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ABSTRACT. The estimation of the remainder term in midpoint formula forL —lipschitzian map-

pings is given. Applications for special means are also pointed out.

1. INTRODUCTION

The following inequality is well known in the literature as the midpoint inequality:

[ () 0w

where the mapping f : [a,b] — R is supposed to be twice differentiable on the
interval (a,b) and having the second derivative bounded on (a,b), that is
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Now, if we assume that Iy, :a =29 < 1 < ... < £,,_1 < T, = b is a partition of
the interval [a,b] and f is as above, then we have the midpoint quadrature formula:

/ F@)dz = Aw(F, Tn) + Bas(f, Tn) (1.2)

where Aps(f, Ip,) is the midpoint rule

n—1
Ap(f. 1) =Y f (%) hi (1.3)
1=0

and the remainder term Ry (f, I) satisfies the estimation
5
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n—1
Bar1. )| < g7 147 o 308 (1.4)

where h; ;= x;41 —x; for i =0,...,n — 1.
When we have an equidistant partitioning of [a, b] given by

b—a

I, :z;:=a+ i, 1=0,...,n, (1.5)
then we have the formula
b
/ f(x)dz = Aprn(f) + Ry (f) (1.6)
where
n—1 .
b—a b—a 21+1
e M (e (1.7
and the remainder satisfies the estimation
1 (b B a)3 "
n < - . 7 oo - 1.
RaralF)] < 52 3 117 (1.8)

For other midpoint type’s inequalities see the recent book [1].

2. MIDPOINT INEQUALITY FOR LIPSCHITZIAN MAPPINGS

The following midpoint inequality for lipschitzian mappings holds:

THEOREM 2.1. Let f : [a,b] - R be an L—lipschitzian mapping on |a,b).
Then we have the inequality

/abf(x)dx—f<a;b> (b )

The constant % 15 the best possible one.
Proof. Using the integration by parts formula for Riemann-Stieltjes integral we
have

< ~L(b—a)’. (2.1)
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Lmeﬂuﬂ=f<“;b>@—ay—Lﬂﬂmm: (2.2)

where
a:—aifaze[a,a+b)
p(z) :=
b
x—bﬁxe[&;ﬂﬂ.

Now, assume that A, : a = x(()n) < x&”) <. < x;n_)l <z =bisa sequence of

divisions with v(A,) — 0 as n — oo, where v(4,,) := maxie{o,m,n_l}(:cgi)l — xE”))



7

and €M™ € [z, 51)1] If p: [a,b] — R is Riemann integrable on [a,b] and v : [a, ]

— R is L-lipschitzian on [a, b], then

b n—1
[ plardota)| =1 fim 3" pe el — o))

n—1
< gim 3 pE™) @ - o) |-

v(An)=0725 5'31('1)1 x
() () ) ’
V&?wilpﬁ @ =™ = I [ lpta)ide (2.3)

Applying the inequality (2.3) for p(z) as above and v(z) = f(x),z € [a,b], we

get
b
| plari(o)

and then by (2.4), via the identity (2.2), we deduce the desired inequality (2.1).
Now, assume that the inequality (2.1) holds with a constant C' > 0, i.e.,

xMx—f(a;b>@—a)

Consider the mapping f : [a,b] = R, f(z) = |z — %£2|. Then

b )2
<1 [ Iptaiar = 182 (2.4)

< CL(b— a). (2.5)

7(@)— 7| = o~ 2~y - 2

for all z, y € [a, b], which shows that f is L—lipschitzian with the constant L = 1.
For this mapping we have
b b—a)?
)w—a):( 4”

LZ@WM—f(“*

Lb—a)®=(b—a)?

I<lz—y

and

whence by (2.5) we get
(b—a)’
4

This implies that C' > § and the sharpness of (2.1) is proved.
The following corollary holds:

< C(b—a)?

COROLLARY 2.2. Let f: [a,b] — R be a differentiable mapping on (a,b)

whose derivative is bounded on (a,b). Then we have the inequality:

e =1 () 0-0) < LIS e 0= aP (20)




Remark 2.3. It is well known that if f : [a,b] — R is a convex mapping on
[a,b] , then Hermite-Hadamard’s inequality holds

P40 = it [ e < SO0 20

Now, if we assume that f: I C R — R is convex on [ and a,b € Int(I), a < b,
then f) is monotonous nondecreasing on [a,b]. By Theorem 2.1 we get

o< [ (5 < 3o - o (2.9

2

which gives a counterpart for the first membership of Hadamard’s inequality.
The following corollary for midpoint composite formula holds:

COROLLARY 2.4. Let f : [a,b] = R be an L—lipschitzian mapping on [a, b]
and Ip, a partition of [a,b]. Then we have the midpoint quadrature formula (1.2)
and the remainder term Ry (f, In) satisfies the estimation:

n—1

Rar(f, 1) < 7132 29)
1=0

Moreover, the constant i 15 the best possible one.
Proof. Applying inequality (2.1) on the interval [z;,z;41] (1 = 0,...,n — 1) we

have
st i T T 1
|t (P | <
2 2 4
Using the generalized triangle inequality we get
n—1 Tit1 Zi +l'i+1
|Rae(f, In)| = Z f(x)dz — f 9 h;
i=0 T
<T§ /mi+1f(a:)da:—f Tit i) g o anth
_i:0 T 2 1_41':01

and the corollary is proved.
The case of equidistant partitioning is embodied in the following corollary:

COROLLARY 2.5. Let I, be an equidistant partitioning of [a,b] and f be
as in Theorem 2.1. Then we have the formula (1.6) and the remainder satisfies the
estimation:

S|

Rarn(f)] < i Lo ae (2.10)

Remark 2.6. If we want to approximate the integral f: f(x)dzx by midpoint
formula Aps,,(f) with an accuracy less that € > 0, we need at least n. € N points
for the division I,,, where



ne 1= E : é(b—a)z] +1

and [r] denotes the integer part of r € R.

Comments 2.7. If the mapping f : [a,b] — R is neither twice differentiable
nor the second derivative is bounded on (a, b), then we can not apply the classical
estimation in midpoint formula using the second derivative. But if we assume that
f is lipschitzian, then we can use instead the formula (2.9).

We give here a class of mappings which are lipschitzian but having the second
derivative unbounded on the given interval.

Let fpq : [a,b] = R, fpq(x) = (7 — a?)? where p € (1,2) and ¢ > 2. Then
obviously

f}:),q(l') = pqxq_l(l'q — aq)p—17 T € (a, b)

and

29 %[(pg — 1)a? — (g — 1)a’]
(;,;q — aq)Z—p

fog(®) = P4 , T € (a,b).
It is clear that f is lipschitzian with the constant
L=l f3.q llo= pab?™" (b7 — a®)P7! < o0

but limg a4 f, ,(7) = +o0.

3. APPLICATIONS FOR SPECIAL MEANS

Let us recall the following means:

1. Arithmetic mean

a+b
2

A= A(a,b) := , a,b>0;

2. Geometric mean

G = G(a,b) := Vab, a,b>0;

3. Harmonic mean

4. Logarithmic mean

5. Identric mean
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6. p-Logarithmic mean

b pp+1l _ gpt+l 15w ; ;
L,=1L = -1 .
p= L) = | pe L0k b2 0, a2

It is well known that L, is monotonous nondecreasing over p € R with L_; := L
and Lo := I. In particular, we have the following inequalities

H<G<L<I<A.

(3.1)

In what follows, by the use of Theorem 2.1, we point out some new inequalities for
the above means.

1. Let f:]a,b) > R(0<a<b), f(x)=2aP, pe R\{—1,0}. Then

1 b b
b_allﬂ@mx;%mm%f<“;

) = 40

pbP~l if p>1
HﬂMZ%@MZ{

|p|ap—1 if pE (—OO, 1)\{_17 0}
Using the inequality (2.6) we get

L(0,5) — AP(a, )] < {0,(a, )b~ 0). (3.2)

2. Tet f:[a,b]— R (0<a<b), f(z) = —. Then
b b
[ =, (5] = a7,

T
a?’
Using the inequality (2.6) we get

b—a
<A-L< LA. .
0= ~ 4a? (3:3)
3. Let f:[a,b] > R (0 <a<b), f(x) =Inz. Then
1 b
b_a/a f(x)dz = InI(a,b), f(“;b

a
Using the inequality (2.6) we get

< exp <b4_a“> . (3.4)

) A0 b), [|f e = -

1<

~
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