BANACH PRECOMPACT ELEMENTS OF A LOCALLY M-CONVEX B_O -ALGEBRA

B. M. Ramadisha and V. A. Babalola

Mathematics Department, University of the North, Private Bag X1106, Sovenga 0727, South Africa

(Received September 1, 2003)

Abstract. In this paper, we present and prove that Banach precompactness of an element $y \in A$ of a locally m-convex B_o - algebra is inherited by the elements of A(y).

Notations and definitions. Let A be an algebra over the complex field \mathbb{C} . A is said to be a semi-topological algebra if A is an algebra with a Hausdorff topology and if the maps: $(x, y) \mapsto x + y$ and $(\lambda, x) \mapsto \lambda x$ from $A \times A$ to A and $\mathbb{C} \times A$ to A, respectively, are continuous and the map: $(x, y) \mapsto xy$ is separately continuous. A semi - topological algebra is said to be a topological algebra if the map: $(x, y) \mapsto xy$ is jointly continuous. That is, an algebra with a topology is a topological algebra if it is a topological vector space in which multiplication is jointly continuous. Each topological vector space contains a base $\{U\}$ of zero neighborhoods such that each $U \in \{U\}$ is closed, circled, absorbing and for each $U \in \{U\}$ there is $V \in \{U\}$ such that $V + V \subset U$. If A is a topological algebra, then there is a base $\{U\}$ of zero neighborhoods satisfying these conditions and an additional condition: for each $U \in \{U\}$ there there are $V, W \in \{U\}$ such that $VW \subset U$. A B_o -algebra is a complete, metrizable locally convex algebra. Sometimes a locally convex algebra is described as a topological algebra whose topology is given by a family $\{p_{\alpha}\}_{\alpha\in\Gamma}$ of seminorms satisfying:

- (i) $p_{\alpha}(\lambda x) = |\lambda| p_{\alpha}(x)$ for all $x \in A, \lambda \in \mathbb{C}$
- (ii) $p_{\alpha}(x+y) \leq p_{\alpha}(x) + p_{\alpha}(y)$ for all $x, y \in A$
- (iii) $p_{\alpha}(x) = 0$ for all $\alpha \in \Gamma$ if and only if x = 0
- (iv) for each $p_{\alpha} \in \{p_{\alpha}\}_{\alpha \in \Gamma}$ there is $p_{\beta} \in \{p_{\alpha}\}_{\alpha \in \Gamma}$ such that $p_{\beta}(xy) \leq p_{\alpha}(x)p_{\alpha}(y)$ for all $x, y \in A$.

A locally convex algebra $(A, \{p_{\alpha}\}_{\alpha \in \Gamma})$ is said to be multiplicatively convex (or locally m-convex for short) if each $p_{\alpha} \in \{p_{\alpha}\}_{\alpha \in \Gamma}$ satisfies:

$$p_{\alpha}(xy) \leq p_{\alpha}(x)p_{\alpha}(y)$$
 for all $x, y \in A$ and $\alpha \in \Gamma$.

Every normed algebra is a locally m-convex algebra. A locally m-convex B_o -algebra is called a *Fréchet algebra*.

Let A be a locally convex algebra and let L(A) be the vector space of all continuous linear maps on A. A map $T \in L(A)$ is said to be Banach precompact if and only if TB is precompact in A for every bounded subset B of A.

We are now ready to define the notion of a Banach precompact element in a locally convex algebra A. Let y be a fixed element of a locally convex algebra A. Then y is said to be left Banach precompact (resp. right Banach precompact) if the map $T_y := x \mapsto yx$ (resp. $T_{,y} := x \mapsto xy$) is Banach precompact on A. y is said to be (just) Banach precompact if the map $T_{y,y} := x \mapsto yxy$ is Banach precompact on A. If every element $y \in A$ is (right) Banach precompact, then A is said to be a (right) Banach precompact locally convex algebra.

Theorem. Let y be a Banach precompact element of a locally m-convex B_o - algebra A, then A(y) is a Banach precompact locally convex algebra. (A(y) is the least closed subalgebra of A containing y, which is the closure of the set of all polynomials in y without a constant term). **Proof.** Let $x \in A(y)$. Since A is a *Fréchet* algebra, there exists a sequence $\{x_n\}$ of elements which are polynomials in y, such that $\lim_n x_n = x$. Let B be a bounded subset of A. Define the operators T and T_n (n = 1, 2, 3, ...) by

$$TB = xBx$$
 and $T_nB = x_nBx_n$

respectively.

Let $\{p_{\alpha}\}_{\alpha\in\Gamma}$ be a family of continuous seminorms generating the topology of A. For each $p_{\alpha} \in \{p_{\alpha}\}_{\alpha\in\Gamma}$ we have

$$p_{\alpha}(T_n B - TB) = p_{\alpha}(x_n B x_n - x B x)$$

= $p_{\alpha}(x_n B x_n - x_n B x + x_n B x - x B x)$
= $p_{\alpha}[x_n B(x_n - x) + (x_n - x) B x]$
= $p_{\alpha}[(x_n - x)(x_n + x)B]$
 $\leq p_{\alpha}(x_n - x)[p_{\alpha}(x_n) + p_{\alpha}(x)]p_{\alpha}(B).$

Let $b \in B$, then there exists $\lambda > 0$ such that $p_{\alpha}(b) \leq \lambda$. Since $\{x_n\}$ is bounded, there exists $\mu > 0$ such that $p_{\alpha}(x_n) \leq \mu$ for all $n \in \mathbb{N}$. Therefore,

$$p_{\alpha}(T_n B - TB) \le \lambda p_{\alpha}(x_n - x)[\mu + p_{\alpha}(x)].$$

Hence,

$$\lim_{n} P_{B,\alpha} (T_n - T) = \lim_{n} \sup_{b \in B} p_\alpha (T_n b - T b)$$
$$= 0.$$

This implies that $T_n \longrightarrow T$ in the topology of bounded convergence on L(A). Since the space of all Banach precompact operators on A is closed in L(A) and since the operators $\{T_n : n \in \mathbb{N}\}$ are Banach precompact, it follows that T is Banach precompact as well. Therefore A(y) is a Banach precompact algebra.

As a corollary we next show that a Banach algebra which is singly generated by a left Banach precompact element is a left Banach precompact algebra.

Corollary. Let A be a Banach algebra and let $y \in A$ be a left Banach precompact element. If A is singly generated by y, then A is a left Banach precompact algebra.

Proof. Let A be a Banach algebra and let y be a left Banach precompact element of A which generates A. Then A = A(y), where A(y) is the least closed subalgebra of A containing y. The map $T_y := x \mapsto yx$ is Banach precompact on A. Since A(y) is the closure of the algebra of all polynomials of the form

$$p(y) = \lambda_1 y + \lambda_2 y^2 + \lambda_3 y^3 + \ldots + \lambda_n y^n,$$

where $n \in \mathbb{N}$ and $\lambda_i \geq 0$ (i = 1, 2, 3, ..., n). Then, an element x of A(y) is the limit of some polynomials $p_m(y)$ in y as $m \longrightarrow \infty$. Each $p_m(y)$ is a left Banach precompact element of A since the sum of Banach precompact elements is Banach precompact and the product of Banach precompact elements is Banach precompact. Therefore x is also a left Banach precompact element of A. This shows that A is a left Banach precompact algebra.

Acknowledgement: We would like to thank Prof O. D. Makinde for his encouragement and his helpful remarks.

References

- V. A. Babalola, Semi precompact maps, Nigerian journal of science, **31** (1997), 207–217.
- [2] T. Husain, Multiplicative functionals on topological algebras, Pitman (1983).
- [3] R. E. Megginson, An introduction to Banach space theory, Springer-Verlag (1998).
- [4] E. Michael, Locally multiplicatively convex topological algebras, AMS, Memoirs #11 (1952).
- [5] K. Ylinen, Compact and finite dimensional elements of normed algebras, Ann. Acad.
 Scie. Fenn. Ser. A1 No. 428 (1968).