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Abstract. In this paper, we prove that (i) if A is a quasi-complete locally m−convex
algebra on which the operator x 7−→ yxy(x ∈ A) is Banach compact for all elements y in a
sequentially dense subset of A, then A is a Banach compact locally m−convex algebra and
(ii) that every Montel algebra is Banach compact.

Preliminary Definitions. Let A be a linear associative algebra over the field

of complex numbers C. Suppose A is also a topological vector space with respect to

a Hausdorff topology τ . Then A is a topological algebra if, in addition, the maps

x 7−→ xy and x 7−→ yx are continuous on A for each y ∈ A. The topological algebra

A is a locally convex algebra if and only if A is a locally convex space. A topological

vector space A with respect to a Hausdorff topology τ is quasi-complete if every

bounded, Cauchy net in A converges.

A barrel in a locally convex topological vector space is a subset which is radial,

convex, circled and closed. Every locally convex topological vector space has a zero

neighborhood base consisting of barrels. A barrelled space is a locally convex topo-

logical vector space in which the family of all barrels forms a neighborhood base at
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zero. Every Banach space and every Fréchet space is barrelled.

A barrelled space with the further property that its closed bounded subsets are

compact is called a Montel space. A locally convex algebra is said to be a Montel

algebra or (M)−algebra, if its underlying locally convex topological vector space is a

Montel space.

A locally convex algebra A is said to be locally m−convex if the topology of A is

defined by a family {pα : α ∈ Γ} of seminorms satisfying the multiplicative condition:

pα(xy) ≤ pα(x)pα(y)

for all x, y ∈ A and α ∈ Γ. We note that every normed algebra is a locally m−convex

algebra.

A Bo−algebra is a complete, metrizable, locally convex algebra. If A is a Bo−algebra,

the multiplication in A is automatically jointly continuous (i.e. the map (x, y) 7−→
xy : A×A −→ A is continuous). Then the topology τ of A can be defined by means

of increasing sequences {pi : i ∈ N} of seminorms such that

pi(xy) ≤ pi+1(x)pi+1(y)

for all i and x, y ∈ A. A locally m−convex Bo−algebra is termed a Fréchet algebra.

We present some definitions from operator theory. Let A be a locally convex

algebra and let L(A) denote the collection of all continuous linear maps on A. A map

T ∈ L(A) is said to be Banach compact if TB is relatively compact for every bounded

subset B of A. T is said to be finite dimensional if it has a finite dimensional range.

A finite dimensional map is Banach compact.

Let y be a fixed element of a locally convex algebra A. Then y is said to be left

Banach compact (resp. right Banach compact) if the map Ty := x 7−→ yx (resp.

T,y := x 7−→ xy) is Banach compact on A. y is said to be (just) Banach compact

if the map Ty,y := x 7−→ yxy is Banach compact on A. If every element y ∈ A is

Banach compact, then A is said to be a Banach compact locally convex algebra.
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Theorem 1. Let A be a quasi-complete locally m−convex algebra on which the

operator Ty,y := x 7−→ yxy : A −→ A is Banach compact for all elements y in

a sequentially dense subset of A. Then A is a Banach compact locally m−convex

algebra.

Proof. Let B be a sequentially dense subset of A. For any fixed element y in A,

there exists a bounded sequence {yn} in B such that {yn} converges to y. Define the

operators T and Tn(n = 1, 2, 3, . . .) on A by

Ty,y := x 7−→ yxy

and

Tyn ,yn := x 7−→ ynxyn

respectively.

Let qα : α ∈ Γ be a family of continuous seminorms generating the topology of A.

For each qα ∈ {qα : α ∈ Γ} we have

qα(Tyn,ynx− Ty,yx) = qα(ynxyn − yxy)
= qα(ynxyn − ynxy + ynxy − yxy)
= qα[ynx(yn − y) + (yn − y)xy]
= qα[(yn − y)(yn + y)x]
≤ qα(yn − y)[qα(yn) + qα(y)]qα(x).

Let x ∈ D, a bounded subset of A, then there exists λ > 0 such that qα(x) ≤ λ.

As {yn} is bounded, then there exists µ > 0 such that qα(yn) ≤ µ for all n ∈ N.

Therefore,

qα(Tyn,ynx− Ty,yx) ≤ λqα(yn − y)[µ + qα(y)].

Hence,

lim
n

qD,α(Tyn,yn − Ty,y) = lim
n

sup
x∈D

qα(Tyn,ynx− Ty,yx) = 0.

Therefore Tyn,yn −→ Ty,y in the topology of bounded convergence on L(A). Since

the space of all Banach compact operators on A is closed in L(A) and since the

operators {Tn : n ∈ N} are Banach compact, it follows that T is Banach compact.

Thus A is Banach compact.
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Theorem 2. Every Montel algebra is Banach compact.

Proof. Let A be a Montel algebra. Let y be any element of A. Consider the

operator Ty,y := x 7−→ yxy : A −→ A. Let B be a bounded subset of A. Ty,y is

continuous, therefore Ty,yB is again a bounded subset of A. Since every bounded

subset of a Montel algebra A is relatively compact, we have that Ty,yB is relatively

compact in A. Therefore for any element y in A, Ty,y is Banach compact on A. Thus

A is Banach compact.

Example. Let A = R∞ denote the product of countably, infinitely many copies

of R, the real line. Let addition, scalar multiplication and vector multiplication in

R∞ be defined co-ordinate wise. For example, for x = (λn), y = (µn) ∈ R∞, let the

multiplication of x and y be defined by xy = (λnµn). With these operations, R∞

becomes an algebra. For any n ∈ N, let

qn(x) = |λn| .

Then the family of seminorms {qn : n ∈ N} generates a locally convex Hausdorff

topology on R∞ with respect to which R∞ is complete. This topology is metrizable

because it is defined by a countable system of seminorms. Furthermore, for each

n ∈ N and for every x, y ∈ R∞, we have

qn(xy) = |λnµn| = |λn| |µn| = qn(x)qn(y).

Therefore qn(xy) ≤ qn(x)qn(y) for all x, y ∈ R∞; n ∈ N. Thus A is a Fréchet

algebra.

Now consider the subspace Ψ of R∞ consisting of those elements x ∈ R∞ with

only finitely many nonzero co-ordinates. Let Ψ have the topology induced from R∞

and multiplication consisting of co-ordinate wise multiplication. Then Ψ is a locally

m−convex algebra. Let y = (µn) ∈ Ψ be arbitrary and consider the multiplication

operator

Ty,y := x 7−→ yxy : Ψ −→ Ψ.
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For any y ∈ Ψ, there exists no(y) > 0 such that µn = 0 for all n ≥ no(y).

Therefore Ty,yx = yxy ∈ Rno(y). This shows that dim Ty,yΨ < ∞. Therefore, the

operator

Ty,y := x 7−→ yxy

is Banach compact on Ψ. Thus Ψ is a Banach compact locally m−convex algebra.

We note that every Banach space and, more generally, every Fréchet space is

barrelled. Thus the space A = R∞ is barrelled.

The locally m−convex algebra A = R∞ is a Montel algebra. Therefore by theorem

2, it is Banach compact.

We also realize that A = R∞ is a quasi-complete locally m−convex algebra.

Furthermore A = R∞ contains a sequentially dense subset Ψ on which the operator

x 7−→ yxy (x ∈ A) is Banach compact for every y ∈ Ψ. Therefore, by theorem 1, A

is Banach compact.
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