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Technical Faculty, Svetog Save 65, 32000 Čačak
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Abstract. In this paper are given some formulas for σ(n), the sum of divisors of positive
integer n. According to these formulas σ(n) can be evaluated via some sequences without
knowledge of prime factorization of n.

1. INTRODUCTION

Let n be a positive integer. σ(n) denotes the sum of all positive divisors of n, and

can be given symbolically by

σ(n) =
∑

d|n
σ(d).

If we know the prime factorization of n, i.e. if

n =
k∏

j=1

p
αj

j , pj ∈ P, αj ∈ N, (1)

then σ(n) can be evaluated by the formula:

1Research supported by Science Fund of Serbia under Grant 1457.



48

σ(n) =
k∏

j=1

p
αj+1
j − 1

pj − 1
. (2)

If we extend formula (1) to all αj = 0, σ(1) = 1 can be found from (2).

For σ(n) we can give the formulas:

σ(n) =
n∑

k=1

k−1∑
j=0

e
2πnji

k , (3)

σ(n) =
1

n!

n∑

k=1

k

(
xk

1− xk

)(n)

x=0

, (4)

σ(n) = n +
∑

16q6 n
2

([
n

q

]
−

[
n− 1

q

])
q (n > 2), (5)

σ(n) = 2n− 1− Sn + Sn−1 (n > 3), (6)

where Sk is the sum of the residues obtained by dividing k by each integer less than

k.

Formula (5) was obtained by G. L. Dirichlet [3], while formula (6) was stated by

E. Cesaro [6] and proved by E. Catalan [7]. From formula (6) can be derived the

formula

σ(n) =

{
2n− 1− Tn + Tn−1 −

[
n
2

]
, n > 3, n-odd

2n− 1− Tn + Tn−1, n > 4, n-even
(7)

where Tk is the sum of the residues obtained by dividing k by each integer 6
[

k
2

]
.

There are some formulas with recursive relations for σ(n). Detailed information

about them can be found in L. E. Dickson’s book [8], chapter X.

First of them is Euler’s [1] formula:

σ(n) +
∑
j>1

(−1)j

{
σ

(
n− 3j2 − j

2

)
+ σ

(
n− 3j2 + j

2

)}
=

=

{
(−1)k+1n, n = 3k2±k

2
,

0, otherwise.
(8)

The second is the formula:

∑
j>0

(−1)j(2j + 1)σ

(
n− j(j + 1)

2

){
(−1)k+1 k(k+1)(2k+1)

6
, n = k(k+1)

2
,

0, otherwise.
(9)
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Formula (9) was obtained by C. Sardi [5].

The third is the formula:

∑
j>0

[n− 1− 5j(j + 1)]σ(n− j(j + 1)) =

{
k(k+1)(2k+1)2

6
, n = k(k + 1),

0, otherwise.
(10)

Formula (10) was obtained by V. Bouniakowsky [4].

2. STATEMENTS AND RESULTS

From the formulas which will be given in the second part of this paper, σ(n) can

be evaluated via some sequences, without knowing prime factors of n.

Theorem 1.

∑

16j6√n

(−1)j+1j2∆n−j2 =

{
σ(n), n-odd,

σ(n)− σ
(

n
2

)
, n-even,

∆s = 2
∑

16t6√s

(−1)t+1∆s−t2 , ∆0 = 1.
(11)

Proof. Here, we can use Jacobi’s [2] identity:

∞∏
n=1

(
1− x2n

) (
1 + x2n−1

)2
= 1 + 2

∞∑
n=1

xn2 ≡ Ψ(x) =
∞∑

j=0

ajx
j (12)

with

a0 = 1, aj =

{
2, j = r2 (r > 1),
0, j 6= r2 (r > 1).

(13)

If we take the logarithmic derivative of (12), and multiply the resulting identity

by x, we obtain:

x
Ψ′(x)

Ψ(x)
=

∞∑
n=1

(
−2n

x2n

1− x2n

)
+ 2

∞∑
n=1

(2n− 1)
x2n−1

1 + x2n−1
, (14)

∞∑
n=1

(−2n)
x2n

1− x2n
= −2

∞∑
n=1

σ(n)x2n, (15)
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2
∞∑

n=1

(2n− 1)
x2n−1

1 + x2n−1
= 2

∞∑
n=1

(2n− 1)x2n−1

∞∑
m=0

(−1)mx(2n−1)m

= −2
∞∑

n=1

(2n− 1)
∞∑

m=1

(−1)mx(2n−1)m = −2
∞∑

k=1

xk
∑

2n−1|k
(−1)

k
2n−1 (2n− 1)

= −2
∞∑

n=1

dnxn, dn =
∑

2k−1|n
(−1)

n
2k−1 (2k − 1).

For n = 2aq, where q is odd, it is

dn = (−1)nσ(q). (16)

For even n it is

σ(n) =
(
2a+1 − 1

)
σ(q), σ

(n

2

)
= (2a − 1) σ(q) ⇒

⇒ σ(q) =

{
σ(n), n-odd,

σ(n)− 2σ
(

n
2

)
, n-even.

(17)

From (14), (15), (16), (17) we have

x
Ψ′(x)

Ψ(x)
= −2

∞∑
n=1

σ(n)x2n − 2
∞∑

n=1

(−1)nσ(q)xn =
∞∑

j=1

ejx
j, (18)

where

ej =

{
2σ(j), j-odd,

−2
(
σ(j)− σ

(
j
2

))
, j-even.

(19)

From (12) and (18) it follows

∞∑
n=1

nanx
n =

∞∑
j=0

ajx
j

∞∑

k=1

ekx
k ⇒

⇒ nan =
n−1∑

k=0

aken−k. (20)

If in (20) we take n → n, n − 1, . . . , 1, we can consider it as the system with

unknown e1, e2, . . . , en with aj given from (13). The determinant of that system is 1.

Solving the system with respect to en by Kramer’s rule, we get the desired formula

(11).

Thus, we have proved theorem 1. ¤
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Theorem 2.

∑
j>1

(−1)1+
j(j+1)

2
j(j + 1)

2
ω

n− j(j+1)
2

=

{
σ(n), n-odd,

4σ
(

n
2

)− σ(n), n-even.
(21)

ωs =
∑
r>1

(−1)1+
r(r+1)

2 ω
s− r(r+1)

2

, ω0 = 1. (21’)

Proof. Now, we use the following Jacobi’s [2] identity:

∞∏
n=1

(
1− x2n

) (
1 + x2n

)2
= 1 +

∞∑
n=1

xn(n+1) ≡ Φ(x) =
∞∑

j=0

bjx
j, (22)

with

b0 = 1, bj =

{
1, j = r(r + 1) (r > 1),
0, j 6= r(r + 1) (r > 1).

(23)

Proceeding as in the proof of theorem 1, we get

x
Φ′(x)

Φ(x)
= −2

∞∑
n=1

σ(n)x2n − 4
∞∑

n=1

x2n
∑

k|n
(−1)

n
k k. (24)

ln =
∑

k|n
(−1)

n
k k.

For n = 2aq, where q is odd, it is

ln = −σ(q) = 2σ
(n

2

)
− σ(n). (25)

Thus, we obtain

2nb2n =
n−1∑

k=0

b2kf2(n−k), (26)

where is

f2j = 4σ(q)− 2σ(j) =

{
2σ(j)− 8σ

(
j
2

)
, j-even,

2σ(j), j-odd
(27)

In the same manner as in theorem 1, we obtain formula (21), thus proving the

theorem 2. ¤

Theorem 3.

(−1)nσ(n) =
∑
j>1

(−1)
(j+1)(j+2)

2
j(j + 1)(2j + 1)

6
Ω

n− j(j+1)
2

, (28)

Ωs =
∑
r>1

(−1)
(r+1)(r+2)

2 (2r + 1)Ω
s− r(r+1)

2

, Ω0 = 1. (28’)
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Proof. We use another one Jacobi’s [2] identity

∞∏
n=1

(1− xn)3 = 1 +
∞∑

n=1

(−1)n(2n + 1)x
n(n+1)

2 ≡
∞∑

j=0

cjx
j, (29)

with

c0 = 1, cj =

{
(−1)k(2k + 1), j = k(k+1)

2
(k > 1),

0, j 6= k(k+1)
2

(k > 1).
(30)

From this identity we get the equality (9), which, as in the proof of theorem 1,

yields to formula (28). ¤

Further, we give a scheme based on the result of theorem 1.

On the scheme, in the first diagonal is

λ1(n) =

{
σ(n), n-odd,

σ(n)− σ
(

n
2

)
, n-even,

with

λ1(2
aq) = 2aσ(q), q-odd,

λ1(0) =
1

2
,

λ1(n) = 2λ1(n− 1)− λ2(n),

λ2(n) = 2λ1

(
n− 22

)− λ3(n),

λ3(n) = 2λ1(n− 32)− λ4(n),

...

λk(n) = 2λ1(n− k2)− λk+1(n),

for n > k2 and

λk(n) = 0, n ≤ k2 − 1,

λk(k
2) = k2.

λk(n) is number in the n-th column and in the k-th diagonal. Since λk(k
2) =

k2 (k ∈ N), initial values in diagonals are 1, 4, 9, 16, 25, ...
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According to the scheme 1, the following recurrence relation straightforwardly

follows:

λ1

(
m2 + k

)
= (−1)m+1m2δk,0 + 2

m∑
j=1

(−1)j+1λ1

(
m2 + k − j2

)
, (0 6 k 6 2m)

where jmax = m− 1 for k = 0, and

δk,0 =

{
1, k = 0
0, k 6= 0.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 4 9 16

2 2 2 2
4 4 4 4

4 8 8
6 8 8

8 3 12
8 14 16

8 12 0
13 8 14

12 18 22
12 12

16 8
14 32

16 14
24 10

16
18

26

Scheme 1.
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