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Abstract. For a totally real surface M of a complex space form M̃(4c) of arbitrary codimen-
sion, we obtain an inequality relating the squared mean curvature ‖H‖2, the holomorphic
sectional curvature c, the Gauss curvature K and the elliptic curvature KE of the surface.
Using the notion of ellipse of curvature, we obtain a characterization of the equality. An
example of a Lagrangian surface of C2 satisfying the equality case is given.

INTRODUCTION

Let (M̃, g) be an n-dimensional Hermitian manifold and M an m-dimensional

submanifold of M̃ , endowed with the induced metric. The submanifold M is called

totally real if for any point p of M and any vector X in TpM , JX is a normal vector

(where J is the almost complex structure on M̃). Also, a totally real submanifold M

is called Lagrangian if its dimension is maximal, i.e., dim M = dimC M̃ .

1This paper was written while the author visited Yamagata University, supported by a JSPS
postdoctoral fellowship. She would like to thank Professor Koji Matsumoto for valuable advices and
hospitality.
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We denote by R̃, R and R⊥ the curvature tensors of M , M̃ and the normal

curvature tensor, respectively, and by h the second fundamental form of M in M̃ .

The well-known equations of Gauss and Ricci are given by:

R̃(X,Y, Z,W ) = R(X, Y, Z, W )+

+g(h(X, W ), h(Y, Z))− g(h(X, Z), h(Y, W )),
(0.1)

R̃(X, Y, ξ, η) = R⊥(X,Y, ξ, η) + g([Aξ, Aη]X, Y ), (0.2)

for any vector fields X,Y, Z,W tangent to M and ξ, η normal to M .

For a point p ∈ M , let {e1, ..., em} be an orthonormal basis of the tangent space

TpM and {em+1, ..., e2n} an orthonormal basis of the normal space T⊥
p M . We will use

the following standard notations

hij = h(ei, ej), hk
ij = g(h(ei, ej), ek),

for i, j ∈ {1, ..., m}, k ∈ {m + 1, ..., 2n}, and

‖h‖2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)).

The mean curvature vector H = 1
m

trace h takes the form H = 1
m

m∑

i=1

hii.

1. THE MAIN RESULT

Let M be a totally real surface of the complex space form M̃(4c) of constant

holomorphic sectional curvature 4c and of complex dimension n. Then the curvature

tensor R̃ is given by

R̃(X,Y, Z,W ) = c[g(X, Z)g(Y, W )− g(X,W )g(Y, Z)+

+g(JX, Z)g(JY,W )− g(JX,W )g(JY, Z) + 2g(X, JY )g(Z, JW )].

For a point p ∈ M , let {e1, e2} be an orthonormal basis of the tangent plane TpM

and {e3, ..., e2n} an orthonormal basis of the normal space T⊥
p M .
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The ellipse of curvature at p ∈ M is the subspace Ep of the normal space given

by

Ep = {hp(X, X) | X ∈ TpM, ‖X‖ = 1}.

For any vector X = (cos θ)e1 + (sin θ)e2, θ ∈ [0, 2π], we have

hp(X, X) = H(p) + (cos 2θ)
h11 − h22

2
+ (sin 2θ)h12.

We recall the following result.

Proposition [2]. If the ellipse of curvature is non-degenerated, then the vectors

h11 − h22 and h12 are linearly independent.

Using a similar method with [2] and [3] and the above Proposition, we can define

a 2-plane subbundle P of the normal bundle, with the induced connection.

We will define then the elliptic curvature by the formula

KE = g([Ae3 , Ae4 ]e1, e2),

where {e1, e2}, {e3, e4} are orthonormal basis of TpM and Pp and A is the shape

operator.

Remark. This definition of the elliptic curvature coincides with the definition of

the normal curvature (given by Wintgen [W] and also Guadalupe and Rodriguez [2]

by the formula KN = g(R⊥(e1, e2)e3, e4)), if the ambient space M̃(c) is a real space

form.

We will prove the following

Theorem. Let M be a totally real surface of the complex space form M̃(4c) of

constant holomorphic sectional curvature 4c and of complex dimension n. Then, at

any point p ∈ M we have

‖H‖2 ≥ K −KE − c.

Moreover, the equality sign holds if and only if the ellipse of curvature is a circle.
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Proof. We can choose {e1, e2} such that the vectors u = h11−h22

2
and v = h12 are

perpendicular, in which case they coincide with the half-axis of the ellipse. Then we

will take e3 = u
‖u‖ and e4 = v

‖v‖ .

From the equation of Ricci (0.2) and the definition of KE, we have

KE = −‖h11 − h22‖ · ‖h12‖ . (1.1)

Also, from the Gauss equation (0.1) we obtain the formula of the Gauss curvature

K of the totally real surface M of the complex space form M̃(4c)

K = g(h11, h22)− ‖h12‖2 + c. (1.2)

By the definition of the mean curvature vector, (1.2) and the relation ‖h‖2 =

‖h11‖2 + ‖h22‖2 + 2 ‖h12‖2, we have

4 ‖H‖2 = ‖h‖2 + 2(K − c). (1.3)

Then

0 ≤ (‖h11 − h22‖ − 2 ‖h12‖)2 = ‖h‖2 − 2(K − c) + 4KE = (1.4)

= 4 ‖H‖2 − 4(K − c) + 4KE,

which is equivalent to

‖H‖2 ≥ K −KE − c. (1.5)

The equality sign holds if and only if ‖h11 − h22‖ = 2 ‖h12‖, i.e. ‖u‖ = ‖v‖, so

the ellipse of curvature is a circle.

2. EXAMPLE

In this section we will give one example of a Lagrangian surface in C2, endowed

with the standard almost complex structure J0, for which the equality sign holds

identically (which we call an ideal surface).
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Let M be the rotation surface of Vrănceanu [7], given by

X(u, v) = r(u)(cos u cos v, cos u sin v, sin u cos v, sin u sin v),

where r is a positive C∞-differentiable function.

Let {e1, e2} be an orthonormal basis of the tangent plane and {e3, e4} an orthonor-

mal basis of the normal plane.

Then it is easy to find the following expressions for ei, i ∈ {1, 2, 3, 4} (see also [6]):

e1 = (− cos u sin v, cos u cos v,− sin u sin v, sin u cos v),

e2 =
1

A
(B cos v, B sin v, C cos v, C sin v),

e3 =
1

A
(−C cos v,−C sin v,B cos v, B sin v),

e4 = (− sin u sin v, sin u cos v, cos u sin v,− cos u cos v),

where A = [r2 + (r′)2]
1
2 , B = r′ cos u− r sin u, C = r′ sin u + r cos u.

Also, after technical calculations, we find

h3
11 =

1

[r2 + (r′)2]
1
2

, h3
12 = 0, h3

22 =
−rr′′ + 2(r′)2 + r2

[r2 + (r′)2]
3
2

,

h4
11 = 0, h4

12 = − 1

[r2 + (r′)2]
1
2

, h4
22 = 0.

It is easily seen that M is a totally real surface of maximum dimension, so is a

Lagrangian surface of C2. Moreover, M satisfies the equality sign of the inequality

proved above (it is an ideal surface) if and only if

r(u) =
1

(|cos 2u|) 1
2

(the ellipse of curvature at every point of M is a circle).

In this case, M is a minimal surface (see [5]) and X = c1 ⊗ c2 is the tensor

product immersion of c1(u) =
1

(|cos 2u|) 1
2

(cos u, sin u) (an orthogonal hyperbola) and

c2(v) = (cos v, sin v) (a circle).
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