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Abstract. In this paper, we considered a form of generalized logistic distribution which
is call negatively skewed extended generalized logistic distribution or extended type II gen-
eralized logistic distribution. Some theorems that relate the distribution to some other
statistical distributions are established. A possible application of one of the theorems is
included.

1. INTRODUCTION

The probability density function of a random variable that has logistic distribution

is

fX(x) =
e−x

(1 + e−x)2
, −∞ < x < ∞, (1.1)

the corresponding cumulative distribution function is given by

FX(x) = (1 + e−x)−1, −∞ < x < ∞, (1.2)

while the characteristic function of a logistic random variable X is

φX(t) = Γ(1 + it)Γ(1− it).
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The importance of the logistic distribution is already been felt in many areas of

human endeavour. Verhulst (1845) used it in economic and demographic studies.

Berkson (1944, 1951, 1953) used the distribution extensively in analysing bio-assay

and quantal response data. George and Ojo (1980), Ojo (1989), Ojo (1997), Ojo

(2002), Ojo (2003) are few of many publications on logistic distribution.

The simplicity of the logistic distribution and its importance as a growth curve

have made it one of the many important statistical distributions. The shape of

the logistic distribution that is similar to that of the normal distribution makes it

simpler and also profitable on suitable occasions to replace the normal by the logistic

distribution with negligible errors in the respective theories.

Balakrishnan and Leung (1988) show the probability density function of a random

variable X that has a type II generalized logistic distribution. It is given by

fX(x; b) =
be−bx

(1 + e−x)b+1
, −∞ < x < ∞, b > 0. (1.3)

The corresponding cumulative distribution function is

FX(x; b) = 1− e−bx

(1 + e−x)b
, −∞ < x < ∞, b > 0. (1.4)

The distribution in (1.3) is known to be a family of negatively skewed generalized

logistic distributions depending on the value of b. Wu, Hung and Lee (2000) proposed

an extended form of the generalized logistic distribution which is referred to as the

five parameter generalized logistic distribution. Its density function is given by

fX(x; µ, σ, λ, φ, m)

=
λφ

σB(φ,m)
[exp(

x− µ

σ
)]m[λ + exp(

x− µ

σ
)]−(φ+m),−∞ < x < ∞,

(1.5)

where − ∞ < µ < ∞, λ > 0, φ > 0, σ > 0, m > 0. Several properties of this

distribution such as moments are examined and some applications are discused in

that paper.

In this paper, we derive a form of generalized logistic distribution function that

generalizes the type II generalized logistic distribution of Balakrishnan and Leung

(1988). The new function, which is a particular case of the general case considered
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in Wu, Hung and Lee (2000), is called negatively skewed extended generalized lo-

gistic distribution or extended type II generalized logistic distribution. Throughout

the rest of this paper, we shall use the name ”extended type II generalized logistic

distribution”.

2. EXTENDED TYPE II GENERALIZED LOGISTIC DISTRIBUTION

As mentioned above, Wu, et al (2000) present a generalized logistic distribution

with density function (1.5). Putting µ = 0 and σ = 1 and working with −X instead

of X, its density function can be written as

fX(x; λ, φ,m) =
λφ

B(φ,m)

e−mx

(λ + e−x)φ+m
, −∞ < x < ∞, λ > 0, φ > 0, m > 0. (2.1)

In this section, we shall derive a form of generalized logistic distribution which is

a special case of the one in the equation (2.1) as equation (1.3) is a special case of

the generalized logistic distribution in George and Ojo (1980).

Let X be a continuously distributed random variable with two parameters Gumbel

probability density function

fX(x; α, p) =
αp

Γ(p)
e−pxexp(−αe−x), −∞ < x < ∞, p > 0, α > 0. (2.2)

Let us assume that the parameter α has an exponential distribution with probability

density function

g(α; λ) = λe−λα, λ > 0. (2.3)

Then we obtain the probability density of the compound distribution based on (2.2)

and (2.3) as

fX(x; λ, p) =
∫ ∞

0
fX(x; α)g(α; λ, )dα

=
λpe−px

(λ + e−x)p+1
, −∞ < x < ∞, λ > 0, p > 0.

(2.4)

This equation (2.4) corresponds to m = p, φ = 1 in the equation (2.1).

The corresponding cumulative distribution function can be obtained as

FX(x; λ, p) = 1− e−px

(λ + e−x)p
, −∞ < x < ∞, λ > 0, p > 0. (2.5)
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We refer to the function in the equation (2.4) as the extended type II generalized

logistic distribution. The case λ = 1 in the equation (2.4) corresponds to the type

II generalized logistic distribution of Balakrishnan and Leung (1988) and Olapade

(2002). As expected, the case λ = p = 1 corresponds to the standard logistic density

function given in the equation (1.1).

Also, the characteristic function for the extended type II generalized logistic dis-

tribution can be obtained as

φX(t) =
λ−itΓ(1 + it)Γ(p− it)

Γ(p)
. (2.6)

3. SOME THEOREMS THAT RELATE THE EXTENDED TYPE II
GENERALIZED LOGISTIC TO SOME OTHER DISTRIBUTIONS

We state some theorems and prove them in this section. A similar work has been

done in Olapade (2004) for the extended type I generalized logistic distribution.

Theorem 3.1 Let Y be a continuously distributed random variable with probability

density fY (y). Then the random variable X = −ln[ λ
p√

Y
1− p√

Y
] has an extended type II

generalized logistic distribution with parameter p and λ if and only if Y has a uniform

distribution over a unit range (0, 1).

Proof. If Y has a uniform distribution over a unit range (0,1), then the probability

density function of Y is

fY (y) = 1, 0 < y < 1. (3.1)

Then x = −ln[
λ p
√

y

1− p
√

y
] implies that y = e−px

(λ+e−x)p . Therefore

fX(x) = |dy

dx
|fY (y) =

λpe−px

(λ + e−x)p+1
, −∞ < x < ∞, (3.2)

which is the extended type II generalized logistic density function.

Conversely, if X is an extended type II generalized logistic random variable, then

x = −ln[
λ p
√

y

1− p
√

y
] implies that

dx/dy = −1/py(1− p
√

y) (3.3)
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and

fY (y) = |dx

dy
|fX(x) = 1, 0 < y < 0. (3.4)

Since this is the probability density function of a uniform random variable Y , the

proof is complete.

Theorem 3.2 Let Y be a continuously distributed random variable with probability

density function fY (y). Then the random variable X = −ln( λe−Y

1−e−Y ) is an extended

type II generalized logistic random variable if and only if Y follows an exponential

distribution with parameters p > 0.

Proof. Suppose Y has the exponential distribution with parameter p, then

fY (y; p) = pe−py, y > 0. (3.5)

Then, x = −ln( λe−y

1−e−y ) implies that y = −ln( e−x

λ+e−x ) and the Jacobian of the transfor-

mation is |J | = λ/(λ + e−x).

Therefore,

fX(x) = |J |fY (y) =
λpe−px

(λ + e−x)p+1
, −∞ < x < ∞, (3.6)

which is the extended type II generalized logistic density function.

Conversely, if X is an extended type II generalized logistic random variable with

probability distribution function shown in the equation (2.5), then

FY (y) = pr[Y ≤ y] = pr[−ln(
e−x

λ + e−x
) ≤ y] (3.7)

= FX(ln(
1− e−y

λe−y
))

= 1− e−py, y > 0. (3.8)

Since the equation (3.8) is the cumulative distribution function for the exponential

distribution with parameter p, the proof is complete.

Theorem 3.3. The random variable X is extended type II generalized logistic

with probability distribution function F given in the equation (2.5) if and only if F

satisfies the homogeneous differential equation

(λ + e−x)F ′ + λpF − λp = 0, (3.9)
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where prime denotes differentiation, F denotes F (x) and F ′ denotes F ′(x).

Proof. Since

F = 1− e−px

(λ + e−x)p
,

if the random variable X is an extended type II generalized logistic, it is easily shown

that the F above satisfies the equation (3.9).

Conversely, let us assume that F satisfies the equation (3.9). Separating the

variables in the equation (3.9) and integrating, we have

ln(1− F ) = −px− pln(λ + e−x) + lnk, (3.10)

where k is a constant. Obviously from the equation (3.10)

F = 1− ke−px

(λ + e−x)p
. (3.11)

The value of k that makes F a distribution function is k = 1.

Possible Application of Theorem 3.3 From the equation (3.9), we have

x = −ln(
λp(1− F )− λF ′

F ′ ). (3.12)

Thus, the importance of the Theorem 3.3 lies in the linearising transformation

(3.12). The transformation (3.12) which we call “extended type II generalized logit

transform” can be regarded as an extended type II generalization of Berkson’s logit

transform in Berkson (1944) for the ordinary logistic model.

Therefore, in the analysis of bioassay and quantal response data, if model (2.4) is

used, what Berkson’s logit transform does for the ordinary logistic can be done for

the extended type II generalized logistic model (2.4) by the transformation (3.12).
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