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Abstract. In this paper s–orthogonal polynomials on the semicircle are considered. Gener-
alizing the previous works of Gautschi, Milovanović and Landau [5, 4, 8, 7, 9, 3] we transfer
concept of s–orthogonality (see [6, 10]) to the unit semicircle in the complex plane, with
respect to the complex-valued inner product (f, g) =

∫ π
0 f(eiθ)g(eiθ)w(eiθ) dθ. A detailed

study is made of the s–orthogonal polynomials on the semicircle in the case of the Chebyshev
weight of the first kind.

1. INTRODUCTION

For s ∈ N0, s–orthogonal polynomials πn = πn,s (πn–monic of degree n) on R with

respect to the measure dλ(t) are polynomials which satisfy the conditions
∫

R
[πn,s(t)]2s+1tk dλ(t) = 0 (k = 0, 1, . . . , n− 1). (1)

In the case dλ(t) = w(t) dt on [a, b] these polynomials are known as s–orthogonal poly-

nomials in the interval [a, b] with respect to the weight function w. For s = 0 they reduce

to the standard orthogonal polynomials.
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It is known (see [6, 10]) that several properties of standard orthogonal polynomials on

real line are also valid for s–orthogonal polynomials on real line (see [1, 2]).

Theorem 1. There exists a unique monic polynomial πn,s for which (1) is satisfied,

and πn,s has n distinct real zeros which are all contained in the open interval (a, b).

Theorem 2. For every s ∈ N0, the zeros of πn,s and πn+1,s mutually separate each

other.

The paper is organized as follows. Some basic facts on the orthogonal polynomials on

the semicircle are given in Section 2. In Section 3 we transfer the concept of s–orthogonality

to the unit semicircle in the complex plane. We introduce the s–orthogonal polynomials on

the semicircle, give a method for their construction and study the case of the Chebyshev

weight function of the first kind.

2. POLYNOMIALS ORTHOGONAL ON THE SEMICIRCLE

Polynomials orthogonal on the semicircle were introduced by Gautschi and Milovanović

[5].

Let w be a weight function which is positive and integrable on the open interval (−1, 1),

though possibly singular at the endpoints, and which can be extended to a function w(z)

holomorphic in the half disc

D+ = {z ∈ C : |z| < 1, Im z > 0}.

Consider the following inner product

[f, g] =
∫

Γ
f(z)g(z)w(z)(iz)−1 dz =

∫ π

0
f(eiθ)g(eiθ)w(eiθ) dθ, (2)

where Γ is the circular part of ∂D+ and all integrals are assumed to exist (possibly) as

appropriately defined improper integrals.

This inner product (2) is not Hermitian and the existence of the corresponding orthog-

onal polynomials, therefore, is not guaranteed.
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We call a system of complex polynomials {πk} orthogonal on the semicircle if

[πk, πl]

{
= 0 if k 6= l,
6= 0 if k = l,

k, l = 0, 1, 2, . . . ; (3)

we assume πk monic of degree k.

Gautschi, Landau and Milovanović [4] have established the existence of orthogonal poly-

nomials {πk} assuming only that

Re [1, 1] = Re
∫ π

0
w(eiθ) dθ 6= 0. (4)

They have represented πn as a linear (complex) combination of pn and pn−1 ({pk} is corre-

sponding ordinary orthogonal polynomials sequence (real) with respect to the same weight

function w in the interval [−1, 1]):

πn(z) = pn(z)− iθn−1pn−1(z), n = 0, 1, 2, . . . .

Polynomials orthogonal on the semicircle also satisfy the tree-term recurrence relation:

πk+1(z) = (z − iαk)πk(z)− βkπk−1(z), k = 0, 1, 2, . . . ,

with initial conditions π−1(z) = 0, π0(z) = 1 .

Under certain conditions all zeros of polynomials orthogonal on the semicircle are in D+

(see [3, 4, 5, 8, 9]).

3. S–ORTHOGONALITY ON THE SEMICIRCLE

Denote, as in Section 2,

D+ = {z ∈ C : |z| < 1, Im z > 0}, Γ = {z ∈ C : |z| = 1, Im z > 0} .

We consider the case of the Chebyshev weight function of the first kind

w(z) = (1− z2)−1/2.

Using Cauchy’s theorem, it is easy to see that the following lemma holds:
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Lemma 1. For any polynomial g we have

∫

Γ

g(z)w(z)
iz

dz − πg(0)w(0) +
1
i

∫
−

1

−1

g(x)w(x)
x

dx = 0,

i.e., ∫
−

1

−1

g(x)
x
√

1− x2
dx = iπg(0)−

∫

Γ

g(z)
z
√

1− z2
dz. (5)

Let πn,s be monic polynomials of degree n which satisfy the s–orthogonality conditions:

∫

Γ
π2s+1

n,s (z)zk(1− z2)−1/2 dz

iz
= 0 (k = 0, 1, . . . , n− 1). (6)

For s = 0 we have polynomials orthogonal on the semicircle (see Section 2).

According to (5), we have:

(i) For k = 0:

∫
−

1

−1

π2s+1
n,s (x)

x

dx√
1− x2

= iπ π2s+1
n,s (0) . (7)

(ii) For k = 1, 2, . . . , n− 1:

∫
−

1

−1
π2s+1

n,s (x)xν dx√
1− x2

= 0 (ν = 0, 1, . . . , n− 2) . (8)

From (8) we see that the polynomial π2s+1
n,s is orthogonal to all polynomials of degree

at most n− 2 with respect to w(x) in the interval [−1, 1]. Because of that the polynomial

π2s+1
n,s may be represented in the form:

π2s+1
n,s (z) = Cn−1Tn−1(z) + CnTn(z) + . . . + C(2s+1)nT(2s+1)n(z), (9)

where Ti are the Chebyshev polynomials of the first kind and C(2s+1)n =
1

2(2s+1)n−1
.

On the other hand, we have

πn,s(z) = a0T0(z) + a1T1(z) + · · ·+ anTn(z) , an =
1

2n−1
. (10)

Relations (9) and (10) give

(a0T0 + a1T1 + · · ·+ anTn)2s+1 = Cn−1Tn−1 + · · ·+ C(2s+1)nT(2s+1)n . (11)



43

Using the formula:

(x1 + x2 + · · ·+ xm)n =
∑ n!

k1!k2! . . . km!
xk1

1 xk2
2 . . . xkm

m ,

where the sum is computed for all m-tuples of nonnegative integers (k1, k2, . . . , km) satisfying

k1 + k2 + · · ·+ km = n, and the property of the Chebyshev polynomials

Tm · Tn =
1
2

(
Tm+n + T|m−n|

)
,

the left hand side of (11) may be written in the form

(a0T0 + a1T1 + · · ·+ anTn)2s+1 = C0T0 + C1T1 + · · ·+ C(2s+1)nT(2s+1)n. (12)

Now, because of (11), we conclude that C0 = C1 = . . . = Cn−2 = 0. These equations

together with (7) give a system of n − 1 + 1 = n equations for determining the unknown

coefficients aν (ν = 0, 1, . . . , n− 1):




Cν = 0 (ν = 0, 1, . . . , n− 2)

∫
−

1

−1

π2s+1
n,s (x)

x
√

1− x2
dx = iπ π2s+1

n,s (0) .

(13)

3.1. CASE s = 1

For s = 1, the relation (11) gives

(a0T0 + a1T1 + · · ·+ anTn)3 = Cn−1Tn−1 + · · ·+ C3nT3n . (14)

On the left hand side of (14) we have addends of form

aiT
3
i (i = 0, 1, . . . , n),

3aia
2
jTiT

2
j (i = 0, 1, . . . , n; j = 0, 1, . . . , n ; i 6= j),

6aiajakTiTjTk (i = 0, 1, . . . , n; j = 1, 2, . . . , n; k = 2, 3, . . . , n; i, j, k different) ,

for which hold

T 3
i =

1
4
T3i +

3
4
Ti (i = 0, 1, . . . , n),

TiT
2
j =

1
4
T2j+i +

1
4
T|2j−i| +

1
2
Ti (i = 0, 1, . . . , n; j = 0, 1, . . . , n; i 6= j),

TiTjTk =
1
4
Ti+j+k+

1
4
T|j+k−i|+

1
4
Ti+|j−k|+

1
4
T||j−k|−i| (i = 0, . . . , n; j = 1, . . . , n;

k = 2, . . . , n; i, j, k different).
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It is known that for all k ∈ N, T2k+1(0) = 0 and T2k(0) = (−1)k . Using these relations

we get

π3
n,1(0) = C0 − C2 + C4 − C6 + · · · .

1◦ Case n = 1.

In this case π1,1(z) = T1 + a0T0 and

π3
1,1(z) = T 3

1 (z) + 3a0T0(z)T 2
1 (z) + 3a2

0T
2
0 (z)T1(z) + a3

0T
3
0 (z)

=
1
4
T3(z) +

3
2

a0T2(z) +
(

3
4

+ 3a2
0

)
T1(z) +

3
2
a0 + a3

0.

Therefore,

π3
1,1(0) = −3

2
a0 +

3
2

a0 + a3
0 = a3

0 .

The coefficient a0 may be determined from (7), i.e., from

1
4

∫
−

1

−1

T3(x)
x
√

1− x2
dx +

3
2

a0

∫
−

1

−1

T2(x)
x
√

1− x2
dx +

(
3
4

+ 3a2
0

) ∫
−

1

−1

T1(x)
x
√

1− x2
dx

+
(

3
2

a0 + a3
0

) ∫
−

1

−1

dx

x
√

1− x2
= iπ a3

0.

Hence, a0 satisfies

−π

4
+

(
3
4

+ 3a2
0

)
π = iπ a3

0,

i.e.,

1 + 6a2
0 − 2ia3

0 = 0 .

The previous equation has three pure imaginary solutions

0.3843671526 i, 0.4421253017 i, −2.9422418510 i.

Thus, there are three polynomials of degree one which satisfy the s–orthogonality con-

dition on the semicircle (6).
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2◦ Case n = 2.

According to (10) we write

π2,1(z) = a2T2(z) + a1T1(z) + a0T0(z) .

Since a2 =
1
2
, using the previous described procedure, we obtain

C0 =
3
8

a2
1 + a3

0 +
3
2

a0a
2
1 +

3
8

a0,

C1 =
3
4

a3
1 + 3a2

0a1 +
3
8

a1 +
3
2

a0a1,

C2 =
3
2

a0a
2
1 +

3
32

+
3
2

a2
0 +

3
4

a2
1,

C3 =
1
4

a3
1 +

3
16

a1 +
3
2

a0a1,

C4 =
3
8

a0 +
3
8

a2
1,

C5 =
3
16

a1,

C6 =
1
32

.

Therefore,

π3
2,1(0) = C0 − C2 + C4 − C6 = a3

0 +
3
4

a0 − 3
2

a2
0 −

1
8

.

Unknown coefficients a0 and a1 are determined from the system of equations





C0 = 0,

∫
−

1

−1

π3
2,1(x)

x
√

1− x2
dx = iπ π3

2,1(0) .

(15)

Using the representation

π3
2,1(x) = C1T1(x) + C2T2(x) + · · ·+ C6T6(x)

and knowing that ∫
−

1

−1

T2k(x)
x
√

1− x2
dx = 0 for all k ∈ N ,
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the second equation from (15) is equivalent to equation

C1

∫
−

1

−1

T1(x)
x
√

1− x2
dx + C3

∫
−

1

−1

T3(x)
x
√

1− x2
dx + C5

∫
−

1

−1

T5(x)
x
√

1− x2
dx = iπ π3

2,1(0),

i.e.,

C1 π − C3 π + C5 π = iπ π3
2,1(0).

Finally, the second equation in (15) is equivalent to

1
2

a3
1 + 3a2

0a1 +
3
8

a1 = i

(
a3

0 +
3
4

a0 − 3
2

a2
0 −

1
8

)
.

Therefore, (15) is equivalent to





3a2
1 + 8a3

0 + 12a0a
2
1 + 3a0 = 0,

4a3
1 + 24a2

0a1 + 3a1 = i(8a3
0 + 6a0 − 12a2

0 − 1).
(16)

From the first equation in (16) we obtain

a2
1 =

−3a0 − 8a3
0

3 + 12a0
. (17)

From the second equation in (16) and (17) we get a0. Knowing a0 from (17) we find a1.
The next 9 polynomials satisfy the system of equations (15):

0.5 (2z2 − 1)− 1.255041679 i z − 1.2273728340,
0.5 (2z2 − 1) + 1.410610320 i z − 0.2958451886,
0.5 (2z2 − 1)− 0.2280444577 i z + 0.06474935317,
0.5 (2z2 − 1)− (0.3573159034 + 0.7273322236 i) z − 0.2570758901− 0.1246144376 i,

0.5 (2z2 − 1) + (0.3573159034− 0.7273322236 i) z − 0.2570758901 + 0.1246144376 i,

0.5 (2z2 − 1) + (0.1321606183 + 0.3519722699 i) z + 0.1404065541− 0.2708240895 i,

0.5 (2z2 − 1)− (0.1321606183− 0.3519722699 i) z + 0.1404065541 + 0.2708240895 i,

0.5 (2z2 − 1)− (0.2511981689 + 0.2567189698 i) z + 0.1887254527− 0.5743377565 i,

0.5 (2z2 − 1) + (0.2511981689− 0.2567189698 i) z + 0.1887254527 + 0.5743377565 i.
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Zeros of these polynomials are respectively

−1.154811859 + 0.627520840 i and 1.154811859 + 0.627520840 i,
−0.546250693− 0.705305160 i and 0.546250693− 0.705305160 i,
−0.649807339 + 0.114022229 i and 0.649807339 + 0.114022229 i,
−0.646294092 + 0.209379493 i and 1.003609995 + 0.517952731 i,
−1.003609995 + 0.517952731 i and 0.646294092 + 0.209379493 i,
−0.689477474− 0.411857056 i and 0.557316855 + 0.059884785 i,
−0.557316855 + 0.059884785 i and 0.689477474− 0.411857056 i,
−0.578687886− 0.302275647 i and 0.829886055 + 0.558994616 i,
−0.829886055 + 0.558994616 i and 0.578687886− 0.302275647 i.

For all computations we used program package Mathematica.

Therefore, for n = 2 there are 9 monic polynomials which satisfy s–orthogonality con-

ditions on the semicircle (6).

From these examples we see that s–orthogonal polynomials on the semicircle are not

unique. Furthermore, zeros are not all in D+.
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