (xq, yq) ∈ β ⇔
(x, y) ∈ s.

Proof. (1) It is easy to see that the relation q is an coequality relation on S. We

need only to prove that q is an anticongruence on S. Let (axb, ayb) ∈ q, a, b ∈ S.

Since (axb, ayb) ∈ s ∨ (ayb, axb) ∈ s, we have (x, y) ∈ s ∨ (y, x) ∈ s. Then (x, y) ∈ q.
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(2) We define the equality, apartness and operation ”·” on S/q as follows:

xq = yq ⇔ (x, y)]q,
xq 6= yq ⇔ (x, y) ∈ q,

· : S/q × S/q 3 (xq, yq) → xyq ∈ S/q.

Since q is an anticongruence on S, the operation is well defined and (S/q, =, 6=, ·) is

a semigroup (It is known: [4], [7])

(3) We define a relation β on S/q as follows:

(xq, yq) ∈ β ⇔ (x, y) ∈ s.

Let (uq, vq) be an arbitrary element of β, i.e. let (u, v) ∈ s. Since s ⊆ q, we have

uq 6= vq. Therefore,β ⊆6= (inS/q). Let (xq, zq) ∈ β and yq ∈ S/q, i.e. let (x, z) ∈ s

and y ∈ S. Since (x, y) ∈ s ∨ (y, z) ∈ s, we have (xq, yq) ∈ β or (yq, zq) ∈ β. Let

(xq, yq) ∈ β and aq, bq ∈ S/q, i.e. (x, y) ∈ s and a, b ∈ S. Since (axb, ayb) ∈ s, we

have (aq · xq · bq, aq · yq · bq) ∈ β. Let xq 6= yq, i.e. let (x, y) ∈ q = s
⋃

s−1. Since

(x, y) ∈ s or (y, x) ∈ s, we have (xq, yq) ∈ β or (yq, xq) ∈ β. So, the relation β is

linear. Therefore, the relation β is an antiorder relation on S/q. 2

Let S be an ordered semigroup under an antiorder α,
∑

a family of quasi-antiorders

on S. We say that
∑

separates the elements of S if for each x, y ∈ S such that

(x, y) ∈ α there exist σ ∈ ∑
such that (x, y) ∈ σ.

Lemma 1. Let (S, =, 6=, ·, α) be an ordered semigroup under an anti-order α,
∑

a

family of quasi-antiorders on S. If
∑

separates the elements of S, then

α =
⋃{σ : σ ∈ ∑}. Conversely, if

⋃{σ : σ ∈ ∑} ⊇ α, then
∑

separates the

elements of S.

Proof. (1) Since
∑

is a family of quasi-antiorders on S,
⋃{σ : σ ∈ α} is a quasi-

antiorder on S. Then
⋃{σ : σ ∈ ∑} ⊆ α. Let (x, y) ∈ α. Since

∑
separates the

elements of S, then there exists ρ ∈ ∑
such that (x, y) ∈ ρ. Therefore (x, y) ∈ ⋃{σ :

σ ∈ ∑}.
(2) Suppose that

⋃{σ : σ ∈ ∑} ⊇ α. Then for each pair x, y ∈ S there exists and

an quasi-antiorder σ ∈ ∑
such that (x, y) ∈ σ. 2



14

Let (S, =, 6=, ·, , s), (T, =, 6=, ·, t) be ordered semigroups under antiorders s and t

respective, f : S → T a strongly extensional mapping from S onto T . f is called

isotone if

(∀x, y ∈ S)((x, y) ∈ s ⇒ (f(x), f(y)) ∈ t).

f is called reverse isotone if and only if

(∀x, y ∈ S)((f(x), f(y)) ∈ t ⇒ (x, y) ∈ s).

f is called a homomorphism if it is isotone and satisfies

(∀x, y ∈ S)(f(xy) = f(x)f(y)).

The strongly extensional and embedding mapping f is called an isomorphism if it is

a homomorphism, onto, isotone and reverse isotone. S and T called isomorphic, in

symbol S T , if exists an isomorphism between them.

Remarks. Every isotone mapping f : S → T satisfies the following condition:

(1) Let x, y ∈ S and x 6= y. Then (x, y) ∈ s or (y, x) ∈ s by linearity of s and we

have (f(x), f(y)) ∈ t ⊆6= or (f(y), f(x)) ∈ t ⊆6=. So, the mapping f is an embedding.

(2) Let x, y ∈ S and f(x) = f(y). Then ¬(f(x) 6= f(y)) and from this we conclude

¬((f(x), f(y)) ∈ t) and ¬((f(y), f(x)) ∈ t). Hence ¬((x, y) ∈ s) and ¬((y, x) ∈ s).

Therefore ¬(x 6= y). If the apartness 6= on semigroup S is tight, then x = y. So, in

that case, the mapping f is an injective.

Lemma 2. Let (S, =, 6=, ·, s), (T, =, 6=, ·, t) be ordered semigroups under antiorders

s and t respective, f : S → T a strongly extensional homomorphism. The relation σ

on S, defined by (x, y) ∈ σ if and only if (f(x), f(y)) ∈ t, is a quasi-antiorder on S.

Proof. (1) Let (x, y) ∈ σ. Since (f(x), f(y)) ∈ t and f is a reverse isotone, we

have (x, y) ∈ s.

(2) Let (x, z) ∈ σ and let y be an arbitrary element of S. Since (f(x), f(z)) ∈ t

we have (f(x), f(y)) ∈ t or (f(y), f(z)) ∈ t. Then (x, y) ∈ σ ∨ (y, z) ∈ σ.

(3) Let x, y, a, b ∈ S and let (axb, ayb) ∈ σ. Since ((f(axb), f(ayb)) ∈ t, f is

a homomorphism of semigroups and T is ordered semigroup under the anti-order t,
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we have that from ((f(a)f(x)f(b), f(a)f(y)f(b)) ∈ t follows (f(x), f(y)) ∈ t. So,

(x, y) ∈ σ. 2

Let {(Si, =, 6=, ·i, si) : i ∈ I}, where I is a discrete set, be an inhabited family of

ordered semigroups under anti-orders. Then the inhabited Cartesian product
∏

Si of

{Si : i ∈ I} with the multiplication

∏
Si ×

∏
Sj 3 (x, y) → z ∈ ∏

Sk

and with and the antiorder α defined by

(∀i ∈ I)(z(i) = x(i)y(i)), ((x, y) ∈ α ⇔ (∃i ∈ I)(((x(i), y(i)) ∈ si),

is an ordered semigroup.

Let {Si : i ∈ I} be a family of ordered semigroups under antiorders . An ordered

semigroup S under an antiorder σ is a subdirect product of the family {Si : i ∈ I} if

and only if:

(1) There exists a subsemigroup T of
∏

i∈∈I Si such that T ∼= S;

(2) (∀i ∈ I)(πi(T ) = Si).

Theorem. Let (S, =, 6=, ·, s) be an ordered semigroup under an antiorder s.

If S is a subdirect product of the ordered semigroup {Si : i ∈ I}, then there exists

a family {σi : i ∈ I} of quasi-antiorders on S which separates the elements of S.

Conversely, if {σi : i ∈ I} is a family of quasi-antiorders on S which separates the

elements if S, then S is a subdirect product of the ordered semigroups {S/(σi
⋃

(σi)
−1) :

i ∈ I}.
Proof. (1) Let f : S → ∏

Si be a reverse isotone strongly extensional homo-

morphism such that πi(f(S)) = Si(i ∈ I). For each j ∈ I, we consider the mapping

ϕj : S → Sj by ϕj(x) = πj(f(x)) = f(x)(j).

(a) ϕ is a strongly extensional function because components are strongly exten-

sional functions;

(b) Let x, y ∈ S, (x, y) ∈ s. Since f is isotone mapping, we have (f(x), f(y)) ∈ α.

Then (∃k ∈ I)(((f(x)(k), f(y)(k)) ∈ sk). Hence (∃k ∈ I)((πk(f(x)), πkf(y))) ∈ sk).
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Since ϕ is a strongly extensional homomorphism, the relation ϕk, defined by (x, y) ∈
σk if and only if (ϕk(x), ϕk(y)) ∈ sk, is a quasi-antiorder for every k ∈ I, by Lemma

2. By Lemma 1, it is enough to prove the
⋃{σk : k ∈ I} ⊇ s. Let (x, y) ∈ s. Then

(f(x), f(y)) ∈ α, because f is isotone mapping, i.e. there exists k in I such that

((f(x)(k), f(y)(k))) ∈ sk. So, (ϕk(x), ϕk(y)) ∈ sk, i.e. (x, y) ∈ σk, which means

(x, y) ∈ ⋃{σk : k ∈ I}.
(2) Converse statement: Let {σi : i ∈ I} be a family of quasi-antiorders relation on

(S, =, 6=, ·, s) which separates the elements of S. We can construct the anticongruence

qk = σk
⋃

(σk)
−1, and semigroup Sk = S/qk for every k ∈ I. By lemma 0, there exists

the quasi-antiorder βk on S/qk, defined by (xqk, yqk) ∈ βk if and only if (x, y) ∈ σk,

such that the semigroup S/qk is ordered semigroup under antiorder βk. Now, we can

construct the Cartesian product
∏

k∈I(S/qk, =, 6=, ·, βk) with

a = b ⇔ (∀k ∈ I)(a(k), b(k) ∈ S/qk ∧ a(k) = b(k))
a 6= b ⇔ (∃k ∈ I)(a(k), b(k) ∈ S/qk ∧ a(k) 6= b(k))

(∀k ∈ I)((a · b)(k) = a(k) · b(k))
(∀k ∈ I)(πk(a) = a(k) ∈ S/qk).

and with antiorder α , defined by

(a, b) ∈ α ⇔ (∃k ∈ I)((a(k), b(k)) ∈ βk).

We consider the mapping f : S → ∏
S/qk by f(x)(k) = xqk, (k ∈ I).

(a) f is correct defined.

If x ∈ S, then xqk ∈ S/qk(∀k ∈ I). So, we have f(x) ∈ ∏
S/qk.

Let x, y ∈ S, x = y. Then (x, y) ∈ (qi)’ for every i ∈ I. So, for every i ∈ I we

have xqi = yqi, i.e. (∀i ∈ I)(f(x)(i) = f(y)(i)), i.e. f(x) = f(y). So, f is a function.

Let x, y ∈ S, and let f(x) 6= f(y) in
∏

S/qk. Then (∃j ∈ I)((f(x)(j) 6= f(y)(j)),

i.e. (∃j ∈ I)(xqj 6= yqj). Hence (x, y) ∈ qj = σj
⋃

(σj)
−1, we conclude (x, y) ∈

σj ∨ (y, x) ∈ σj. Therefore, x 6= y. So, the mapping f is strongly extensional function

from S into
∏

S/qk.

(b) f is a homomorphism:

If x, y ∈ S, then (∀k ∈ I)(f(xy)(k) = xyqk = xqkyqk = f(x)(k) · f(y)(k)). So,

f(xy) = f(x) · f(y).
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(c) f is an isotone function:

Let x, y ∈ S, (x, y) ∈ s =
⋃{σk : k ∈ I} because the family {σk : k ∈ I} separates

the elements of S. Then (∃k ∈ I)((x, y) ∈ σk). i.e. (∃k ∈ I)((xqk, yqk) ∈ βk).

Therefore, (f(x), f(y)) ∈ α.

(d) f is reverse isotone function:

Let x, y ∈ S, (f(x), f(y)) ∈ α. Since (∃k ∈ I)((f(x), f(y)) ∈ βk), i.e. (∃k ∈
I)((xqk, yqk) ∈ βk), we have (x, y) ∈ σk. Since βk ⊆ s, we have (x, y) ∈ s.

(e) (∀k ∈ I)(πk(f(S)) = S/qk):

Let x ∈ S, then f(x) ∈ ∏
S/qk, thus (∀k ∈ I)(πk(f(x)) = xqk ∈ S/qk). This

means (∀k ∈ I)(πk(f(S)) ⊆ S/qk). Let y ∈ ∏
S/qk, i.e. let (∀k ∈ I)(y(k) ∈ S/qk).

Then there exists the element x in S such that f(x) = y, defined by (∀∀k ∈ I)(y(k) =

f(x)(k)). So, (∀k ∈ I)(πk(f(x)) = y(k) ∈ S/qk). Therefore, (∀k ∈ I)(πk(f(S)) ⊇
S/qk). 2
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