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Abstract. In this paper, we give a simple classification of smooth structures on closed
(m−1)−connected 2m−dimensional π−manifold M2m. We will use the above to show that
the number of smooth structures on M2m × S2m changes significantly.

INTRODUCTION

The notions of smooth manifold and diffeomorphism go back to Poincare. In his

famous paper ‘Analysis situs’ [14], Poincare introduced the study of smooth manifolds

under the equivalence relation of diffeomorphism. Poincare used the word homeomor-

phism to mean what is today called diffeomorphism (smooth). Of course the subject

has considerably developed since Poincare. Major contributions have been made by

Whitney [23], Pontrjagin [15], Lefschets [7], J. H. C Whitehead [22], Newman, and

Alexander among others.

In the 20th century, some of the finest mathematicians have contributed to this

area and it still remains the focus of mathematicians and mathematical physicists

of different background. J. Munkres [11], S. Smale [19], S. P. Novikov [13], Antoni
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A.Kosinski [2], C. T. C. Wall [21], Morris Hirsh [12], John Milnor [8,9,10], E. C.

Zeeman [24]are among the 20th century mathematicians who contributed immensely

to the development of the theory of differentiable (smooth) manifolds and in particular

classification of smooth manifolds.

Manifolds are considered equivalent if they are diffeomorphic, i.e., there exists a

differentiable map from one to the other with differentiable inverse. Given two smooth

manifolds M and M ′, how can we decide whether or not there exists a diffeomorphism

from M to M ′. The general problem is to classify up to orientation-preserving dif-

feomorphism, those smooth manifolds homeomorphic to a given manifold. The first

case to be treated in detail was of course the sphere. In [10], J. Milnor constructed a

manifold which is homeomorphic to a 7-sphere but not diffeomorphic to it. The next

case considered was a product of two spheres where [17] R. Schultz, [3] R. Desapio and

[6] K. Kawakubo independently gave a complete classification of smooth structures

on product of two spheres. This author in [1] extended the result of Desapio, Schultz

and Kawakubo to structures of product of three spheres. It was later generalized to

product of any number of spheres.

By studying diffeomorphism of product of two spheres, Edward C. Turner in [20]

and Hajime Sato in [16] independently classified manifolds which can be expressed as

union of two handlebodies along their boundaries. We will here give a classification

of smooth structures on a 2m−dimensional π−manifolds.

1. PRELIMINARIES

In [3] R. de Sapio gave a classification of smooth (differentiable) structures on

product of spheres of the form Sk × Sp where 2 ≤ k ≤ p, k + p ≥ 6. In [1], this

author extended R. de Sapio’s result to smooth structures on product of spheres

of the form Sp × Sq × Sr where 2 ≤ p ≤ q ≤ r. In [4], R.de Sapio showed that

when a type of π−manifold is embedded in Euclidean space, it is diffeomorphic to

some connected sum of product of spheres. We will apply the above techniques and

results to give a simple classification of smooth structures on π−manifold M2m which
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is (m − 1)−connected, where m=2,4,6(mod 8). We will also give a classification

of a 4m−manifold of the form M2m × S2m. Sn denotes the unit n−sphere with

the usual smooth (differential) structure in the Euclidean (n+1)-sphere Rn+1. A

homotopy n−sphere is a closed n−manifold which has the homotopy type of the

standard n−sphere Sn. Σn will denote an homotopy n−sphere. Θn denotes the group

of h−cobordism classes of homotopy n−sphere under the connected sum operation.

# means connected sum along boundary as defined by J. Milnor and M. Kervaire[9].

H(p, k) denote the subset of θp consisting of those homotopy p−spheres Σp such that

Σp × Sk is diffeomorphic to Sp × Sk. By [3] Lemma 4, H(p, k) is a subgroup and it

is not always zero. Infact in [1], we showed that if p− 3 ≤ k ≤ p then H(p, k) = θp.

However by [5]. Corollary 1.5, H(16, 12) = 0.

Let bPn+1 denote the subgroup of θn consisting of those homotopy n−spheres

which bound parallelizable manifolds. It is known that if Σn ∈ bPn+1 then Σn

embeds in Rn+2 with trivial normal bundle, hence Σn ∈ H(n, k) where k ≥ 2.

Furthermore, by [9], if n = 7, 11, bPn+1 = θn and so H(n, k) = θn in these cases.

All manifolds are here understood to be smooth (differentiable), compact and ori-

ented. Smooth or differentiable will always mean of class C∞. The notation Dn

will be used for the standard unit n−disc in Euclidean space Rn and ∂M denotes

the boundary of manifold M . -M is the manifold M with the orientation reversed.

Recall that a π−manifold (or stably parallelizable or s−parallelizable manifold) is a

manifold which has the property that the Whitney sum of its tangent bundle with

a trivial line bundle is trivial. A framed n−manifold is a pair (Mn, f) where Mn

is a π−manifold and f : M → ESO(n + 1) is a fixed trivialization of the stable

tangent bundle of Mn. Such an f is called a framing of Mn. In Theorem 2.1, we

perform a framed spherical modification on a framed manifold (Mn, f). The tech-

nique is fully discussed in [8] and [9]. Framed corbordism is closely related to this

technique. Note that two framed manifolds (M1
n, f1) and (M2

n, f2) where M1
n and

M2
n are closed π−manifolds, are framed cobordant if there is an (n + 1)−manifold

W n+1 with a trivialization F : W n+1 → ESO(n + 1) of its tangent bundle such that

∂(W n+1) = M1
n∪ (−M2

n) disjoint union and F |Mn
1

= fi, (i = 1, 2). Recall that in [8],
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theorem 1, it was proved that two-framed manifolds are framed cobordant if and only

if we may obtain one from the other by a sequence of framed spherical modifications.

2. CLASSIFICATION

Theorem 2.1. Let M2m be an (m − 1)−connected closed π−manifold m ≥ 3.

If m = 2, 4, 6, mod(8), then the number of distinct smooth structures on M2m is in

one-to-one correspondence with group θ2m.

Proof. By [4], Theorem B, manifold M2m satisfying the above condition is dif-

feomorphic to the manifold of the form (#s
i=1S

m × Sm)#Σ2m where Σ2m is unique

and r = 2s = rank of Hm(M2m, Z). From [1] and [3], it is easily deduced that any

2m−manifold homeomorphic to Sm×Sm is almost diffeomorphic to it. We now show

that any two manifolds satisfying the above conditions are almost diffeomorphic.

Let M2m
1 and M2m

2 satisfy the above conditions of the theorem, then by [4]

there exists uniquely, homotopy spheres Σ2m
1 ,Σ2m

2 such that M2m
1 is diffeomorphic

to #s
i=1(S

m × S2m)i#Σ2m
1 and M2m

2 is diffeomorphic to #s
i=1(S

m × S2m)i#Σ2m
2 .

However,

M2m
1 #(−Σ2m

1 #Σ2m
2 ) = #s

i=1(S
m × Sm)#Σ2m

1 #(−Σ2m
1 #Σ2m

2 )

= #s
i=1(S

m × S2m)i(#Σ2m
1 #− Σ2m

1 )#Σ2m
2

= #s
i=1(S

m × S2m)i#Σ2m
2

= M2m
2

So let Σ2m = −Σ2m
1 #Σ2m

2 , then it follows that M2m
1 #Σ2m is diffeomorphic to M2m

2

It then follows that any two manifolds that satisfy the conditions of the theorem are

almost diffeomorphic. To prove the theorem, it then suffices to show that the inertial

group of M2m is trivial. Wall [21] showed this for m = 3, 5, 7(mod8). Here we will take

m = 2, 4, 6(mod8) and use framed surgery to give a proof. Since M2m is a closed

π−manifold, its index is zero, so it follows from [9] Lemma 7.3 that M2m can be re-

duced by framed surgery to an homotopy 2m−sphere Σ2m. Consider M2m#(−Σ2m).
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If necessary, then we can assume that M2m can be reduced to S2m by framed surgery.

So M2m is framed cobordant to S2m. M2m bounds a π−manifold, in fact a paralleliz-

able manifold. However by assumption, M2m is diffeomorphic to M2m#Σ2m, it follows

that M2m#Σ2m bounds a π−manifold W 2m+1 say. Let F : W 2m+1 → ESO(2m+1) be

the framing of a tangent bundle of W 2m+1 and let f ′ = F |M2m#Σ2m . By frame surgery,

(M2m#Σ2m, f ′) can be reduced to (Σ2m, h) for some framing h of Σ2m. This means

that it is framed cobordant to Σ2m. Let W ′2m+1 be the cobordism manifold. Since

M2m is diffeomorphic to (#s
i=1(S

m × Sm)i)#Σ′2m,using Milnors notation in [8], then

all the framed surgeries are of the type (m + 1,m) and since m = 2, 4, 6(mod8), the

framed surgeries on M2m#Σ2m do not depend on framing of the stable tangent bundle

of M2m#Σ2m. This is because obstruction to extending any framing f of M2m#Σ2m

to a trivialization of the tangent bundle of W ′2m+1 is in πmSO(2m). But for

m = 2, 4, 6(mod 8), πmSO(2m) = 0. So these surgeries on M2m#Σ2m may be framed

with respect to any framing (particularly with respect to f ′). Hence glueing W 2m+1

and W ′2m+1 along their common boundary M2m#Σ2m, we get a framed manifold

W ′′2m+1 with boundary Σ2m, hence Σ2m bounds a π−manifold W ′′2m+1. This implies

Σ2m ∈ bP2m+1, but by [9] Theorem 5, bP2m+1 = 0 hence Σ2m = S2m. Thus the inertial

group I(M2m) of M2m is trivial hence the number of smooth structures on M2m is

θ2m.

We will use the above to classify a 4m−manifold of the form M2m × S2m where

M2m is a π−manifold and (m− 1)−connected. We will apply the obstruction theory

of Munkres [11]. If two n−manifolds M and N are piecewise linear homeomorphic, by

[11] (Theorem 2.8), there is a diffeomorphism modulo L of M onto N , where L is the

(n−1)−skeleton of a triangulation of M . Suppose f : Mn → Nn is a diffeomorphism

modulo m−skeleton m < n, the obstruction to deforming f to g : Mn → Nn, a

diffeomorphism modulo (m−1)−skeleton is an element λm(f) ∈ Hm(M, Γn−m) where

Γn−m is a group of diffeomorphism of Sn−m−1 modulo those that are extendable to

diffeomorphism of Dn−m (g is called the smoothing of f). If λm(f) = 0 then by [11]

Section 4, the smoothing g exists. We will apply this theory to show the following.
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Theorem 2.2. Let M4m be a 4m manifold of the form M2m × S2m where M2m

is a closed, (m− 1)−connected π−manifold, then there exists homotopy spheres Σ3m

and Σ4m such that M4m is diffeomorphic to

{Sm × {(Sm × S2m)#Σ3m}}#{(#S−1
1 (Sm × Sm)i)× S2m}#Σ4m

Proof. By [4] (Theorem B), M2m is diffeomorphic to #S
i=1(S

m×Sm)i#Σ2m, where

Σ2m is unique, hence M2m × S2m is diffeomorphic to [(#S
1 (Sm × Sm)i)}#Σ2m]× S2m

But by [1] Lemma 2.1.1, Σ2m×S2m is diffeomorphic with S2m×S2m, hence it follows

that M2m × S2m is diffeomorphic with (#S
1 (Sm × Sm)i) × S2m. It then follows that

the number of smooth structures on M2m × S2m is the number of smooth stuctures

on (#S
1 (Sm × Sm)i)× S2m. Notice that the homology H∗(M2m × S2m, Z) is non-zero

only on dimensions m, 2m, 3m and 4m.

Let h : M4m → M2m× S2m be the given homeomorphism, using Munkre’s theory

[11], there is no obstruction to deforming h to a diffeomorphism modulo 3m−skeleton.

This is because Hi(M
2m × S2m, Z) = 0 for 3m < i < 4m. The obstruction to

deforming h to a diffeomorphism modulo (3m−1)−skeleton is λ3m(h) ∈ H3m(M2m×
S2m, Γm) = Γm ⊕ Γm.

Let λ3m(h) = ϕ1 + ϕ2, where each ϕi : Sm−1 → Sm−1 is a diffeomorphism. We

define Σm = Dm
1 ∪ϕ1ϕ2 Dm

2 , and let j : Sm → Σm be a homeomorphism defined by

j : Dm
1 ∪id Dm

2 → Dm
1 ∪ϕ1ϕ2 Dm

2 where

j(z) =

{
z if z ∈ int(Dm

1 )

|z|(ϕ1ϕ2)
−1( z

|z|) if z ∈ Dm
2

j is a piecewise linear homeomorphism and the obstruction to deforming j to a diffeo-

morphism is [φ1φ
−1
2 ] = −λm(h). From j, we define a map j×id : Sm×Sm → Σm×Sm

which is a piecewise linear homeomorphism and its obstruction to a diffeomorphism

is −λm(h). However, by [1] and [3], Σm × Sm is diffeomorphic to Sm × Sm and so

j × id : Sm × Sm → Sm × Sm is a piecewise linear homeomorphism with obstruction

to a diffeomorphism is also −λm(h).

Let Sm × Sm − int(D2m) = (Sm × Sm)0. We define a map
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g : (Sm × Sm)#S−1
i=1 Sm × Sm → Sm × Sm#S−1

i=1 Sm × Sm

g(z) =

{
j × id(z) if z ∈ (Sm × Sm)0

z elsewhere

and g × id : (#S
i=1S

m × Sm) × S2m → (#S
i=1S

m × Sm) × S2m whose obstruction

to a diffeomorphism is −λm(h). The obstruction to deforming the composite

M4m →h M2m×S2m →g×id M2m×S2m to a diffeomorphism modulo (3m−1)−skeleton

is λm((g × id)h) = −λm(h) + λm(h) = 0. Hence h′ = (g × id)h : M4m → M2m × S2m

is a diffeomorphism modulo (3m − 1)−skeleton. Since Hi(M
2m × S2m, Z) = 0 for

2m < i < 3m, there is no obstruction to deforming h′ to a diffeomorphism mod-

ulo 2m−skeleton. The obstruction to deforming h′ to a diffeomorphism modulo

(2m− 1)−skeleton is λ2m(h′) ∈ H2m(M2m × S2m, Γ2m) = Γ2m ⊕ Γ2m.

Let λ2m(h′) = ψ1 + ψ2 where ψi : S2m−1 → S2m−1 is a diffeomorphism for i = 1, 2.

Again we define Σ2m = D2m
1 ∪ψ1ψ2 D2m

2 and j : S2m → Σ2m defined by j : D2m
1 ∪id

D2m
2 → D2m

1 ∪id D2m
2 where

j(z) =

{
z if z ∈ int(D2m

1 )

|z|(ψ1ψ2)
−1( z

|z|) if z ∈ D2m
2

j is a piecewise linear homeomorphism and the obstruction to deforming j to a dif-

feomorphism is [(ψ1ψ2)
−1] = −λ2m(h′). From j, we build a map j′ : Sm×Sm#S2m →

Sm × Sm#Σ2m where

j′(z) =

{
z for z ∈ (Sm × Sm)0 = Sm × Sm − int(D2m)
j(z) for z ∈ D2m

Obstruction to deforming j′ to a diffeomorphism is −λ2m(h′). From j′ we build a

map j′′ by taking connected sum with #S−1
i=1 Sm × Sm on both sides to have

j′′ : (#S−1
i=1 Sm × Sm)#Sm × Sm → (#S−1

i=1 Sm × Sm)#Sm × Sm#Σ2m which is the

same as j′′ : #S
i=1S

m×Sm → (#S−1
i=1 Sm×Sm)#Σ2m and the obstruction to deforming

j′′ to a diffeomorphism is −λ2m(h′). Similarly, the map

j′′ × id : (#S−1
i=1 (Sm × Sm)i)× S2m → (#S−1

i=1 (Sm × Sm)i#Σ2m)× S2m

is a piecewise linear homeomorphism with obstruction to a diffeomorphism which is

−λ2m(h′).
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Consider the composite

M4m →h′ (#S−1
i=1 (Sm × Sm)i)× S2m =

M2m × S2m →j′′×id (#S
i=1(S

m × Sm)i#Σ2m)× S2m

The obstruction to deforming j′′ × id)h′ to a diffeomorphism modulo (2m −
1)−skeleton is λ2m((j′′×id)h′) = λ2m(j′′×id)+λ2m(h′) = −λ2m(h′)+λ2m(h′) = 0. Let

h′′ = (j′′×id)h′, hence h′′ : M4m → (#S
i=1(S

m×Sm)i#Σ2m)×S2m is a diffeomorphism

modulo (2m− 1)−skeleton. Recall that Σ2m × S2m is diffeomorphic with S2m × S2m

and so (#S
i=1(S

m × Sm)i#Σ2m) × S2m = (#S
i=1(S

m × Sm)i) × S2m = M2m × S2m,

hence h′′ : M4m → M2m×S2m is a diffeomorphism modulo (2m− 1)−skeleton. Since

Hi(M
4m, Z) = 0 for m < i < 2m, there is no obstruction to deforming h′′ to a

diffeomorphism modulo m−skeleton. The obstruction to deforming h′′ to a diffeo-

morphism modulo (m − 1)−skeleton is λm(h′′) ∈ Hm(M4m, Γ3m) = Γ3m ⊕ Γ3m. Let

λm(h′′) = α1 + α2 where αi : S3m−1 → S3m−1, i = 1, 2 is a diffeomorphism αi ∈ Γ3m.

Let Σ3m = D3m
1 ∪α1α2 D3m

2 and define

j : S3m → Σ3m j : D3m
1 ∪id D3m

2 → D3m
1 ∪α1α2 D3m

2 where

j(z) =

{
z if z ∈ int(D3m

1 )

|z|(α1α2)
−1( z

|z|) if z ∈ D3m
2

The obstruction to deforming j to a diffeomorphism is λm(α1α2)
−1 = −λm(h′′).

By taking the connected sum with Sm × S2m, we have a map say

g : Sm × S2m#S3m → Sm × S2m#Σ3m, where

g(z) =

{
z if z ∈ (Sm × S2m)0 = Sm × S2m − int(D3m)
j elsewhere

Thus the obstruction to deforming g to a diffeomorphism is still −λm(h′′) but

Sm × S2m#S3m = Sm × S2m, hence we have g : Sm × S2m → Sm × S2m#Σ3m.

Consider the map id × g : Sm × Sm × S2m → Sm × (Sm × S2m#Σ3m), we then add

to both sides, by connected sum, the manifold (#S−1
i=1 (Sm × Sm)i)× S2m to get

g′ : Sm × Sm × S2m#S−1
i=1 (Sm × Sm)i × S2m →

Sm × (Sm × S2m#Σ3m#S−1
i=1 (Sm × Sm)i × S2m
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This gives

g′ : #S−1
i=1 (Sm × Sm)i × S2m → Sm × (Sm × S2m#Σ3m#S−1

i=1 (Sm × Sm)i × S2m and the

obstruction to a diffeomorphism of g′ is also −λm(h′′). The obstruction to deforming

the composite

g′h′′ : M4m →h′′ #S−1
i=1 (Sm × Sm)i × S2m →g′

Sm × (Sm × S2m#Σ3m)#S−1
i=1 (Sm × Sm)i × S2m

to a diffeomorphism modulo (m − 1)−skeleton is λm(g′h′′) = λm(g′) + λm(h′′) =

−λm(h′′) + λm(h′′) = 0. Thus we have a diffeomorphism f = g′h′′ : M4m →
Sm × (Sm × S2m#Σ3m)#S−1

i=1 (Sm × Sm)i × S2m modulo (m − 1)−skeleton. Since

Hi(M
4m, Z) = 0 for 0 < i < m − 1, then there is no obstruction to deforming f to

a diffeomorphism modulo zero skeleton. We can thus assume that f is a diffeomor-

phism modulo one point. Therefore there exists a homotopy 4m−sphere Σ4m such

that M4m is diffeomorphic to

{Sm × {(Sm × S2m)#Σ3m}}#{(#S−1
i=1 (Sm × Sm)i)× S2m}#Σ4m

Hence the theorem.

Theorem 2.3. If M4m is a 4m−manifold homeomorphic to M2m × S2m where

M2m is a closed (m− 1)−connected π−manifold, then the smooth structures on M4m

is in one-to-one correspondence with the group θ3m

H(3m,m)
× θ4m.

Proof. Let O represent the standard structure on M2m × S2m and O1 represents

the trivial element of θ3m while O2 represents the trivial element of θ4m. We define a

map f : θ3m × θ4m → Structures on M2m × S2m by

f(Σ3m, Σ4m) = [Sm × (Sm × S2m#Σ3m)#S−1
i=1 (Sm × Sm)i × S2m]#Σ4m,

f maps to (O1, O2) to the base point O of M2m × S2m. If the pair Σ3m
1 , Σ3m

2 ∈
θ3m and Σ4m

1 , Σ4m
2 ∈ θ4m are h−cobordant respectively then by Smale [9], they are

diffeomorphic, then Sm × Σ3m
1 is diffeomorphic to Sm × Σ3m

2 , hence

[Sm × (Sm × S2m#Σ3m
1 )#S−1

i=1 (Sm × Sm)i × S2m]#Σ4m
1 , is diffeomorphic with [Sm ×

(Sm × S2m#Σ3m
2 )#S−1

i=1 (Sm × Sm)i × S2m]#Σ4m
2 , and so f is well defined. f is onto

because given a structure i.e. given a manifold homeomorphic to M2m × S2m, by

Theorem 2.2, there exists (Σ3m, Σ3m) ∈ θ3m × θ4m such that M4m is diffeomorphic
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with [Sm×(Sm×S2m#Σ3m)#S−1
i=1 (Sm×Sm)i×S2m]#Σ4m. We need to find kernel of f .

Let Σ3m ∈ H(3m,m) then Σ3m×Sm is diffeomorphic to S2m×Sm, hence Sm× (Sm×
S2m#Σ3m)#S−1

i=1 (Sm×Sm)i×S2m, is diffeomorphic with #S−1
i=1 (Sm×Sm)i×S2m, hence

H(3m,m) ⊂ Kernel of f(Kerf). If f(Σ3m, O2) = 0 then it follows by [1] Theorem

2.2.1, that Σ3m ∈ H(3m,m). Similarly if f(O1, Σ
4m) = 0, then by ([18] Theorem

A) it follows that Σ4m is diffeomorphic to Sm. Hence H(3m, m) = Kerf since f is

onto with Kernel H(3m,m) then the number of structures on M4m is in one-to-one

correspondence with the group θ3m

H(3m,m)
× θ4m.
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