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Abstract. The purpose of this paper is introduce nondegenerate ruled surfaces in L3
which are said to be B-scrolls. We defined the central point, the curve of striction, pseudo-
orthogonal trajectory in a B-scroll and obtained some theorems related to these structures
in the 3-dimensional Lorentzian space L3. We gave also the distribution parameter of a
B-scroll and some theorems in L3.

1. INTRODUCTION

L? is by definition the 3-dimensional vector space R® with the inner product of

signature (1,2) given by

(T, y) = —21y1 + ToYa + T3Y3

for any colomn vectors x = (1,72, 73), y = (Y1, ¥2,y3) € R>. Let {ey, ez, e3} be the

standard orthonormal basis of L? given by

e1 = (1,0,0), e = (0,1,0),e5 = (0,0, 1).
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A basis F' = {X,Y, Z} of L? is called a (proper) null frame if it satisfies the following

conditions:
(X, X)=(,Y)=0,(X,Y) = -1,
3
Z =XAY = Zei det [X,Y, ¢e;] e,
i=1
where ¢ = —1, g9 = £3 = 1. Hence we obtain that

(X,Z)=(Y,Z) =0, (2,2Z) = 1.

A vector V in L? is said to be null if (V,V) =0, ([2,3]).

A surface in the 3-dimensional Lorentz-Minkowski space L3 is called a timelike
surface if the induced metric on the surface is a Lorentzian metric. A ruled surface is
a surface swept out by a straight line Y moving along a curve a.. The various positions
of the generating line Y are called the rulings of the surface. Such a surface has a

parametrization in ruled form as follows:
o(t,v) = alt) + vY (t).

We call a to be the base curve and Y to be the director curve. Alternatively, we
may visualize Y as a vector field on a. Frequently, it is necessary to restrict v to
some interval, so the rulings may not be entire straight lines. If the tangent plane is
constant along a fixed ruling, then the ruled surface is called a developable surface.
The remaining ruled surfaces are called skew surfaces. If there exists a common
perpendicular to two preceding rulings in the skew surface, then the foot of the
common perpendicular on the main ruling is called a central point. The locus of the

central points is called the curve of striction, [7].

2. B-SCROLLS IN L3

Let o = a(t) be a null curve in L3, that is, a smooth curve whose tangent vectors

a/(t), for every t € I are null. For a given smooth positive function d = d(t) let us put
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X = X(t) = d'a/. Then X is a null vector field along o. Moreover, there exists a
null vector field Y = Y'(¢) along « satisfying (X,Y) = —1. Here if we put Z = X AY,
then we can obtain a (proper) null frame field F' = {X,Y, Z} along a. In this case
the pair (a, F') is said to be a (proper) framed null curve.

Let a be a (proper) framed null curve and V be Levi-Civita connection on L3.

Then a framed null curve « satisfies the following so called the Frenet equations:
VxX =aX +bZ,

VxY = —aY +cZ, (2.1)

VyZ =cX +bY,

where
a=—(VxX,Y)
b= (VxX,Z7) (2.2)
C = <VXy, Z>

are smooth functions ([4]).
A framed null curve (o, F') with d = 1 and a = 0 is called a Cartan framed null
curve and the frame field F' = {X,Y, Z} is called a Cartan frame.Then the Frenet

equations (2.1) can be written as follows:
VX = bZ,

VXY = CZ, (23)

VxZ =cX +bY,
Let a be a null curve and F = {X,Y,Z} be a Cartan frame along a. If the
null vector Y moves along «, then the ruled surface is given by the parametrization

(I x R,¢) where
o: I xR —L3

is given by

(t,v) = (t,v) = at) +vY(t),t e [,bveJ
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which can be obtained in the 3-dimensional Lorentz-Minkowski space L3. Then the
ruled surface is called a B-scroll and is denoted by M. It is easy to check that M is a
timelike surface.

If we fix the parameter v, then the curve ¢, : I x {v} — M sending (¢,v) to
a(t) +vY (t) can be obtained on M, the tangent vector field of which is given by

A=X+vZ,
(cf. [1,5].

Theorem 2.1. Let M be a B-scroll. Then the tangent planes along a ruling of
M coincide if and only if ¢ = 0.
Proof. It is straightforward.

Then we have following:
Corollary 2.2. The B-scroll M is developable if and only if ¢ = 0.

Lemma 2.3. For the B-scroll M,
c=—det(X,Y,VxY). (2.4)

Proof. If we use equations (2.3), then the proof easily can be done. O

3. POSITION VECTOR OF A CENTRAL POINT AND
PSEUDO-ORTHOGONAL TRAJECTORY FOR THE B-SCROLLS

If the distance between the central point and the base curve of a B-scroll which
is a skew timelike surface, is @, then the position vector a(t) can be expressed by
a(t,u) = at) +uY (t), where a(t) is the position vector of the base curve and Y (¢)
is the directed vector belonging to the ruling. The parameter u can be expressed in
terms of position vector of the base curve and directed vector of the ruling. Given
three preceding rulings of a B-scroll such that the first one is Y (¢), and the second one

is Y (t)+dY (t). Let P, P" and @, @’ be the feet on the rulings of common perpendicular
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to two preceding rulings. The common perpendicular to Y'(¢) and Y (¢) + dY (¢) is
Y (t)AdY (t).
— — —
The vector P coincides with the vector PP’ in the limiting position and P will

be the tangent vector of the curve of striction. Thus, we have
—
< VxYdt,PQ>= 0.

In case limiting position,
da
dt

Therefore, if we consider the equations (2.3), we get @ = 0. Thus, position vector of

56—

the striction curve is
a(t) = at).
Hence we have following:

Theorem 3.1. Let M be a nondevelopable B-scroll in L2. Then the base curve

of a B-scroll is also a striction curve.

Corollary 3.2. Let M be a nondevelopable B-scroll. Then the curve of striction

is a null curve.

Theorem 3.3. Let M be a nondevelopable B-scroll. Then ¢(t,vg) on the ruling
through the point a(t) is a central point if and only if VxY is a normal vector of the
tangent plane at o(t, vg).

Proof. Let M be a nondevelopable B-scroll and V xY be a normal of the tangent
plane at ¢(t,v9) on the ruling through «(t). The tangent vector field of the curve

Oup : IX{vo} — M
is
A=X+ cvgZ.

Thus
<VXY7 A> =0
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Then we get

U(]:O,

this means that ¢(t,vg) is a central point of M.
Conversely, let ¢(t,v9) be a central point on the ruling through a(t). Then we

obtain

(VxY, A) =0.
Thus VY is a normal vector of the tangent plane at (t,v). O

Definition 3.1. Let M be a B-scroll in L3. If there exists a curve which makes con-
stant angle with each one of the rulings, then this curve is called a pseudo-orthogonal

trajectory of M.

Theorem 3.4. Let M be a B-scroll in L3. Then there exists unique pseudo-
orthogonal trajectory of M through each point of M.
Proof. Let ¢ : IXJ — L3 defined by

o(t,v) = at) +vY(t)

be a parametrization of M. A pseudo-orthogonal trajectory of M is given by [ : I —
M, where 8(t) = a(t) + f()Y (t), t € T and (#,Y) = const. We may assume that
Icl.

Now we want to get a curve which is pass the point pg = ¢(to, v9). Thus we can

write
po = a(t) + f(O)Y(?)
po = a(to) +voY (to)
Therefore we get
a(t) = a(to)

and

f(t) = vy.
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If we choose I such that it is one to one, then we have t = t;. Therefore the
pseudo-orthogonal trajectory of M through the point pg is unique. Since this pseudo-
orthogonal trajectory of M makes constant angle with each one of the rulings of M,

we have I = I. Thus the proof is completed. O

Theorem 3.5. Let M be a B-scroll in L3. The shortest distance between two
rulings is measured only on the curve of striction which is one of the pseudo-orthogonal
trajectories.

Proof. We consider two rulings which are pass the points a(t;) and a(t2), where
t1,t2 € I and t; < ty. We compute the length ¢(v) of an pseudo-orthogonal trajectory
between these two rulings given by

fv) = /tz 1A dt = /t2(c2v2)5dt.

t1 t1
Let us find the value of t which minimizes ¢(v) and we get

ol(v)

=0.
ov

Thus we have

I
e

(Y

This completes the proof. O

Definition 3.2. Let M be a nondevelopable B-scroll in L3. we know that @ = 0.
Thus, we have VxY and Z are linearly dependent, that is,

AVxY = XAY.
Hence we get
< XAY,VxY > det(X,Y,VxY) 1
v vy
A is called the distribution parameter of M and denoted by A or Py, where <
VxY,VxY >=#0.
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4. THE GAUSS MAP AND THE SHAPE OPERATOR OF B-SCROLLS IN L?

The Gauss map can be directly obtained from ¢;Ap, getting
G(t,v) = —cvY (t) + Z(t). (4.1)
As for the shape operator S of M we have that
Gy = —cpy

Gy =— < VxXAY, X > ¢, — cpy.

So we write down as

—c 0
5= C VXAV, X > —o (4.2)

Theorem 4.1. Let M be a B-scroll in L?. The Gaussian curvature K of M is

positive.

Proof. The Gaussian curvature of a surface in Lorentzian space is defined by

K =edet S,
where ¢ = 1 or € = —1 according to the surface is timelike or spacelike, respectively.
Then we have
K=¢

and this completes the proof of the theorem. O

Theorem 4.2. Let M be a B-scroll in L?. Each one of the ruling of M is an

asymptotic line and a geodesic in M.

Proof. Each one of the rulings is geodesic in R3. Since each one of the rulings is

a straight line in L3. Thus we have VyY = 0, that is, Y is a geodesic in M. Since
S(Y) = S(ps) = =¥,

we have < S(Y),Y >= 0 which means that Y is an asymptotic line.This completes
the proof. O
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Lemma 4.1. Let M be a B-scroll in L. {X,Y, Z} be a Cartan frame along the

base curve « of M. Then
XANY =7, YANZ=-Y, XAZ=X

and

XAN=X=—-wwZ, YAN=-Y, ZA=—-Y,

where £ is the unit normal vector field of M defined by

E=—cvY + Z.

Proof. It can be proved easily.

Theorem 4.3. Let M be a B-scroll in L?. Then M is developable if and only if

the Gaussian curvature function of M is zero.
Proof. The proof can be done using Corollary 2.2 and Theorem 4.1.

Theorem 4.4. Let M be a nondevelopable B-scroll in L3. Then

where A and K are the distribution parameter and the Gaussian curvature function

of M, respectively.

Proof. Considering the equation (3.1) and (4.3) we get

A:

=l

which completes the proof. O

Now we will give a theorem (without loose of generality) Chasles

Theorem for the B-scroll in L3.

Theorem 4.5. For the B-scroll in L?, the normal vector ¢ at a point of a ruling

and the normal vector N at the striction point of this ruling are parallel.
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Proof. The unit normal vector to the B-scroll M at (¢, v) is given by
E=—avY + 27

and the normal along the striction curve on M is given by

_VyY
VXY

Since N is a unit spacelike vector and £ is a unit spacelike vector, thus if 6 is the

angle of rotation from the normal N to the normal £ we get

sin&:HNAﬁH:H(—ch—i—Z Vx¥ H

IVxY]|

By an routine calculation, one can obtain § = 0. Thus the proof is completed. O

The results in the study are confirmed by the following examples.

Example 4.1. Consider a null curve « of L3 given by

a:R— L
t — a(t) = (sht,t,cht)

Then we choose the Cartan frame {X,Y, Z} as follows
X(t) = d/(t) = (cht, 1, sht)
0 :%(cht, 1, sht)
Z(t) = (sht,0,cht).
Thus a B-scroll on the curve « is given by

1 11
o(t,v) = (sht,t,cht) + v(§cht, —3 §sht).

Here since det(X,Y, VxY) = —1 # 0, the B-scroll is nondevelopable. The stric-
tion curve is a(t) = (sht,t, cht). The distribution parameter is A = 4.
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Fig. 1.

Example 4.2. Consider a null curve a of L? given by

a:R—L?
t—a(t) = k(5 +

9

o

2 3
293

_i)vk%oa
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where k is the curvature of null curve oe.Then we choose the Cartan frame {X,Y, Z}

as follows
1 1
X(t) = (t) = k(t*+=,t, 12—~
(1) = (1) = k(P + .1, )
2
v(#) =7 (1,0,1)

Z(t) = (2t,1,2t)
Thus a B-scroll on the curve « is parametrized by

3t v kt2 2t 2u

@(tav):(k(g +Z)+ k777k(§—1)+ k)

Here since det(X,Y,VxY) = 0, the B-scroll is developable. The striction curve is

() = k(& + 52,2~ 1)k £0.
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Fig. 2.
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