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Abstract. The purpose of this paper is introduce nondegenerate ruled surfaces in L
3

which are said to be B-scrolls. We defined the central point, the curve of striction, pseudo-
orthogonal trajectory in a B-scroll and obtained some theorems related to these structures
in the 3-dimensional Lorentzian space L

3. We gave also the distribution parameter of a
B-scroll and some theorems in L

3.

1. INTRODUCTION

L3 is by definition the 3-dimensional vector space R3 with the inner product of

signature (1, 2) given by

〈x, y〉 = −x1y1 + x2y2 + x3y3

for any colomn vectors x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3. Let {e1, e2, e3} be the

standard orthonormal basis of L3 given by

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).
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A basis F = {X,Y, Z} of L3 is called a (proper) null frame if it satisfies the following

conditions:

〈X,X〉 = 〈Y, Y 〉 = 0, 〈X,Y 〉 = −1,

Z = XΛY =
3∑

i=1

εi det [X,Y, ei] ei,

where ε1 = −1, ε2 = ε3 = 1. Hence we obtain that

〈X,Z〉 = 〈Y, Z〉 = 0, 〈Z,Z〉 = 1.

A vector V in L3 is said to be null if 〈V, V 〉 = 0, ([2,3]).

A surface in the 3-dimensional Lorentz-Minkowski space L3 is called a timelike

surface if the induced metric on the surface is a Lorentzian metric. A ruled surface is

a surface swept out by a straight line Y moving along a curve α. The various positions

of the generating line Y are called the rulings of the surface. Such a surface has a

parametrization in ruled form as follows:

ϕ(t, v) = α(t) + vY (t).

We call α to be the base curve and Y to be the director curve. Alternatively, we

may visualize Y as a vector field on α. Frequently, it is necessary to restrict v to

some interval, so the rulings may not be entire straight lines. If the tangent plane is

constant along a fixed ruling, then the ruled surface is called a developable surface.

The remaining ruled surfaces are called skew surfaces. If there exists a common

perpendicular to two preceding rulings in the skew surface, then the foot of the

common perpendicular on the main ruling is called a central point. The locus of the

central points is called the curve of striction, [7].

2. B-SCROLLS IN L3

Let α = α(t) be a null curve in L3, that is, a smooth curve whose tangent vectors

α′(t), for every t ∈ I are null. For a given smooth positive function d = d(t) let us put
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X = X(t) = d−1α′. Then X is a null vector field along α. Moreover, there exists a

null vector field Y = Y (t) along α satisfying 〈X,Y 〉 = −1. Here if we put Z = X ∧Y,

then we can obtain a (proper) null frame field F = {X,Y, Z} along α. In this case

the pair (α, F ) is said to be a (proper) framed null curve.

Let α be a (proper) framed null curve and ∇ be Levi-Civita connection on L3.

Then a framed null curve α satisfies the following so called the Frenet equations:

∇XX = aX + bZ,

∇XY = −aY + cZ, (2.1)

∇XZ = cX + bY,

where

a = −〈∇XX,Y 〉

b = 〈∇XX,Z〉 (2.2)

c = 〈∇XY, Z〉

are smooth functions ([4]).

A framed null curve (α, F ) with d = 1 and a = 0 is called a Cartan framed null

curve and the frame field F = {X,Y, Z} is called a Cartan frame.Then the Frenet

equations (2.1) can be written as follows:

∇XX = bZ,

∇XY = cZ, (2.3)

∇XZ = cX + bY,

Let α be a null curve and F = {X,Y, Z} be a Cartan frame along α. If the

null vector Y moves along α, then the ruled surface is given by the parametrization

(I ×R,ϕ) where

ϕ : I × R → L
3

is given by

(t, v)→ ϕ(t, v) = α(t) + vY (t), t ∈ I, v ∈ J
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which can be obtained in the 3-dimensional Lorentz-Minkowski space L3. Then the

ruled surface is called a B-scroll and is denoted by M. It is easy to check that M is a

timelike surface.

If we fix the parameter v, then the curve ϕv : I × {v} → M sending (t, v) to

α(t) + vY (t) can be obtained on M, the tangent vector field of which is given by

A = X + cvZ,

(cf. [1,5].

Theorem 2.1. Let M be a B-scroll. Then the tangent planes along a ruling of

M coincide if and only if c = 0.

Proof. It is straightforward.

Then we have following:

Corollary 2.2. The B-scroll M is developable if and only if c = 0.

Lemma 2.3. For the B-scroll M ,

c = − det(X,Y,∇XY ). (2.4)

Proof. If we use equations (2.3), then the proof easily can be done. 2

3. POSITION VECTOR OF A CENTRAL POINT AND

PSEUDO-ORTHOGONAL TRAJECTORY FOR THE B-SCROLLS

If the distance between the central point and the base curve of a B-scroll which

is a skew timelike surface, is u, then the position vector α(t) can be expressed by

α(t, u) = α(t) + uY (t), where α(t) is the position vector of the base curve and Y (t)

is the directed vector belonging to the ruling. The parameter u can be expressed in

terms of position vector of the base curve and directed vector of the ruling. Given

three preceding rulings of a B-scroll such that the first one is Y (t), and the second one

is Y (t)+dY (t). Let P, P ′ and Q,Q′ be the feet on the rulings of common perpendicular
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to two preceding rulings. The common perpendicular to Y (t) and Y (t) + dY (t) is

Y (t)ΛdY (t).

The vector
−→
PQ coincides with the vector

−−→
PP ′ in the limiting position and

−→
PQ will

be the tangent vector of the curve of striction. Thus, we have

< ∇XY dt,
−→
PQ>= 0.

In case limiting position,
−→
PQ =

dα

dt
.

Therefore, if we consider the equations (2.3), we get u = 0. Thus, position vector of

the striction curve is

α(t) = α(t).

Hence we have following:

Theorem 3.1. Let M be a nondevelopable B-scroll in L3. Then the base curve

of a B-scroll is also a striction curve.

Corollary 3.2. Let M be a nondevelopable B-scroll. Then the curve of striction

is a null curve.

Theorem 3.3. Let M be a nondevelopable B-scroll. Then ϕ(t, v0) on the ruling

through the point α(t) is a central point if and only if ∇XY is a normal vector of the

tangent plane at ϕ(t, v0).

Proof. Let M be a nondevelopable B-scroll and ∇XY be a normal of the tangent

plane at ϕ(t, v0) on the ruling through α(t). The tangent vector field of the curve

ϕv0
: IX{v0} →M

is

A = X + cv0Z.

Thus

〈∇XY,A〉 = 0



168

Then we get

v0 = 0,

this means that ϕ(t, v0) is a central point of M .

Conversely, let ϕ(t, v0) be a central point on the ruling through α(t). Then we

obtain

〈∇XY,A〉 = 0.

Thus ∇XY is a normal vector of the tangent plane at ϕ(t, v0). 2

Definition 3.1. Let M be a B-scroll in L3. If there exists a curve which makes con-

stant angle with each one of the rulings, then this curve is called a pseudo-orthogonal

trajectory of M .

Theorem 3.4. Let M be a B-scroll in L3. Then there exists unique pseudo-

orthogonal trajectory of M through each point of M .

Proof. Let ϕ : IXJ → L3 defined by

ϕ(t, v) = α(t) + vY (t)

be a parametrization of M . A pseudo-orthogonal trajectory of M is given by β : Ĩ →
M, where β(t) = α(t) + f(t)Y (t), t ∈ Ĩ and 〈β ′, Y 〉 = const. We may assume that

Ĩ ⊂ I.

Now we want to get a curve which is pass the point p0 = ϕ(t0, v0). Thus we can

write

p0 = α(t) + f(t)Y (t)

p0 = α(t0) + v0Y (t0)

Therefore we get

α(t) = α(t0)

and

f(t) = v0.
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If we choose I such that it is one to one, then we have t = t0. Therefore the

pseudo-orthogonal trajectory of M through the point p0 is unique. Since this pseudo-

orthogonal trajectory of M makes constant angle with each one of the rulings of M ,

we have Ĩ = I. Thus the proof is completed. 2

Theorem 3.5. Let M be a B-scroll in L3. The shortest distance between two

rulings is measured only on the curve of striction which is one of the pseudo-orthogonal

trajectories.

Proof. We consider two rulings which are pass the points α(t1) and α(t2), where

t1, t2 ∈ I and t1 < t2. We compute the length `(v) of an pseudo-orthogonal trajectory

between these two rulings given by

`(v) =

∫
t2

t1

‖A‖ dt =
∫

t2

t1

(c2v2)
1

2dt.

Let us find the value of t which minimizes `(v) and we get

∂`(v)

∂v
= 0.

Thus we have

v = 0.

This completes the proof. 2

Definition 3.2. Let M be a nondevelopable B-scroll in L3. we know that u = 0.

Thus, we have ∇XY and Z are linearly dependent, that is,

λ∇XY = XΛY.

Hence we get

λ =
< XΛY,∇XY >

‖∇XY ‖2
= −det(X,Y,∇XY )

‖∇XY ‖2
=

1

c2
.

λ is called the distribution parameter of M and denoted by λ or PY , where <

∇XY,∇XY > 6= 0.
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4. THE GAUSS MAP AND THE SHAPE OPERATOR OF B-SCROLLS IN L3

1

The Gauss map can be directly obtained from ϕtΛϕv getting

G(t, v) = −cvY (t) + Z(t). (4.1)

As for the shape operator S of M we have that

Gv = −cϕv

Gt = − < ∇XXΛY,X > ϕv − cϕt.

So we write down as

S =

[
−c 0

− < ∇XXΛY,X > −c

]
(4.2)

Theorem 4.1. Let M be a B-scroll in L3

1
. The Gaussian curvature K of M is

positive.

Proof. The Gaussian curvature of a surface in Lorentzian space is defined by

K = ε detS,

where ε = 1 or ε = −1 according to the surface is timelike or spacelike, respectively.

Then we have

K = c2

and this completes the proof of the theorem. 2

Theorem 4.2. Let M be a B-scroll in L3. Each one of the ruling of M is an

asymptotic line and a geodesic in M.

Proof. Each one of the rulings is geodesic in R3

1
. Since each one of the rulings is

a straight line in L3. Thus we have ∇Y Y = 0, that is, Y is a geodesic in M. Since

S(Y ) = S(ϕv) = −cY,

we have < S(Y ), Y >= 0 which means that Y is an asymptotic line.This completes

the proof. 2
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Lemma 4.1. Let M be a B-scroll in L3. {X,Y, Z} be a Cartan frame along the

base curve α of M. Then

XΛY = Z, Y ΛZ = −Y, XΛZ = X

and

XΛξ = X = −cvZ, Y Λξ = −Y, ZΛξ = −cvY,

where ξ is the unit normal vector field of M defined by

ξ = −cvY + Z.

Proof. It can be proved easily.

Theorem 4.3. Let M be a B-scroll in L3. Then M is developable if and only if

the Gaussian curvature function of M is zero.

Proof. The proof can be done using Corollary 2.2 and Theorem 4.1.

Theorem 4.4. Let M be a nondevelopable B-scroll in L3. Then

λ =
1√
K

,

where λ and K are the distribution parameter and the Gaussian curvature function

of M, respectively.

Proof. Considering the equation (3.1) and (4.3) we get

λ =
1√
K

which completes the proof. 2

Now we will give a theorem (without loose of generality) Chasles

Theorem for the B-scroll in L3.

Theorem 4.5. For the B-scroll in L3, the normal vector ξ at a point of a ruling

and the normal vector N at the striction point of this ruling are parallel.
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Proof. The unit normal vector to the B-scroll M at (t, v) is given by

ξ = −cvY + Z

and the normal along the striction curve on M is given by

N =
∇XY

‖∇XY ‖ .

Since N is a unit spacelike vector and ξ is a unit spacelike vector, thus if θ is the

angle of rotation from the normal N to the normal ξ we get

sin θ = ‖NΛξ‖ =
∥∥∥∥(−cvY + Z)Λ

∇XY

‖∇XY ‖

∥∥∥∥ .

By an routine calculation, one can obtain θ = 0. Thus the proof is completed. 2

The results in the study are confirmed by the following examples.

Example 4.1. Consider a null curve α of L3 given by

α : R→ L3

t→ α(t) = (sht, t, cht)

Then we choose the Cartan frame {X,Y, Z} as follows

X(t) = α
′(t) = (cht, 1, sht)

Y (t) =
1

2
(cht,−1, sht)

Z(t) = (sht, 0, cht).

Thus a B-scroll on the curve α is given by

ϕ(t, v) = (sht, t, cht) + v(
1

2
cht,−1

2
,
1

2
sht).

Here since det(X,Y,∇XY ) = −1 6= 0, the B-scroll is nondevelopable. The stric-

tion curve is α(t) = (sht, t, cht). The distribution parameter is λ = 4.
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Fig. 1.

Example 4.2. Consider a null curve α of L3 given by

α : R→ L3

t→ α(t) = k( t
3

3
+ t

4
, t

2

2
, t

3

3
− t

4
), k 6= 0,

where k is the curvature of null curve α.Then we choose the Cartan frame {X,Y, Z}
as follows

X(t) = α
′(t) = k(t2+

1

4
, t, t2−1

4
)

Y (t) =
2

k
(1, 0, 1)

Z(t) = (2t, 1, 2t)

Thus a B-scroll on the curve α is parametrized by

ϕ(t, v) = (k(
t3

3
+

t

4
) +

2v

k
,
kt2

2
, k(

t3

3
− t

4
) +

2v

k
)

Here since det(X,Y,∇XY ) = 0, the B-scroll is developable. The striction curve is

α(t) = k( t
3

3
+ t

4
, t

2

2
, t

3

3
− t

4
), k 6= 0.



174

Fig. 2.
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[1] Balgetir H., Bektaş M., Ergüt M., Null Scrolls in the 3-dimensional Lorentzian

space, Appl. Sciences, 5(1), 2003, 1-5.

[2] Beem J. K., Ehlich P. E., Global Lorentzian Geometry, Marcell Dekker, Inc. New

York, 1981.

[3] Dajczer M., Nomizu K., On Flat Surfaces in S3

1
and H3

1
, Manifolds and Lie Groups,

Univ. Notre Dame, Birkhauser, 1981, 71-108.

[4] Duggal K. L., Bejancu A.,Lightlike Submanifolds of Semi-Riemannian Manifolds

and Applications, Kluwer Academic Publishers, 1996.

[5] Graves L. K., Codimension One Isometric Immersions Between Lorentz Space,

Trans. Amer. Soc. 252, 1979, 367-392.

[6] O’Neill B., Semi-Riemannian Geometry with Applications to Relativity, Academic

Press, New York, 1983.
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