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Abstract. We provide necessary and sufficient conditions that ensure the existence of a
bounded solution, which is globally exponentially stable, periodic or almost periodic, for a
special Lurie system with a single differentiable nonlinear term.

1. INTRODUCTION

Consider a special Lurie direct control system:

{
dx
dt

= Ax + bf(σ)
σ = cT x

, (1.1)

where A ∈ IRn×n, c, b ∈ IRn, f(σ) ∈ F with

F = {f : f(0) = 0, 0 ≤ f(σ)

σ
≤ k < +∞ for σ 6= 0}. (1.2)

It is well known that if there exists a real number q ≥ 0, such that

Re{(1 + iωq)W (iω)} ≥ 0 for all ω ≥ 0, (1.3)
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where W (iω) = −cT (iωI − A)−1b, then the zero solution of the system (1.1) is ab-

solutely stable. This is the Popov’s criterion [20], obtained by using the frequency

domain technique.

Impressive results have been obtained on the stability of control systems using

frequency domain ideas over the years. Outstanding examples of such work can be

found in the articles of Kalman [16], Popov [20] and Yacubovich [23-25], arising in their

quests to solve Lurie’s problems [19] in automatic controls. There exist generally two

different methods in the generating of stability results in frequency domain form. One

is the application of Yacubovich-Kalman lemma about solvability of matrix inequality,

which uses the tools of Lyapunov functions of the type ”quadratic form plus the

integral of the nonlinear term”. The other is the constructing of Popov functionals in

the L2-space of two functions depending on the solutions of the systems in order to

get their upper estimates. However, it was Yacubovich [25] who first realized that the

results in [16], [20] and [23] can be used to study forced oscillations of nonlinear control

systems. Eversince [25] appeared, there have been a lot of articles on generalizations,

applications and extensions of its results (see e.g [1-7] and [9-14]). More expository

results can be found in [8, 15, 17-18 and 21-22].

The stimulation of this note comes from the relatively recent paper [26] (and as

contained in [18]) where the system (1.1) for the special case

A =




−λ 1 0 . . . 0
0 −λ 0 . . . 0
0 0 −λ 0. . . 0
...

... 0...

. . .
...

0 0 . . . . . . −λ




, λ > 0, (1.4)

was considerd and Popov’s criterion used in obtaining

cT b ≤ 0, cT A−1b ≥ 0 (1.5)

as the necessary and sufficient conditions for the absolute stability of the system. Our

purpose is to consider in this paper a more general system:

{
dx
dt

= Ax− bf(σ) + P (t)
σ = cT x

(1.6)
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where A is of the form (1.4), P (t) bounded, c, b and f are as given in (1.1) and (1.2).

We shall use the Yacubovich’s approach to obtain necessary and sufficient con-

ditions under which there exists a solution that is bounded, globally exponentially

stable, periodic (or almost periodic) according as P (t) is periodic (or almost periodic)

for the system (1.6). The results obtained in this work generalized some of those con-

tained in [26] where the Popov’s criterion was used. Let us now state without proof,

the generalized theorem of Yacubovich as given in [12]:

Theorem O. Consider the system

X ′ = AX −Bϕ(σ) + P (t), σ = CT X (1.7)

where A is an n × n real matrix, B and C are n ×m real matrices with CT as the

transpose of C, ϕ(σ) = colϕj(σj), (j = 1, 2, ..., m) and P (t) is an n-vector.

Suppose that in the system (1.7), the following assumptions are true:

(i) A is a stable matrix,

(ii) P (t) is bounded for all t in IR,

(iii) for some constants µ̂j ≥ 0, (j = 1, 2, ..., m)

0 ≤ ϕj(σj)− ϕj(σ̂j)

σj − σ̂j

≤ µ̂j, (σj 6= σ̂j), (1.4)

(iv) there exists a diagonal matrix D > 0, such that the frequency-domain inequality

π(ω) = MD + ReDG(iω) > 0 (1.5)

holds for all ω in IR, where G(iω) = CT (iωI − A)−1B is the transfer function and

M = diag( 1
µ̂j

), (j = 1, 2, ..., m). Then, the system (1.7) has a bounded solution which

is:

(α) globally exponentially stable,

(β) periodic (or almost periodic) if P (t) is periodic (or almost periodic).

2. MAIN RESULTS

Theorem 2.1.Consider the system (1.6) where A is of the form (1.4). Let P (t) be

bounded, c, b ∈ IRn, f continuous and f(0) = 0. Suppose there exists a nonnegative
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constant µ such that for all z, ẑ ∈ IR,

0 ≤ f(z)− f(ẑ)

z − ẑ
≤ µ, (z 6= ẑ)

and

µ >
c1b2λ

2

(cT b)2λ2 + (c1b2)2 − 2c1b2cT bλ

with cT b < 0. Then there exists a bounded solution which satisfies properties (α) and

(β) of Theorem O.

Theorem 2.2. If there exists a real similarity transformation which transforms

the matrix Ã of the system

{
dy
dt

= Ãx− b̃f(σ̃) + P̃ (t)
σ = c̃T x

, (2.1)

where Ã ∈ IRn×n, b̃, c̃ ∈ IRn and f ∈ F into the form presented in the Theorem 2.1,

then the frequency domain inequalities for both systems (1.6) and (2.1) are equivalent

and consequently, the system (2.1) has a bounded solution which satisfies properties

(α) and (β) of Theorem O.

3. PROOF OF THEOREM 2.1

From the Theorem O, (iωI − A)−1 for the system (1.6) becomes

(iωI − A)−1 =




1
iω+λ

1
(iω+λ)2

0 . . . 0

0 1
iω+λ

0 . . . 0

0 0 1
iω+λ

0. . . 0
...

... 0...

. . .
...

0 0 . . . . . . 1
iω+λ




(3.1)

and the transfer function G(iω) is given by

G(iω) = cT (iωI − A)−1b
= (c1, c2, . . . , cn)(iωI − A)−1(b1, b2, . . . , bn)T

=
∑n

j=1
bjcj

iω+λ
+ c1b2

(iω+λ)2

= cT b(λ−iω)
λ2+ω2 + c1b2(λ2−ω2)−2iωc1b2λ

(λ2−ω2)2
+ 4λ2ω2.

(3.2)
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By choosing D = τ and M = 1
µ
, the frequency domain inequality (1.5) for the system

(1.6) becomes

π(ω) =
τ

µ
+ τ

[
cT bλ

λ2 + ω2
+

c1b2(λ
2 − ω2)

(λ2 − ω2)2 + 4λ2ω2

]
> 0.

Further simplifications of the right hand side of the above equation gives

τ

µ

[ω6 + (3λ2 + µcT bλ− µc1b2)ω
4 + (3λ4 + 2µcT bλ3)ω2 + (λ6 + µcT bλ5 + µc1b2λ

4)]

(λ2 + ω2)[(λ2 − ω2)2 + 4λ2ω2]
> 0.

(3.3)

For inequality 3.3 to be satisfied, we shall use the following well known result (see e.g

[7])

Lemma 3.1. Let

Q(v) = v3 + k1v
2 + k2v + k3, (3.4)

then Q(v) attains its minimum value at v = v̄ (say), where

v̄ = −
(

k1

3

) [
2−

(
3k2

2k1
2

)
+ o

(
(
3k2

k1
2 )2

)]
, (3.5)

provided k1, k2, k3 are real constants with k1 < 0 and |3k2| ≤ k1
2. Q ¯(v) is positive if

−k1k2

[
2

3
− 1

2
(
3k2

k1
2 )

]
+

4k1
3

27
+ k3 > 0. (3.6)

Remark 3.2. Lemma 3.1 is a powerful result on third order polynomials with

real constant coefficients. The proof can be obtained by locating the point at which

equation (3.4) attains its minimum. See [7] for the proof.

We shall now employ Lemma 3.1 to show that the inequality (3.3) holds. Let

ω2 = v in the inequality (3.3), then it is equivalent to the third order polynomial

v3 +(3λ2 +µcT bλ−µc1b2)v
2 +(3λ4 +2µcT bλ3)v +(λ6 +µcT bλ5 +µc1b2λ

4) > 0. (3.7)

Let
k1 = 3λ2 + µcT bλ− µc1b2,
k2 = 3λ4 + 2µcT bλ3,
k3 = λ6 + µcT bλ5 + µc1b2λ

4
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in the equation (3.4), then it follows from Lemma 3.1 that

3λ2 + µcT bλ− µc1b2 < 0, (3.8)

|3(3λ4 + 2µcT bλ3)| < (3λ2 + µcT bλ− µc1b2)
2 (3.9)

and

(µc1c2 − µcT bλ− 3λ2)(2µcT bλ3 + 3λ4)
[

2
3
− 1

12
(6µcT bλ3+9λ4)

(µcT bλ+3λ2−µc1b2)2

]

+ 4
27

(µcT bλ + 3λ2 − µc1b2)
3 + (λ6 + µcT bλ5 + µc1b2λ

4) > 0.
(3.10)

We can deduce from the inequality (3.8) that cT b < 0 and on further simplifications

of the inequality (3.9), we have

[
(cT bλ)2 − 2c1b2c

T bλ + (c1b2)
2
]
µ2 − c1b2λ

2µ > 0, (3.11)

from which we obtained µ > 0 or

µ >
c1b2λ

2

(cT bλ)2 − 2c1b2cT bλ + (c1b2)2
. (3.12)

Thus the solution of the system (1.6) has the qualitative properties (α) and (β) of

the Theorem O.

4. PROOF OF THEOREM 2.2

Let x = Zy be a nonsingular transformation with Z ∈ IRn×n. Then, the system

(1.6) is transformed into

dy

dt
Z = AZy − bf(σ) + P (t); σ = cT Zy, (4.1)

which is equivalent to

dy
dt

= Z−1AZy − Z−1bf(cT Zy) + Z−1P (t)

= Ãy − b̃f(c̃T y) + P̃ (t),
(4.2)

where Ã = Z−1AZ, b̃ = Z−1b, c̃ = ZT c, P̃ (t) = Z−1P (t). We shall show that cT b

and the inequality (3.11) are not changed by the similarity transformation.
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Obviously, c̃T b̃ = cT ZZ−1b = cT b. By applying the generalized theorem of Yacubovich

on the system (4.2), we have

µ̃ >
c̃1b̃2λ

2

(c̃T b̃λ)2 − 2c̃1b̃2c̃T b̃λ + (c̃1b̃2)2
(4.3)

as a condition to satisfy the frequency domain inequality (1.5) for the system (1.6).

Inequality (4.3) is equivalent to

µ̃ >
ZT c1Z

−1b2λ
2

(cT ZZ−1bλ)2 − 2ZT c1Z−1b2cT ZZ−1bλ + (ZT c1Z−1b2)2

=
c1ZZ−1b2λ

2

(cT b)2λ2 − 2c1
T ZZ−1b2cT ZZ−1bλ + (c1

T ZZ−1b2)2

=
c1b2λ

2

(cT b)2λ2 − 2c1
T b2cT bλ + (c1

T b2)2
.

(4.4)

Hence the conclusion of the proof.
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