Kragujevac J. Math. 26 (2004) 83-88.

AN INEQUALITY FOR TOTALLY REAL SURFACES IN COMPLEX SPACE FORMS

Adela Mihai¹

Faculty of Mathematics, Str. Academiei 14, 010014 Bucharest, Romania

(Received November 24, 2003)

Abstract. For a totally real surface M of a complex space form $\widetilde{M}(4c)$ of arbitrary codimension, we obtain an inequality relating the squared mean curvature $||H||^2$, the holomorphic sectional curvature c, the Gauss curvature K and the elliptic curvature K^E of the surface. Using the notion of ellipse of curvature, we obtain a characterization of the equality. An example of a Lagrangian surface of \mathbf{C}^2 satisfying the equality case is given.

INTRODUCTION

Let (\widetilde{M}, g) be an *n*-dimensional Hermitian manifold and M an *m*-dimensional submanifold of \widetilde{M} , endowed with the induced metric. The submanifold M is called *totally real* if for any point p of M and any vector X in T_pM , JX is a normal vector (where J is the almost complex structure on \widetilde{M}). Also, a totally real submanifold Mis called *Lagrangian* if its dimension is maximal, i.e., dim $M = \dim_{\mathbf{C}} \widetilde{M}$.

¹This paper was written while the author visited Yamagata University, supported by a JSPS postdoctoral fellowship. She would like to thank Professor Koji Matsumoto for valuable advices and hospitality.

We denote by \widetilde{R} , R and R^{\perp} the curvature tensors of M, \widetilde{M} and the normal curvature tensor, respectively, and by h the second fundamental form of M in \widetilde{M} . The well-known equations of Gauss and Ricci are given by:

$$R(X, Y, Z, W) = R(X, Y, Z, W) + +g(h(X, W), h(Y, Z)) - g(h(X, Z), h(Y, W)),$$
(0.1)

$$\widetilde{R}(X,Y,\xi,\eta) = R^{\perp}(X,Y,\xi,\eta) + g([A_{\xi},A_{\eta}]X,Y), \qquad (0.2)$$

for any vector fields X, Y, Z, W tangent to M and ξ, η normal to M.

For a point $p \in M$, let $\{e_1, ..., e_m\}$ be an orthonormal basis of the tangent space T_pM and $\{e_{m+1}, ..., e_{2n}\}$ an orthonormal basis of the normal space $T_p^{\perp}M$. We will use the following standard notations

$$h_{ij} = h(e_i, e_j), \quad h_{ij}^k = g(h(e_i, e_j), e_k),$$

for $i, j \in \{1, ..., m\}, k \in \{m + 1, ..., 2n\}$, and

$$||h||^2 = \sum_{i,j=1}^n g(h(e_i, e_j), h(e_i, e_j)).$$

The mean curvature vector $H = \frac{1}{m}$ trace h takes the form $H = \frac{1}{m} \sum_{i=1}^{m} h_{ii}$.

1. THE MAIN RESULT

Let M be a totally real surface of the complex space form M(4c) of constant holomorphic sectional curvature 4c and of complex dimension n. Then the curvature tensor \tilde{R} is given by

$$\hat{R}(X, Y, Z, W) = c[g(X, Z)g(Y, W) - g(X, W)g(Y, Z) +$$
$$+g(JX, Z)g(JY, W) - g(JX, W)g(JY, Z) + 2g(X, JY)g(Z, JW)]$$

For a point $p \in M$, let $\{e_1, e_2\}$ be an orthonormal basis of the tangent plane T_pM and $\{e_3, ..., e_{2n}\}$ an orthonormal basis of the normal space $T_p^{\perp}M$. The ellipse of curvature at $p \in M$ is the subspace E_p of the normal space given by

$$E_p = \{h_p(X, X) \mid X \in T_p M, \|X\| = 1\}.$$

For any vector $X = (\cos \theta)e_1 + (\sin \theta)e_2, \ \theta \in [0, 2\pi]$, we have

$$h_p(X, X) = H(p) + (\cos 2\theta) \frac{h_{11} - h_{22}}{2} + (\sin 2\theta) h_{12}.$$

We recall the following result.

Proposition [2]. If the ellipse of curvature is non-degenerated, then the vectors $h_{11} - h_{22}$ and h_{12} are linearly independent.

Using a similar method with [2] and [3] and the above Proposition, we can define a 2-plane subbundle P of the normal bundle, with the induced connection.

We will define then the *elliptic curvature* by the formula

$$K^E = g([A_{e_3}, A_{e_4}]e_1, e_2),$$

where $\{e_1, e_2\}$, $\{e_3, e_4\}$ are orthonormal basis of T_pM and P_p and A is the shape operator.

Remark. This definition of the elliptic curvature coincides with the definition of the normal curvature (given by Wintgen [W] and also Guadalupe and Rodriguez [2] by the formula $K^N = g(R^{\perp}(e_1, e_2)e_3, e_4))$, if the ambient space $\tilde{M}(c)$ is a real space form.

We will prove the following

Theorem. Let M be a totally real surface of the complex space form M(4c) of constant holomorphic sectional curvature 4c and of complex dimension n. Then, at any point $p \in M$ we have

$$||H||^2 \ge K - K^E - c.$$

Moreover, the equality sign holds if and only if the ellipse of curvature is a circle.

Proof. We can choose $\{e_1, e_2\}$ such that the vectors $u = \frac{h_{11} - h_{22}}{2}$ and $v = h_{12}$ are perpendicular, in which case they coincide with the half-axis of the ellipse. Then we will take $e_3 = \frac{u}{\|u\|}$ and $e_4 = \frac{v}{\|v\|}$.

From the equation of Ricci (0.2) and the definition of K^E , we have

$$K^{E} = -\|h_{11} - h_{22}\| \cdot \|h_{12}\|.$$
(1.1)

Also, from the Gauss equation (0.1) we obtain the formula of the Gauss curvature K of the totally real surface M of the complex space form $\widetilde{M}(4c)$

$$K = g(h_{11}, h_{22}) - \|h_{12}\|^2 + c.$$
(1.2)

By the definition of the mean curvature vector, (1.2) and the relation $||h||^2 = ||h_{11}||^2 + ||h_{22}||^2 + 2 ||h_{12}||^2$, we have

$$4 ||H||^{2} = ||h||^{2} + 2(K - c).$$
(1.3)

Then

$$0 \le (\|h_{11} - h_{22}\| - 2 \|h_{12}\|)^2 = \|h\|^2 - 2(K - c) + 4K^E =$$
(1.4)
= 4 \|H\|^2 - 4(K - c) + 4K^E,

which is equivalent to

$$\|H\|^2 \ge K - K^E - c. \tag{1.5}$$

The equality sign holds if and only if $||h_{11} - h_{22}|| = 2 ||h_{12}||$, i.e. ||u|| = ||v||, so the ellipse of curvature is a circle.

2. EXAMPLE

In this section we will give one example of a Lagrangian surface in \mathbb{C}^2 , endowed with the standard almost complex structure J_0 , for which the equality sign holds identically (which we call an *ideal surface*). Let M be the *rotation surface* of Vrănceanu [7], given by

$$X(u,v) = r(u)(\cos u \cos v, \cos u \sin v, \sin u \cos v, \sin u \sin v),$$

where r is a positive C^{∞} -differentiable function.

Let $\{e_1, e_2\}$ be an orthonormal basis of the tangent plane and $\{e_3, e_4\}$ an orthonormal basis of the normal plane.

Then it is easy to find the following expressions for $e_i, i \in \{1, 2, 3, 4\}$ (see also [6]):

$$e_1 = (-\cos u \sin v, \cos u \cos v, -\sin u \sin v, \sin u \cos v),$$
$$e_2 = \frac{1}{A} (B\cos v, B\sin v, C\cos v, C\sin v),$$
$$e_3 = \frac{1}{A} (-C\cos v, -C\sin v, B\cos v, B\sin v),$$
$$e_4 = (-\sin u \sin v, \sin u \cos v, \cos u \sin v, -\cos u \cos v),$$

where $A = [r^2 + (r')^2]^{\frac{1}{2}}, B = r' \cos u - r \sin u, C = r' \sin u + r \cos u.$

Also, after technical calculations, we find

$$h_{11}^{3} = \frac{1}{[r^{2} + (r')^{2}]^{\frac{1}{2}}}, \quad h_{12}^{3} = 0, \quad h_{22}^{3} = \frac{-rr'' + 2(r')^{2} + r^{2}}{[r^{2} + (r')^{2}]^{\frac{3}{2}}},$$
$$h_{11}^{4} = 0, \quad h_{12}^{4} = -\frac{1}{[r^{2} + (r')^{2}]^{\frac{1}{2}}}, \quad h_{22}^{4} = 0.$$

It is easily seen that M is a totally real surface of maximum dimension, so is a *Lagrangian surface* of \mathbb{C}^2 . Moreover, M satisfies the equality sign of the inequality proved above (it is an *ideal surface*) if and only if

$$r(u) = \frac{1}{(|\cos 2u|)^{\frac{1}{2}}}$$

(the ellipse of curvature at every point of M is a circle).

In this case, M is a minimal surface (see [5]) and $X = c_1 \otimes c_2$ is the tensor product immersion of $c_1(u) = \frac{1}{(|\cos 2u|)^{\frac{1}{2}}}(\cos u, \sin u)$ (an orthogonal hyperbola) and $c_2(v) = (\cos v, \sin v)$ (a circle).

References

- [1] B. Y. Chen, *Geometry of Submanifolds*, M. Dekker, New York, 1973.
- [2] I. V. Guadalupe, L. Rodriguez, Normal curvature of surfaces in space forms, Pacific J. Math. 106 (1983) 95–103.
- B. Gmira, L. Verstraelen, A curvature inequality for Riemannian submanifolds in a semi-Riemannian space forms, Geometry and Topology of Submanifolds IX, World Sci., 1999, 148–159.
- [4] A. Mihai, Geometry of Submanifolds in Complex Manifolds, Ph. D. Thesis, "Al. I. Cuza" Univ., Iaşi, 2001.
- [5] I. Mihai, B. Rouxel, Tensor product surfaces of Euclidean plane curves, Results in Math. 27 (1995) 308–315.
- [6] B. Rouxel, *A-submanifolds in Euclidean space*, Kodai Math. J. 4 (1981) 181–188.
- [7] G. Vrănceanu, Surfaces de rotation dans E⁴, Rev. Roumaine Math. Pures Appl. 22 (1977) 857–862.
- [8] P. Wintgen, Sur l'inégalité de Chen-Willmore, C.R. Acad. Sci. Paris 288 (1979) 993–995.