SEQUENCES RELATED TO THE SUM OF DIVISORS ${ }^{1}$

Milorad R. Stevanović

Technical Faculty, Svetog Save 65, 32000 Čačak
(e-mail: milmath@tfc.kg.ac.yu)
(Received April 18, 2005)

Abstract

In this paper are given some formulas for $\sigma(n)$, the sum of divisors of positive integer n. According to these formulas $\sigma(n)$ can be evaluated via some sequences without knowledge of prime factorization of n.

1. INTRODUCTION

Let n be a positive integer. $\sigma(n)$ denotes the sum of all positive divisors of n, and can be given symbolically by

$$
\sigma(n)=\sum_{d \mid n} \sigma(d)
$$

If we know the prime factorization of n, i.e. if

$$
\begin{equation*}
n=\prod_{j=1}^{k} p_{j}^{\alpha_{j}}, \quad p_{j} \in P, \alpha_{j} \in N \tag{1}
\end{equation*}
$$

then $\sigma(n)$ can be evaluated by the formula:

[^0]\[

$$
\begin{equation*}
\sigma(n)=\prod_{j=1}^{k} \frac{p_{j}^{\alpha_{j}+1}-1}{p_{j}-1} \tag{2}
\end{equation*}
$$

\]

If we extend formula (1) to all $\alpha_{j}=0, \sigma(1)=1$ can be found from (2).
For $\sigma(n)$ we can give the formulas:

$$
\begin{align*}
& \sigma(n)=\sum_{k=1}^{n} \sum_{j=0}^{k-1} e^{\frac{2 \pi n j i}{k}}, \tag{3}\\
& \sigma(n)=\frac{1}{n!} \sum_{k=1}^{n} k\left(\frac{x^{k}}{1-x^{k}}\right)_{x=0}^{(n)} \tag{4}\\
& \sigma(n)=n+\sum_{1 \leqslant q \leqslant \frac{n}{2}}\left(\left[\frac{n}{q}\right]-\left[\frac{n-1}{q}\right]\right) q \quad(n \geqslant 2), \tag{5}\\
& \sigma(n)=2 n-1-S_{n}+S_{n-1} \quad(n \geqslant 3) \tag{6}
\end{align*}
$$

where S_{k} is the sum of the residues obtained by dividing k by each integer less than k.

Formula (5) was obtained by G. L. Dirichlet [3], while formula (6) was stated by E. Cesaro [6] and proved by E. Catalan [7]. From formula (6) can be derived the formula

$$
\sigma(n)=\left\{\begin{array}{rll}
2 n-1-T_{n}+T_{n-1}-\left[\frac{n}{2}\right], & n \geqslant 3, & n \text {-odd } \tag{7}\\
2 n-1-T_{n}+T_{n-1}, & n \geqslant 4, & n \text {-even }
\end{array}\right.
$$

where T_{k} is the sum of the residues obtained by dividing k by each integer $\leqslant\left[\frac{k}{2}\right]$.
There are some formulas with recursive relations for $\sigma(n)$. Detailed information about them can be found in L. E. Dickson's book [8], chapter X.

First of them is Euler's [1] formula:

$$
\begin{align*}
\sigma(n)+ & \sum_{j \geqslant 1}(-1)^{j}\left\{\sigma\left(n-\frac{3 j^{2}-j}{2}\right)+\sigma\left(n-\frac{3 j^{2}+j}{2}\right)\right\}= \\
& =\left\{\begin{array}{cc}
(-1)^{k+1} n, & n=\frac{3 k^{2} \pm k}{2} \\
0, & \text { otherwise } .
\end{array}\right. \tag{8}
\end{align*}
$$

The second is the formula:

$$
\sum_{j \geqslant 0}(-1)^{j}(2 j+1) \sigma\left(n-\frac{j(j+1)}{2}\right)\left\{\begin{array}{cl}
(-1)^{k+1} \frac{k(k+1)(2 k+1)}{6}, & n=\frac{k(k+1)}{2} \tag{9}\\
0, & \text { otherwise }
\end{array}\right.
$$

Formula (9) was obtained by C. Sardi [5].
The third is the formula:

$$
\sum_{j \geqslant 0}[n-1-5 j(j+1)] \sigma(n-j(j+1))=\left\{\begin{array}{cl}
\frac{k(k+1)(2 k+1)^{2}}{6}, & n=k(k+1), \tag{10}\\
0, & \text { otherwise } .
\end{array}\right.
$$

Formula (10) was obtained by V. Bouniakowsky [4].

2. STATEMENTS AND RESULTS

From the formulas which will be given in the second part of this paper, $\sigma(n)$ can be evaluated via some sequences, without knowing prime factors of n.

Theorem 1.

$$
\begin{gather*}
\sum_{1 \leqslant j \leqslant \sqrt{n}}(-1)^{j+1} j^{2} \Delta_{n-j^{2}}=\left\{\begin{array}{cl}
\sigma(n), & n \text {-odd }, \\
\sigma(n)-\sigma\left(\frac{n}{2}\right), & n \text {-even }, \\
\Delta_{s}=2 \sum_{1 \leqslant t \leqslant \sqrt{s}}(-1)^{t+1} \Delta_{s-t^{2}}, \quad \Delta_{0}=1
\end{array} .\right. \tag{11}
\end{gather*}
$$

Proof. Here, we can use Jacobi's [2] identity:

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-x^{2 n}\right)\left(1+x^{2 n-1}\right)^{2}=1+2 \sum_{n=1}^{\infty} x^{n^{2}} \equiv \Psi(x)=\sum_{j=0}^{\infty} a_{j} x^{j} \tag{12}
\end{equation*}
$$

with

$$
a_{0}=1, \quad a_{j}=\left\{\begin{array}{lll}
2, & j=r^{2} & (r \geqslant 1), \tag{13}\\
0, & j \neq r^{2} & (r \geqslant 1) .
\end{array}\right.
$$

If we take the logarithmic derivative of (12), and multiply the resulting identity by x, we obtain:

$$
\begin{align*}
x \frac{\Psi^{\prime}(x)}{\Psi(x)}= & \sum_{n=1}^{\infty}\left(-2 n \frac{x^{2 n}}{1-x^{2 n}}\right)+2 \sum_{n=1}^{\infty}(2 n-1) \frac{x^{2 n-1}}{1+x^{2 n-1}}, \tag{14}\\
& \sum_{n=1}^{\infty}(-2 n) \frac{x^{2 n}}{1-x^{2 n}}=-2 \sum_{n=1}^{\infty} \sigma(n) x^{2 n}, \tag{15}
\end{align*}
$$

$$
\begin{aligned}
& 2 \sum_{n=1}^{\infty}(2 n-1) \frac{x^{2 n-1}}{1+x^{2 n-1}}=2 \sum_{n=1}^{\infty}(2 n-1) x^{2 n-1} \sum_{m=0}^{\infty}(-1)^{m} x^{(2 n-1) m} \\
& \quad=-2 \sum_{n=1}^{\infty}(2 n-1) \sum_{m=1}^{\infty}(-1)^{m} x^{(2 n-1) m}=-2 \sum_{k=1}^{\infty} x^{k} \sum_{2 n-1 \mid k}(-1)^{\frac{k}{2 n-1}}(2 n-1) \\
& \quad=-2 \sum_{n=1}^{\infty} d_{n} x^{n}, \quad d_{n}=\sum_{2 k-1 \mid n}(-1)^{\frac{n}{2 k-1}}(2 k-1) .
\end{aligned}
$$

For $n=2^{a} q$, where q is odd, it is

$$
\begin{equation*}
d_{n}=(-1)^{n} \sigma(q) . \tag{16}
\end{equation*}
$$

For even n it is

$$
\begin{align*}
\sigma(n) & =\left(2^{a+1}-1\right) \sigma(q), \quad \sigma\left(\frac{n}{2}\right)=\left(2^{a}-1\right) \sigma(q) \quad \Rightarrow \\
& \Rightarrow \quad \sigma(q)=\left\{\begin{array}{cl}
\sigma(n), & n \text {-odd }, \\
\sigma(n)-2 \sigma\left(\frac{n}{2}\right), & n \text {-even. }
\end{array}\right. \tag{17}
\end{align*}
$$

From (14), (15), (16), (17) we have

$$
\begin{equation*}
x \frac{\Psi^{\prime}(x)}{\Psi(x)}=-2 \sum_{n=1}^{\infty} \sigma(n) x^{2 n}-2 \sum_{n=1}^{\infty}(-1)^{n} \sigma(q) x^{n}=\sum_{j=1}^{\infty} e_{j} x^{j} \tag{18}
\end{equation*}
$$

where

$$
e_{j}=\left\{\begin{array}{cl}
2 \sigma(j), & j \text {-odd } \tag{19}\\
-2\left(\sigma(j)-\sigma\left(\frac{j}{2}\right)\right), & j \text {-even. }
\end{array}\right.
$$

From (12) and (18) it follows

$$
\begin{gather*}
\sum_{n=1}^{\infty} n a_{n} x^{n}=\sum_{j=0}^{\infty} a_{j} x^{j} \sum_{k=1}^{\infty} e_{k} x^{k} \quad \Rightarrow \\
\Rightarrow \quad n a_{n}=\sum_{k=0}^{n-1} a_{k} e_{n-k} \tag{20}
\end{gather*}
$$

If in (20) we take $n \rightarrow n, n-1, \ldots, 1$, we can consider it as the system with unknown $e_{1}, e_{2}, \ldots, e_{n}$ with a_{j} given from (13). The determinant of that system is 1 . Solving the system with respect to e_{n} by Kramer's rule, we get the desired formula (11).

Thus, we have proved theorem 1.

Theorem 2.

$$
\begin{gather*}
\sum_{j \geqslant 1}(-1)^{1+\frac{j(j+1)}{2}} \frac{j(j+1)}{2} \omega_{n-\frac{j(j+1)}{2}}=\left\{\begin{array}{cl}
\sigma(n), & n \text {-odd }, \\
4 \sigma\left(\frac{n}{2}\right)-\sigma(n), & n \text {-even } .
\end{array}\right. \tag{21}\\
\omega_{s}=\sum_{r \geqslant 1}(-1)^{1+\frac{r(r+1)}{2}} \omega_{s-\frac{r(r+1)}{2},}, \quad \omega_{0}=1 . \tag{21'}
\end{gather*}
$$

Proof. Now, we use the following Jacobi's [2] identity:

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-x^{2 n}\right)\left(1+x^{2 n}\right)^{2}=1+\sum_{n=1}^{\infty} x^{n(n+1)} \equiv \Phi(x)=\sum_{j=0}^{\infty} b_{j} x^{j} \tag{22}
\end{equation*}
$$

with

$$
b_{0}=1, \quad b_{j}=\left\{\begin{array}{lll}
1, & j=r(r+1) & (r \geqslant 1), \tag{23}\\
0, & j \neq r(r+1) & (r \geqslant 1) .
\end{array}\right.
$$

Proceeding as in the proof of theorem 1, we get

$$
\begin{gather*}
x \frac{\Phi^{\prime}(x)}{\Phi(x)}=-2 \sum_{n=1}^{\infty} \sigma(n) x^{2 n}-4 \sum_{n=1}^{\infty} x^{2 n} \sum_{k \mid n}(-1)^{\frac{n}{k}} k . \tag{24}\\
l_{n}=\sum_{k \mid n}(-1)^{\frac{n}{k}} k .
\end{gather*}
$$

For $n=2^{a} q$, where q is odd, it is

$$
\begin{equation*}
l_{n}=-\sigma(q)=2 \sigma\left(\frac{n}{2}\right)-\sigma(n) \tag{25}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
2 n b_{2 n}=\sum_{k=0}^{n-1} b_{2 k} f_{2(n-k)}, \tag{26}
\end{equation*}
$$

where is

$$
f_{2 j}=4 \sigma(q)-2 \sigma(j)=\left\{\begin{align*}
2 \sigma(j)-8 \sigma\left(\frac{j}{2}\right), & j \text {-even }, \tag{27}\\
2 \sigma(j), & j \text {-odd }
\end{align*}\right.
$$

In the same manner as in theorem 1, we obtain formula (21), thus proving the theorem 2.

Theorem 3.

$$
\begin{align*}
(-1)^{n} \sigma(n) & =\sum_{j \geqslant 1}(-1)^{\left.\frac{(j+1)(j+2)}{2}\right)} \frac{j(j+1)(2 j+1)}{6} \Omega_{n-\frac{j(j+1)}{2}}, \tag{28}\\
\Omega_{s} & =\sum_{r \geqslant 1}(-1)^{\frac{(r+1)(r+2)}{2}}(2 r+1) \Omega_{s-\frac{r(r+1)}{2}}, \quad \Omega_{0}=1 . \tag{28'}
\end{align*}
$$

Proof. We use another one Jacobi's [2] identity

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-x^{n}\right)^{3}=1+\sum_{n=1}^{\infty}(-1)^{n}(2 n+1) x^{\frac{n(n+1)}{2}} \equiv \sum_{j=0}^{\infty} c_{j} x^{j} \tag{29}
\end{equation*}
$$

with

$$
c_{0}=1, \quad c_{j}=\left\{\begin{align*}
(-1)^{k}(2 k+1), & j=\frac{k(k+1)}{2} \quad(k \geqslant 1), \tag{30}\\
0, & j \neq \frac{k(k+1)}{2} \quad(k \geqslant 1) .
\end{align*}\right.
$$

From this identity we get the equality (9), which, as in the proof of theorem 1, yields to formula (28).

Further, we give a scheme based on the result of theorem 1.
On the scheme, in the first diagonal is

$$
\lambda_{1}(n)=\left\{\begin{aligned}
\sigma(n), & n \text {-odd } \\
\sigma(n)-\sigma\left(\frac{n}{2}\right), & n \text {-even }
\end{aligned}\right.
$$

with

$$
\begin{aligned}
& \lambda_{1}\left(2^{a} q\right)=2^{a} \sigma(q), \quad q \text {-odd, } \\
& \lambda_{1}(0)=\frac{1}{2} \\
& \lambda_{1}(n)=2 \lambda_{1}(n-1)-\lambda_{2}(n), \\
& \lambda_{2}(n)=2 \lambda_{1}\left(n-2^{2}\right)-\lambda_{3}(n), \\
& \lambda_{3}(n)=2 \lambda_{1}\left(n-3^{2}\right)-\lambda_{4}(n), \\
& \vdots \\
& \lambda_{k}(n)=2 \lambda_{1}\left(n-k^{2}\right)-\lambda_{k+1}(n),
\end{aligned}
$$

for $n>k^{2}$ and

$$
\begin{aligned}
\lambda_{k}(n) & =0, n \leq k^{2}-1, \\
\lambda_{k}\left(k^{2}\right) & =k^{2} .
\end{aligned}
$$

$\lambda_{k}(n)$ is number in the n-th column and in the k-th diagonal. Since $\lambda_{k}\left(k^{2}\right)=$ $k^{2} \quad(k \in N)$, initial values in diagonals are $1,4,9,16,25, \ldots$

According to the scheme 1, the following recurrence relation straightforwardly follows:

$$
\lambda_{1}\left(m^{2}+k\right)=(-1)^{m+1} m^{2} \delta_{k, 0}+2 \sum_{j=1}^{m}(-1)^{j+1} \lambda_{1}\left(m^{2}+k-j^{2}\right), \quad(0 \leqslant k \leqslant 2 m)
$$

where $j_{\max }=m-1$ for $k=0$, and

$$
\delta_{k, 0}=\left\{\begin{array}{l}
1, k=0 \\
0, k \neq 0
\end{array}\right.
$$

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1			4					9							16		
		2			2					2							2	
			4			4					4							4
				4			8					8						
					6			8					8					
					8			3					12					
						8			14					16				
								8			12					0		
								13			8					14		
										12			18					22
										12			12					
											16			8				
												14			32			
													16			14		
														24			10	
															16			
																18		
																		26

Scheme 1.

References

[1] L. Euler, Posth. Paper of 1747, Comm. Arith., 2, 639; Opera Postuma I (1862), 76-84; Novi Comm. Ac. Petrop., 5, Ad Annos 1754-1755, 59-74; Comm. Arithm., 1, 146-154.
[2] C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Regiomonti, Fratrum Bornträger (1829), Gesammelte Werke, Reimer, Berlin (1881).
[3] G. L. Dirichlet, Abhand. Ak. Wiss., Berlin (1849), Math., 69-83, Werke, 2, 49-66.
[4] V. Bouniakowsky, Mém. Ac. Sc. St. Pétersbourg (Sc. Math. Phys.), (6), 4 (1850), 259-295 (Presented, 1848).
[5] C. Sardi, Giornale di Mat., 7 (1869), 112-115.
[6] E. Cesaro, Nouv. Corresp. Math., 4 (1878), 329; 5 (1879), 22.
[7] E. Catalan, Nouv. Corresp. Math., 5 (1879), 296-298.
[8] L. E. Dickson, History of the Theory of Numbers, Vol. 1, Reprint, Chelsea, New York (1952) (Original Publication 1919).

[^0]: ${ }^{1}$ Research supported by Science Fund of Serbia under Grant 1457.

