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ABSTRACT. An elementary proof is given for the reality of all zeros of S-polynomials
associated with complete graphs.

INTRODUCTION

Let G be a graph on n vertices. The matching polynomial of G is defined as [2]:
a(G,z) =Y (-1 m(G, k) a" %
k>0
where m(G, k) is the number of k-matchings of G, i. e., the number of ways in which
k mutually non-touching edges are selected in G ; m(G,0) = 1 and m(G, 1) = number
of edges of G .

Let C' be a circuit contained in the graph G. The subgraph obtained by deleting
the vertices of C' from G is denoted by G'\ C'. The number of vertices of C' will be
denoted by m. Then G\ C possesses n —m vertices.

If C'is a Hamiltonian circuit, i. e., if m = n then, by definition, (G \ C,z) = 1.

Two graphic polynomials, both denoted by (G, C, x) and related to the matching

polynomial, are defined as

B(G,C z) =a(G,z) —2a(G\ C,x) (1)



and

B(G,Cx) =a(G,z) +2a(G\ C,x) (2)

For more details on them see [12, 14]. Here we are interested in the following:

Conjecture [4, 5, 7|. For any circuit C' contained in any graph G, all the zeros
of B(G,C,x), Eqs. (1) and (2), are real.

Quite a few results have been obtained, corroborating the validity of this conjec-
ture [7, 10, 11, 13, 15], although a complete proof of it is not (yet) known. It was
recently demonstrated [12] that the conjecture is true in the case of complete graphs.
The proof offered in [12] relies on an earlier published theorem by Turdn (from 1958).

We now communicate an elementary self-contained proof of the same result.

THE MAIN RESULT

Theorem 1. Let K, be the complete graph on n vertices and C any of ils
circuits. Then all zeros of B(K,,C,z), Eqs. (1), (2), are real.

Instead of Theorem 1 we demonstrate the validity of a stronger result, namely
Theorem 2. In order to state it we need some preparations.

If C is a circuit on m vertices, then K, \ C = K,_,, , implying that
B, C. 1) = (K, ) £ 20Ky ) (3)
Now, a well-known result from the theory of matching polynomial is [3, 6, 8, 9]:
a(K,,x) = He,(z) (4)

where He,, is one of the standard forms of the Hermite polynomial [1].

Bearing in mind Eqgs. (3) and (4) we define a polynomial
B(n,m,t,x) = He,(x) +t Hey () (5)

where 1 < m < n and t is a real number. Clearly, forn >3, |t =2and 3<m <n,
Eq. (5) is the S-polynomial of the complete graph on n vertices, pertaining to a

circuit with m vertices.



Theorem 2. For all (positive integer) values of n, for all m =1,2,...,n and

for [t| < n —1 all zeros of the polynomial 5(n,m,t, x), Eq. (5), are real.

Obviously, Theorem 1 is a special case of Theorem 2. Therefore in what follows
we proceed towards proving Theorem 2. It should be noted that the right—hand side

of Eq. (5) is a sort of linear combination of Hermite polynomials.

PREPARATIONS

Some well known properties [1] of the Hermite polynomials are summarized in

Lemma 1.

Lemma 1.
(i)
Hen(x) =x He, 1(x) — (n— 1) Hep_o(x)

(i1) all zeros of He,(x) are real and distinct.

(iii) )
%Hen(x) =nHe, |(x)

and hence, He,(x) has a local extreme x; if and only if He, 1(x;) = 0. So, the

extremes of He,(x) are distinct.

Throughout this paper zq, s, ..., z,_; denote the distinct zeros of He, ().

From Eq. (4) and Theorem 7 of [3], we have
Lemma 2. |z;| <2+v/n—3holds foralli=1,2,...,n—1.

Lemma 3. If for all i = 1,2,...,n — 1, the sign of B(n,m,t,x;) = He,(z;) +

t He, m(x;) is the same as that of Hey(x;), then all zeros of B(n,m,t,z) are real.

Proof. From Lemma 1 (iii), we have that z;,i =1,2,...,n — 1 are the extremes
of He,(x). Since He,(x) does not have multiple zeros (Lemma 1 (ii)), we know that
He,(z;) #0foralli =1,2,...,n—1, and that He,(x;) and He,(x;+1) have different
signs, 1 =1,2,...,n— 2.

From the definition of 5(n, m,t,z) and the condition of Lemma 3, we deduce that
f(n,m,t,x) has at least as many real zeros as He,(x), that is at least n real zeros.

On the other hand the degree of f(n,m,t,z)isn. O



Lemma 4. If |He,(z;)| > (n — 1) |Hepm(x;)| for all i =1,2,...,n— 1, then

all the zeros of B(n,m,t,z) are real for |t| <n—1.

Proof. Since |He,(z;)| > (n — 1) |Hey ()| > |t||Hep m(z;)| for all i =
1,2,...,n—1, the sign of B(n,m,t,z;) = He,(x;) +t He, _,(x;) depends only on the

sign of He,(z;). Lemma 4 follows from Lemma 3. O

PROOF OF THEOREM 2

Bearing in mind that He, (z;) = 0, from Lemma 4 we immediately get

Lemma 5. All zeros of the polynomial 3(n,1,t,x) are real for n > 1 and any

real value of the parameter t.

Lemma 5 implies the validity of Theorem 2 for m = 1. What remains is to consider
the case m > 2. Therefore, in what follows it will be assumed that 2 <m <n.
Define the auxiliary quantities a,, ,, as
[Hepnm(wi)] ‘ . }
Gpm =Maxy ——————— | ¢t =1,2,---,n—1 6
o = e o

Because of Lemma 4, if
1

n—1

(7)

then all the zeros of f(n,m,t,x) are real for |t| < n — 1. Therefore, in order to

Apm <

complete the proof of Theorem 2 we only need to verify the inequality (7).
From Lemma 1 (i),

xHey () — Hep T
Heoon(x) = 118 = Henmiald) )

which, combined with Lemma 2 yields

1
Opo =
2 n—1
2vVn —3ans 2v/n — 3
Upsy < =~ = (9)
’ n—2 (n—1)(n—2)
(pga < (2 vn—3a,3+ an,g)
n—3

| , 1 |
= ﬁ[@”‘_?’) (n—l)(n—2)+n—1]



(2v/n — 3)?
(n—1)(n—2)(n—3)

Lemma 6. Let b, ,, be defined as

bom = [(1+V2)(Vn = 3)}’H % (11)
Then
U < Dpm, (12)

holds for n > 6 and m > 3.

Proof proceeds by induction on m. For m = 3, relation (12) follows from (9).
For m =4, since n > 6, relation (12) follows from (10).

Suppose inequality (12) holds for m —1 and m —2. Then for any m > 5, by using
Eq. (8), Lemma 2 and the induction hypothesis we get

pm < n—;m—i—l (2 \/Han,m,l + an,m,g)
1 [(1+V2)(Vn=3)"* (n —m +1)!
= n—m+1l2vn_3 (n— 1), *
[(1+V2)(vVn—=3)]™*(n—m+ 2)!]]
(n—1)!
B (n—m)!(1+\/§)m_2(\/mw—2[ 2 N n—m+2
N (n—1)! 1+v2  (1+V2)2(Vn—3)?
O V2 (1 +V2)2(Vn = 3)2
Since m > 5,
2 n—m+2 2 1

1+\/§+(1+\/§)2(\/n—3)2 = 1+\/§+(1+\/§)2:1

and we arrive at our inequality (12). O

Lemma 7.

(i) If m < (n+1)— (14++v2)y/n—3, then by, is monotonically decreasing on m.

(i) If m > (n+1) — (1++v2)\/n — 3, then by, is monotonically increasing on m .

Proof. Consider the ratio by m/bpm—1. O



As a consequence of Lemma 7, we have

bn,m S max{bn,Zabn,n}

(13)
by < 1/(n—1) forall3<m<(n+1)— (1++v2)vn—3
Recall that as a special case of Eq. (11),
1
b2 = 14
2= (14)

In view of relations (13) and (14), in order to show that b,,, < 1/(n — 1) for
m > (n+1) — (1++/2)y/n — 3, it is sufficient to prove b, , < 1/(n — 1). Denote for
brevity, ¢, = (n — 1) by, ,, . We thus need to show that ¢, < 1.

Lemma 8. For n > 17, ¢, is monotonically decreasing on n .

Proof. Consider

e _ (L4 V2 (2! (n—2)

n (n—1)! (L v2) 2 (/i =3y
_ a+v®Mn—3( n—2>"_1

n—1 n—3

142 n—2<1 1 ynmm
 Vn=-3 n-1 3
1+\/§€1/2

vn—3

n —

Because

(1+V2)e'? ~3.993 < 4

we see that ¢, < ¢, whenever n —3 > 42 i. e., n > 19.
The fact that ¢, monotonically decreases already from n = 17 is checked by direct

calculation: cig = 164.4... , ¢17 = 166.3... , c18 = 163.1... , c19 = 155.2... . O
Lemma 9. If n > 39, then ¢, <1.
Because c39 = 0.65..., Lemma 9 follows from Lemma 8. O

Note that the bound 39 in Lemma 9 cannot be lowered, since c3g = 1.006....

Lemma 9 is tantamount to

Lemma 10. If n > 39, then b,,, <1/(n—1) forany m=3,...,n. O



Lemma 11.

(i) If n > 39 and |t| <n —1, then ann the zeros of B(n,m,t,z) are real.

(@) If 3<m<(n+1)—1+vV2)vn—3and |t| < n—1, then all the zeros of

B(n,m,t,x) are real.

Proof. For n < 5, one can easily check that all the zeros of 3(n,m,t, z) are real.
Therefore in the following we assume that n > 6.

From Lemmas 10 and 6 as well as Eq. (13) we know, under the condition of
Lemma 11, that a,,, < 1/(n —1). Bearing in mind Eq. (6), we conclude that
|Hep(x;)| > (n— 1) |Hep—p(z;)| for all i = 1,2,...,n — 1. Lemma 11 follows then

from Lemma 4. O

By means of Lemmas 5 and 11, Theorem 2 has been verified for all n and m,
except for 6 <n <38 and (n+1) — (1 +v2)vn—3 <m < n, i. e., except for a
finite number of cases. The checking that also in these remaining few cases all the
zeros of all the S-polynomials are real for [t| < n—1 has been done by direct (tedious,
yet elementary) calculations. Their details are omitted.

By this, the proof of Theorem 2 has been completed.
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