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Abstract. The aim of this paper is to study the possibility of obtaining the numerical
solution of the Black-Scholes equation in parallel, by means of several processors, using the
finite difference method. A comparison between the complexity of the parallel algorithm
and the serial one is given.

1. INTRODUCTION

It is well-known that the Black-Scholes formula is used in computing the value

of an option. In some cases, e.g. a European options, it gives exact solutions, but

for others, more complex, numerical attempts are made in order to obtain an ap-

proximation of the solutions. Several numerical methods are used for solving the

Black-Scholes equation. So, in [7], the finite element method is used, starting from

the difusion equation. In [5], a novel afaptive radial basis function scheme based on

the radial basis function methods is presented.
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In [6], discrete symmetries of partial differential equations are used to create effi-

cient numerical methods. They are associated also for the Black-Scholes equation.

In [4], a method for solving the generalized Black-Scholes formula, based on so-

called additive operator splitting technique, is given.

2. THE FULL-IMPLICIT SCHEME FOR THE BLACK-SCHOLES FORMULA

As in [7], the Black-Scholes equation and the boundary condition for a European

call with value C(S, t) are:

∂C

∂t
+

1

2
σ2S2

∂2C

∂S2
+ rS

∂C

∂S
− rC = 0 (1)

with

C(0, t) = 0, C(S, t) ∼ S as S →∞ (2)

and

C(S, T ) = max{S − E, 0} (3)

where S is the current value of the underlying asset, t is the time, σ is the volatility

of the underlying asset, E, the exercise price, r is the interest rate and T , the expiry.

In order to obtain a numerical approximation of the solution for (1), with the

boundary conditions (2) and (3), by means of the finite difference method, a mesh of

points is used, as in Figure 1.
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Figure 1. The mesh for a finite difference approximation.
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The S-axis is divided into equally spaced nodes a distance ∆S apart, and the

t-axis into equally spaced nodes a distance ∆t apart. This divides the (S, t) plane

into a mesh, where the mesh points have the form (n∆S,m∆t).

In what follows, we denote

Cm
n = C(n∆S,m∆t)

for the value of C(S, t) at the mesh point (n∆S,m∆t).

Further, using a backward difference approximation for
∂C

∂t
, the symmetric cen-

tered difference approximation for
∂2C

∂S2
and the forward difference approximation for

∂C

∂S
, we get the following discretized form for the equation (1):

Cm
n − Cm−1

n

∆t
+

1

2
σ2S2

Cm
n+1 − 2Cm

n + Cm
n−1

(∆S)2
+ rS

Cm
n+1 − Cm

n

∆S
− rCm

n = 0 (4)

Making some calculus, we get:

Cm−1

n = αCm
n+1 + βCm

n + γCm
n−1 (5)

where

α =
rS∆t∆S +

1

2
σ2S2∆t

(∆S)2

β =
(∆S)2 − σ2S2∆t− rS∆t∆S − r∆t(∆S)2

(∆S)2

γ =
1

2
σ2S2

∆t

(∆S)2

For the discretized boundary conditions (2) and (3), as in [7], we assume that we

can truncate the infinite mesh at S = N−∆S and S = N+∆S and take N− and N+

sufficiently large so that no significant errors are introduced. Then,

Cm
N− = C−∞(N−∆S,m∆t), 0 < m ≤M

Cm
N+ = C∞(N+∆S,m∆t), 0 < m ≤M

(6)

and

C0

n = C0(n∆S), N− ≤ n ≤ N+ (7)
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The problem is, then, to find Cm
n for m ≥ 1 and N− < n < N+, from (5).

It is clear, as for every implicite scheme, that Cm
n (at the moment m) depends on

three values from the moment (m+ 1), as in Figure 2.

Figure 2. Implicit finite-difference discretization.

We can write (5) as the linear system:



















β α 0 . . . 0
γ β α . . . 0
0 γ β . . . 0
...

. . . . . .
...

0 0 . . . γ β



















∗



















Cm
N−+1

...
Cm

0

...
Cm

N+
−1



















=



















Cm−1

N−+1

...
Cm−1

0

...
Cm−1

N+
−1



















(8)

Or, in matriceal form:

A · Cm = Cm−1, (9)

where Cm and Cm−1 denote the (N+ −N− − 1)-dimensional vectors

Cm = (Cm
N−+1, . . . , C

m
N+

−1), Cm−1 = (Cm−1

N−+1
, . . . , Cm−1

N+
−1

)

and A is the (N+ −N− − 1)-square matrix given in (8), which, according with [7] is

invertible and so

Cm = A−1 · Cm−1 (10)

where A−1 is the inverse of A.
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We can therefore find Cm by given Cm−1, which in turn may be found from Cm−2

and the boundary conditions. As the initial conditions gives C0, we can find each Cm

step by step, or, according with the relation:

Cm = (A−1)m · C0. (11)

3. PRACTICAL CONSIDERATIONS

In practice, there are far more efficient solution techniques than matrix inversion,

due to the property of A being tridiagonal. Then, methods like LU decomposition

or SOR are applied directly to (10), and the execution time is O(N) per solution.

In order to compute A−1, one needs O(N 2) operation and others O(M 2) to find

(A−1)m, using one processor, so in a serial manner. But with several processors under

a convenient network, we show in what follows that we can obtain a time of execution

O(N), to compute the inverse A−1.

4. PARALLEL ALGORITHM FOR COMPUTING THE NUMERICAL

SOLUTION

4.1. THE METHOD OF ELEMENTARY TRANSFORMATION FOR THE

INVERSE MATRIX

We use the method of elementary transformation to compute the inverse matrix,

A−1 (see [2], [3]). In few words, we start from the matrix A′, which is obtained from

A and a unit matrix, written on the right side of A, as follows:

A′ =











a11 a12 . . . a1N 1 0 . . . 0
a21 a22 . . . a2N 0 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
aN1 aN2 . . . aNN 0 0 . . . 1










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Note. For the sake of the clearness, we denote by aij, i, j = 1, N all the elements

of matrix A, it means α, β, γ and 0.

Further, making elementary transformations only on the lines of A′, after several

steps, we bring it to the form A′′, where

A′′ =











1 0 . . . 0 b11 b12 . . . b1N

0 1 . . . 0 b21 b22 . . . b2N

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 bN1 bN2 . . . bNN











The part











b11 b12 . . . b1N

b21 b22 . . . b2N

. . . . . . . . . . . .
bN1 bN2 . . . bNN











represents A−1.

The computation is made in the following manner:

Step 1.

A′ =











a11 a12 . . . a1n 1 0 . . . 0
a21 a22 . . . a2n 0 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
an1 an2 . . . ann 0 0 . . . 1











∼

∼











1 a′12 . . . a′1n b′11 b′12 . . . b′1n

0 a′22 . . . a′2n b′21 b′22 . . . b′2n

. . . . . . . . . . . . . . . . . . . . . . . .
0 a′n2 . . . a′nn b′n1 b′n2 . . . b′nn











where

a′1j = a1j/a11, j = 1, n, b′1j = b1j/a11, j = 1, n

(Note. We denote with bij the element of unit matrix.)

a′ij = aij − a′1jai1, b′ij = bij − b′1jai1, i = 2, n, j = 1, n

Step 2.










1 a′12 . . . a′1n b′11 b′12 . . . b′1n

0 a′22 . . . a′2n b′21 b′22 . . . b′2n

. . . . . . . . . . . . . . . . . . . . . . . .
0 a′n2 . . . a′nn b′n1 b′n2 . . . b′nn











∼

∼











1 0 a′′13 . . . a′′1n b′′11 b′′12 . . . b′′1n

0 1 a′′23 . . . a′′2n b′′21 b′′22 . . . b′′2n

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 a′′n3 . . . a′′nn b′′n1 b′′n2 . . . b′′nn










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where

a′′2j = a′2j/a
′

22, j = 1, n, b′′2j = b′2j/a
′

22, j = 1, n

a′′ij = a′ij − a′′2ja
′

i2, b′′ij = b′ij − b′′2ja
′

i2, i, j = 1, n, i 6= 2

and so on, till the matrix has the final form











1 0 . . . 0 bn
11 bn12 . . . bn

1n

0 1 . . . 0 bn
21 bn22 . . . bn

2n

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 bn

n1 bnn2 . . . bn
nn











and A−1 is read from the second part of this matrix:

A−1 =







bn11 bn12 . . . bn
1n

. . . . . . . . . . . .
bnn1 bnn2 . . . bn

nn







4.2. THE PARALLEL METHOD

It is clear that, using only one processor to make all the computations, the time of

execution is O(N 3), because we have n steps and every step needs O(N 2) operations

to be computed. In order to reduce the execution time, we can use the parallel

calculus.
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Figure 3. The lattice network.
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Having in mind the previous method, we come back to the solving of system

(1), using more than one processor. This can be done with N × 2N processors

connected under a lattice network, like in Figure 3. In every node of the network

there is a processor. According with [1], under this connectivity, every processor Pij

is connected and may transfer information with its four neighbourhood Pi−1,j , Pi+1,j ,

Pi,j−1, Pi,j+1, i, j = 1, N − 1.

The computation of the inverse matrix A−1 can be made in the following manner:

Step 0. (Initialization)

Pij ← A′, i = 1, N, j = 1, 2N (every processor memorize the matrix A′)

Step 1. In parallel do:

P1j ← a′1j = a1j/a11, j = 1, N

P1j ← b′1j = b1j/a11, j = N + 1, 2N

Pij ← a′ij = aij − a′1jai1, i = 2, N, j = 1, N

Pij ← b′ij = bij − b′1jai1, i = 2, N, j = N + 1, 2N

Step 2. In parallel do:

P2j ← a′′2j = a′2j/a
′

22, j = 1, N

P2j ← b′′2j = b′2j/a
′

22, j = N + 1, 2N

Pij ← a′′ij = a′ij − a′′2ja
′

i2, i, j = 1, N, i 6= 2

Pij ← b′′ij = b′ij − b′′2ja
′

i2, i = 1, N, j = N + 1, 2N, i 6= 2

and so on, till step N , when the matrix in final form is obtained and the inverse

matrix A−1 can be read.

The effort of computation is of order O(N), because we still have N steps, but

in parallel, every step takes the time for doing a division, a multiplication and a

subtraction.

Note. Due to the fact that at step i, the line of processor Pij, j = 1, 2N executes

a division and all the other processors executes a subtraction and a multiplication,

the problem of their syncronization has to be taken into account.
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4.3. SOLVING THE FINAL SYSTEM IN PARALLEL

In the previous paragraph we show how the inverse matrix A−1 can be computed

in parallel, with an execution time of order O(N). In order to solve the system (11),

which gives the final numerical solution for the Black-Scholes equation, we have to

compute the power m of matrix A−1. According with [1], this can be done in a

logarithmic time, O(log2 N) using a binary-tree connectivity among processors, like

in Figure 4.
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Figure 4. The binary-tree network.

Note. In every node of this network there is a processor. The idea of computation

is the following:

Step 0. (Initialization)

Every processor leaf (at level (M − 1)) memorizes the matrix A−1.

Step 1. Every processor at level (M − 2) computes (A−1)2 = A−1 · A−1.

Step 3. Every processor at level (M − 3) computes (A−1)4 = (A−1)2 · (A−1)2 and

so on.

After log2 M steps, the final result (A−1)M will be computed by the processor root.
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5. CONCLUSIONS

We presented an algorithm which generates the numerical solution of the Black-

Scholes equation for a European option in an execution time of order O(N · log2 M),

using parallel calculus. The binary-tree network can be included in the lattice net-

work, in order to use the same processors.

References

[1] I. Chiorean, Calcul paralel, Ed. Microinformatica, Cluj, 1994.
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