A NOTE ON INDECOMPOSABILITY OF BOOLEAN MATRICES

Bo Zhou

Department of Mathematics, South China Normal University, Guangzhou 510631, P. R. China (e-mail: zhoubo@scnu.edu.cn)

(Received January 20, 2004)

Abstract. We disscuss the properties of $n \times n$ *r*-indecomposable Boolean matrices with -n < r < n, and determine all the numbers attainable as the *k*-th upper generalized exponents of $n \times n$ *r*-indecomposable Boolean matrices with $1 \le r, k < n$.

Let B_n be the set of all $n \times n$ Boolean matrices whose entries are 0 or 1 and the arithmetic underlying the matrix multiplication and addition is the usual integer arithmetic except that 1 + 1 = 1. A set of rows and columns is said to cover the 1's if every 1 in the matrix belongs to one of these rows or columns. The term rank of Ais the minimum number of rows and columns to cover the 1's of A, denoted by $\lambda(A)$. Let r be an integer with -n < r < n. A matrix $A \in B_n$ is r-indecomposable if it contains no $k \times l$ zero submatrix with $1 \leq k, l \leq n$ and k+l = n-r+1. In particular, A is (1-n)-indecomposable if and only if $A \neq O$, while A is (n-1)-indecomposable if and only if $A = J_n$, the all-ones matrix in B_n . A 1-indecomposable matrix is also said to be fully indecomposable. A 0-indecomposable matrix is also called a Hall matrix.

Let $X \subseteq \{1, 2, ..., n\}$ and $R_t(A, X) = \{1 \le k \le n : a_{i_0 i_1} a_{i_1 i_2} \dots a_{i_{t-1} k} = 1$ for some

 $i_0 \in X$ }. Then $A \in B_n$ is r-indecomposable if and only if, for each $X \subseteq \{1, 2, ..., n\}$ with $\max\{1, 1-r\} \leq |X| \leq \min\{n, n-r\}, |R_1(A, X)| \geq |X| + r$.

For $A \in B_n$, a set of s rows and t columns of A is called a proper mixture if $0 \leq s, t < n$ and s + t > 0. In [2], Dulmage and Mendelsohn defined $\alpha(A)$ as follows. If A = O, then $\alpha(A) = -n$ and if $A = J_n$, then $\alpha(A) = n$. If $A \neq O, J_n$, then $\alpha(A) = \min\{s+t\} - n = \lambda(A) - n$, the minimum being taken over all proper mixtures of s rows and t columns which cover the non-zeros of A. (Note that $\lambda(J_n) = n$.) A is said to be cover-irreducible if $\alpha(A) > 0$, in this case $\alpha(A)$ is called the index of cover-irreducibility of A.

Lemma 1. Let $A \in B_n$, $A \neq O, J_n$, and let r be an integer with -n < r < n. Then A is r-indecomposable if and only if $\alpha(A) \geq r$.

Proof.

A is r-indecomposable

 $\Leftrightarrow A \text{ contains no } k \times l \text{ zero submatrix} \\ \text{with } 1 \leq k, l \leq n \text{ and } k + l = n - r + 1 \\ \Leftrightarrow \text{ any proper mixture of } s \text{ rows and } t \text{ columns to cover} \\ \text{ the nonzeros of } A \text{ satisfies } n - s + n - t \leq n - r \\ \Leftrightarrow \alpha(A) \geq r.$

It follows from the definition of r-indecomposability that an r-indecomposable matrix is also p-indecomposable for all $p, -n . By Lemma 1, if <math>A \neq O, J_n$, then $\alpha(A)$ is the maximum r such that A is r-indecomposable (which is called the index of indecomposability of A in [3]).

If $-n < r \le 0$, then $A \in B_n$ is r-indecomposable if and only if $\lambda(A) \ge n + r$. By König's theorem, A is r-indecomposable for $-n < r \le 0$ if and only if it dominates a permutation matrix of order n + r.

A matrix $A \in B_n$ is primitive if $A^m = J_n$ for some positive integer m; the least such m is called the exponent of A, denoted by $\exp(A)$. It is known that $A \in B_n$ is primitive if A is 1-indecomposable. It follows from Lemma 1 that $A \in B_n$ is coverirreducible if and only if A is 1-indecomposable.

134

Let $P \in B_n$ the be the permutation matrix with $p_{i,i+1} = p_{n1} = 1$ for i = 1, 2, ..., n-1 and let $C_s = I + P + \cdots + P^s$ if $s \ge 0$. It is easy to see that C_s is s-indecomposable. [a] denotes the smallest integer not less that a.

Lemma 2. [2] Let $A \in B_n$ with $\alpha = \alpha(A) > 0$ and let c = c(A) be the minimum number of nonzeros in a column of A. Then

$$\exp(A) \le \left\lceil \frac{n-c}{\alpha} \right\rceil + 1.$$

Theorem 3. Suppose that $A \in B_n$ is r-indecomposable where $r \ge 1$. Then

$$\exp(A) \le \left\lceil \frac{n-1}{r} \right\rceil,$$

and this bound is best possible.

Proof. By Lemma 1, $\alpha(A) \ge r \ge 1$. Note that $c(A) \ge r + 1$ by the definition of r-indecomposability. By Lemma 2, we obtain $\exp(A) \le \lceil (n-1)/r \rceil$.

Note that there is an integer $k \ge 1$ such that $kr < n-1 \le (k+1)r$, $C_r^k = I + P + \cdots + P^{kr} \ne J_n$, and $C_r^{k+1} = I + P + \cdots + P^{n-1} = J_n$. Then $\exp(C_r) = k+1 = \lceil (n-1)/r \rceil$.

Remark 4. This theorem has also been proved by Sachkov and Oshkin [3]. Actually a much general result is obtained there: if A is r_1 -indecomposable and B is r_2 -indecomposable, then AB is r-indecomposable where $r_1, r_2 \ge 0$ and $r = \min\{r_1 + r_2, n - 1\}$.

Remark 5. In fact we can derive the upper bound in Theorem 3 directly. If A is r-indecomposable where $r \ge 1$, then for each $X \subseteq \{1, 2, ..., n\}$ with $\max\{1, 1 - r\} \le |X| \le \min\{n, n - r\}$, we have $|R_1(A, X)| \ge |X| + r$. By induction, for any m with $1 \le m \le t = \lfloor (n - 1)/r \rfloor$, $R_1(A^m, X)| = |R_m(A, X)| = |R_1(A, R_{m-1}(A, X))| \ge |X| + mr$ and hence $|R_1(A^{t+1}, X)| = n$. This implies that A^m is mr-indecomposable for $1 \le m \le t$ and if $t \ne (n - 1)/r$, A^{t+1} is (n - 1)-indecomposable. It follows that $\exp(A) \le \lceil (n - 1)/r \rceil$. For a primitive matrix $A \in B_n$, Brualdi and Liu [1] defined the k-upper generalized exponent, F(A, k), to be the smallest positive integer p such that there is no $k \times 1$ zero submatrix in A^p . Clearly $1 = F(A, n) \leq F(A, n-1) \leq \ldots \leq F(A, 1) = \exp(A)$. The case k = n is trivial. So we consider only the case $1 \leq k \leq n - 1$.

We consider F(A, k) for r-indecomposable matrix in B_n with $r \ge 1$. For $n - r \le k \le n - 1$ and every r-indecomposable matrix $A \in B_n$, clearly $F(A, k) = 1 = \lceil (n-k)/r \rceil$.

Theorem 6. Suppose that $A \in B_n$ is r-indecomposable where $r \ge 1, 1 \le k \le n-r-1$. Then

$$F(A,k) \le \left\lceil \frac{n-k}{r} \right\rceil,$$

and this bound is best possible.

Proof. For any k with $1 \le k \le n-1$, there is an integer m such that $n - mr \le k < n - (m-1)r$. Note that A^m is mr-indecomposable for $1 \le m \le t = \lfloor (n-1)/r \rfloor$, and A^{t+1} is (n-1)-indecomposable. There is no zero $k \times 1$ submatrix in A^m , and hence $F(A, k) \le m = \lceil (n-k)/r \rceil$.

Recall that C_r is r-indecomposable. It is easy to see that C_r^{m-1} has a $k \times 1$ zero submatrix indexed by the first k rows and the last column, implying $F(C_r, k) \geq \lceil (n-k)/r \rceil$. Thus $F(C_r, k) = \lceil (n-k)/r \rceil$.

Theorem 7. For any integer p with $1 \le p \le \lceil (n-k)/r \rceil$ where $r \ge 1$, there is an r-indecomposable matrix in B_n such that F(A, k) = p.

Proof. If $n-r \le k \le n-1$, the theorem is obvious. Suppose $1 \le k \le n-r-1$. For any integer p with $1 \le p \le \lceil (n-k)/r \rceil$, there is an integer s such that $p = \lceil (n-k)/s \rceil$ with $r \le s \le n-1$. Take $C_s = I + P + \cdots + P^s$. Then C_s is s-indecomposable and hence is r-indecomposable, and

$$F(C_s,k) = \left\lceil \frac{n-k}{s} \right\rceil = p.$$

136

Acknowledgements: The work was supported by the National Natural Science Foundation (No. 10201009) and the Guangdong Provincial Natural Science Foundation (No. 021072) of China.

References

- R. A. Brualdi, B. Liu, Generalized exponents of primitive directed graphs, J. Graph Theory, 14 (1990), 483–499.
- [2] A. L. Dulmage, N. S. Mendelsohn, The exponents of incidence matrices, Duke Math. J., **31** (1964), 575–584.
- [3] V. N. Sachkov, I. B. Oshkin, Exponents of classes of non-negative matrices, Discrete Math. Appl., 3 (1993), 365–375.