
91

Kragujevac J. Math. 27 (2005) 91–100.

PARALLEL ALGORITHM FOR SOLVING THE

BLACK-SCHOLES EQUATION

Ioana Chiorean

Babeş-Bolyai University, Faculty of Mathematics
Kogălniceanu 1, 3400 Cluj-Napoca, Romania

(e-mail: ioana@cs.ubbcluj.ro)

(Received March 15, 2005)

Abstract. The aim of this paper is to study the possibility of obtaining the numerical
solution of the Black-Scholes equation in parallel, by means of several processors, using the
finite difference method. A comparison between the complexity of the parallel algorithm
and the serial one is given.

1. INTRODUCTION

It is well-known that the Black-Scholes formula is used in computing the value

of an option. In some cases, e.g. a European options, it gives exact solutions, but

for others, more complex, numerical attempts are made in order to obtain an ap-

proximation of the solutions. Several numerical methods are used for solving the

Black-Scholes equation. So, in [7], the finite element method is used, starting from

the difusion equation. In [5], a novel afaptive radial basis function scheme based on

the radial basis function methods is presented.

92

In [6], discrete symmetries of partial differential equations are used to create effi-

cient numerical methods. They are associated also for the Black-Scholes equation.

In [4], a method for solving the generalized Black-Scholes formula, based on so-

called additive operator splitting technique, is given.

2. THE FULL-IMPLICIT SCHEME FOR THE BLACK-SCHOLES FORMULA

As in [7], the Black-Scholes equation and the boundary condition for a European

call with value C(S, t) are:

∂C

∂t
+

1

2
σ2S2

∂2C

∂S2
+ rS

∂C

∂S
− rC = 0 (1)

with

C(0, t) = 0, C(S, t) ∼ S as S →∞ (2)

and

C(S, T) = max{S − E, 0} (3)

where S is the current value of the underlying asset, t is the time, σ is the volatility

of the underlying asset, E, the exercise price, r is the interest rate and T , the expiry.

In order to obtain a numerical approximation of the solution for (1), with the

boundary conditions (2) and (3), by means of the finite difference method, a mesh of

points is used, as in Figure 1.

�

�

�

��� �

���	� �

Figure 1. The mesh for a finite difference approximation.

93

The S-axis is divided into equally spaced nodes a distance ∆S apart, and the

t-axis into equally spaced nodes a distance ∆t apart. This divides the (S, t) plane

into a mesh, where the mesh points have the form (n∆S,m∆t).

In what follows, we denote

Cm
n = C(n∆S,m∆t)

for the value of C(S, t) at the mesh point (n∆S,m∆t).

Further, using a backward difference approximation for
∂C

∂t
, the symmetric cen-

tered difference approximation for
∂2C

∂S2
and the forward difference approximation for

∂C

∂S
, we get the following discretized form for the equation (1):

Cm
n − Cm−1

n

∆t
+

1

2
σ2S2

Cm
n+1 − 2Cm

n + Cm
n−1

(∆S)2
+ rS

Cm
n+1 − Cm

n

∆S
− rCm

n = 0 (4)

Making some calculus, we get:

Cm−1

n = αCm
n+1 + βCm

n + γCm
n−1 (5)

where

α =
rS∆t∆S +

1

2
σ2S2∆t

(∆S)2

β =
(∆S)2 − σ2S2∆t− rS∆t∆S − r∆t(∆S)2

(∆S)2

γ =
1

2
σ2S2

∆t

(∆S)2

For the discretized boundary conditions (2) and (3), as in [7], we assume that we

can truncate the infinite mesh at S = N−∆S and S = N+∆S and take N− and N+

sufficiently large so that no significant errors are introduced. Then,

Cm
N− = C−∞(N−∆S,m∆t), 0 < m ≤M

Cm
N+ = C∞(N+∆S,m∆t), 0 < m ≤M

(6)

and

C0

n = C0(n∆S), N− ≤ n ≤ N+ (7)

94

The problem is, then, to find Cm
n for m ≥ 1 and N− < n < N+, from (5).

It is clear, as for every implicite scheme, that Cm
n (at the moment m) depends on

three values from the moment (m+ 1), as in Figure 2.

Figure 2. Implicit finite-difference discretization.

We can write (5) as the linear system:



















β α 0 . . . 0
γ β α . . . 0
0 γ β . . . 0
...

.
...

0 0 . . . γ β



















∗



















Cm
N−+1

...
Cm

0

...
Cm

N+
−1



















=



















Cm−1

N−+1

...
Cm−1

0

...
Cm−1

N+
−1



















(8)

Or, in matriceal form:

A · Cm = Cm−1, (9)

where Cm and Cm−1 denote the (N+ −N− − 1)-dimensional vectors

Cm = (Cm
N−+1, . . . , C

m
N+

−1), Cm−1 = (Cm−1

N−+1
, . . . , Cm−1

N+
−1

)

and A is the (N+ −N− − 1)-square matrix given in (8), which, according with [7] is

invertible and so

Cm = A−1 · Cm−1 (10)

where A−1 is the inverse of A.

95

We can therefore find Cm by given Cm−1, which in turn may be found from Cm−2

and the boundary conditions. As the initial conditions gives C0, we can find each Cm

step by step, or, according with the relation:

Cm = (A−1)m · C0. (11)

3. PRACTICAL CONSIDERATIONS

In practice, there are far more efficient solution techniques than matrix inversion,

due to the property of A being tridiagonal. Then, methods like LU decomposition

or SOR are applied directly to (10), and the execution time is O(N) per solution.

In order to compute A−1, one needs O(N 2) operation and others O(M 2) to find

(A−1)m, using one processor, so in a serial manner. But with several processors under

a convenient network, we show in what follows that we can obtain a time of execution

O(N), to compute the inverse A−1.

4. PARALLEL ALGORITHM FOR COMPUTING THE NUMERICAL

SOLUTION

4.1. THE METHOD OF ELEMENTARY TRANSFORMATION FOR THE

INVERSE MATRIX

We use the method of elementary transformation to compute the inverse matrix,

A−1 (see [2], [3]). In few words, we start from the matrix A′, which is obtained from

A and a unit matrix, written on the right side of A, as follows:

A′ =











a11 a12 . . . a1N 1 0 . . . 0
a21 a22 . . . a2N 0 1 . . . 0
. .
aN1 aN2 . . . aNN 0 0 . . . 1











96

Note. For the sake of the clearness, we denote by aij, i, j = 1, N all the elements

of matrix A, it means α, β, γ and 0.

Further, making elementary transformations only on the lines of A′, after several

steps, we bring it to the form A′′, where

A′′ =











1 0 . . . 0 b11 b12 . . . b1N

0 1 . . . 0 b21 b22 . . . b2N

. .
0 0 . . . 1 bN1 bN2 . . . bNN











The part











b11 b12 . . . b1N

b21 b22 . . . b2N

.
bN1 bN2 . . . bNN











represents A−1.

The computation is made in the following manner:

Step 1.

A′ =











a11 a12 . . . a1n 1 0 . . . 0
a21 a22 . . . a2n 0 1 . . . 0
. .
an1 an2 . . . ann 0 0 . . . 1











∼

∼











1 a′12 . . . a′1n b′11 b′12 . . . b′1n

0 a′22 . . . a′2n b′21 b′22 . . . b′2n

. .
0 a′n2 . . . a′nn b′n1 b′n2 . . . b′nn











where

a′1j = a1j/a11, j = 1, n, b′1j = b1j/a11, j = 1, n

(Note. We denote with bij the element of unit matrix.)

a′ij = aij − a′1jai1, b′ij = bij − b′1jai1, i = 2, n, j = 1, n

Step 2.










1 a′12 . . . a′1n b′11 b′12 . . . b′1n

0 a′22 . . . a′2n b′21 b′22 . . . b′2n

. .
0 a′n2 . . . a′nn b′n1 b′n2 . . . b′nn











∼

∼











1 0 a′′13 . . . a′′1n b′′11 b′′12 . . . b′′1n

0 1 a′′23 . . . a′′2n b′′21 b′′22 . . . b′′2n

. .
0 0 a′′n3 . . . a′′nn b′′n1 b′′n2 . . . b′′nn











97

where

a′′2j = a′2j/a
′

22, j = 1, n, b′′2j = b′2j/a
′

22, j = 1, n

a′′ij = a′ij − a′′2ja
′

i2, b′′ij = b′ij − b′′2ja
′

i2, i, j = 1, n, i 6= 2

and so on, till the matrix has the final form











1 0 . . . 0 bn
11 bn12 . . . bn

1n

0 1 . . . 0 bn
21 bn22 . . . bn

2n

. .
0 0 . . . 1 bn

n1 bnn2 . . . bn
nn











and A−1 is read from the second part of this matrix:

A−1 =







bn11 bn12 . . . bn
1n

.
bnn1 bnn2 . . . bn

nn







4.2. THE PARALLEL METHOD

It is clear that, using only one processor to make all the computations, the time of

execution is O(N 3), because we have n steps and every step needs O(N 2) operations

to be computed. In order to reduce the execution time, we can use the parallel

calculus.

�
�

�
�

�
�

Figure 3. The lattice network.

98

Having in mind the previous method, we come back to the solving of system

(1), using more than one processor. This can be done with N × 2N processors

connected under a lattice network, like in Figure 3. In every node of the network

there is a processor. According with [1], under this connectivity, every processor Pij

is connected and may transfer information with its four neighbourhood Pi−1,j , Pi+1,j ,

Pi,j−1, Pi,j+1, i, j = 1, N − 1.

The computation of the inverse matrix A−1 can be made in the following manner:

Step 0. (Initialization)

Pij ← A′, i = 1, N, j = 1, 2N (every processor memorize the matrix A′)

Step 1. In parallel do:

P1j ← a′1j = a1j/a11, j = 1, N

P1j ← b′1j = b1j/a11, j = N + 1, 2N

Pij ← a′ij = aij − a′1jai1, i = 2, N, j = 1, N

Pij ← b′ij = bij − b′1jai1, i = 2, N, j = N + 1, 2N

Step 2. In parallel do:

P2j ← a′′2j = a′2j/a
′

22, j = 1, N

P2j ← b′′2j = b′2j/a
′

22, j = N + 1, 2N

Pij ← a′′ij = a′ij − a′′2ja
′

i2, i, j = 1, N, i 6= 2

Pij ← b′′ij = b′ij − b′′2ja
′

i2, i = 1, N, j = N + 1, 2N, i 6= 2

and so on, till step N , when the matrix in final form is obtained and the inverse

matrix A−1 can be read.

The effort of computation is of order O(N), because we still have N steps, but

in parallel, every step takes the time for doing a division, a multiplication and a

subtraction.

Note. Due to the fact that at step i, the line of processor Pij, j = 1, 2N executes

a division and all the other processors executes a subtraction and a multiplication,

the problem of their syncronization has to be taken into account.

99

4.3. SOLVING THE FINAL SYSTEM IN PARALLEL

In the previous paragraph we show how the inverse matrix A−1 can be computed

in parallel, with an execution time of order O(N). In order to solve the system (11),

which gives the final numerical solution for the Black-Scholes equation, we have to

compute the power m of matrix A−1. According with [1], this can be done in a

logarithmic time, O(log2 N) using a binary-tree connectivity among processors, like

in Figure 4.

�
�

�
�

�
�

�
�

�������������������

���������������! ��

���������������#"$�

�%���&����'

Figure 4. The binary-tree network.

Note. In every node of this network there is a processor. The idea of computation

is the following:

Step 0. (Initialization)

Every processor leaf (at level (M − 1)) memorizes the matrix A−1.

Step 1. Every processor at level (M − 2) computes (A−1)2 = A−1 · A−1.

Step 3. Every processor at level (M − 3) computes (A−1)4 = (A−1)2 · (A−1)2 and

so on.

After log2 M steps, the final result (A−1)M will be computed by the processor root.

100

5. CONCLUSIONS

We presented an algorithm which generates the numerical solution of the Black-

Scholes equation for a European option in an execution time of order O(N · log2 M),

using parallel calculus. The binary-tree network can be included in the lattice net-

work, in order to use the same processors.

References

[1] I. Chiorean, Calcul paralel, Ed. Microinformatica, Cluj, 1994.

[2] Gh. Coman, Analiză numerică, Ed. Libris, 1992.

[3] Gh. Coman, D. Johnson, Complexitatea algoritmilor, Lito Univ. Babeş-Bolyai,

Cluj, 1987.

[4] S. Kilianova, D. S̆evc̆ovic̆, Analytical and Numerical Methods for Stock Index

Derivative Pricing, J. of Electrical Engineering, vol. 55, Nr. 12/1, 2004, 1-5.

[5] M. B. Voc, I. Boztosun, D. Boztosun, On the Numerical Solution of Black-Scholes

Equation, Proc. of Int. Workshop on Mesh Free Methods, 2003.

[6] Gh. Silberberg, Discrete Symmetries of the Black-Scholes Equation, site internet

http://www.ceu.hu

[7] P. Wilmott, et al., The Mathematics of Financial Derivatives, Cambridge Univ.

Press, 1995.

