
5

Kragujevac J. Math. 25 (2003) 5–18.

PARALLEL METHODS FOR SOLVING PARTIAL

DIFFERENTIAL EQUATIONS

Ioana Chiorean

Babeş-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania

(Received May 28, 2003)

Abstract. The aim of this paper is to study some iterative methods for solving Partial
Differential Equation, like Jacobi, Gauss-Seidel, SOR and multigrid, making a comparison
among them from their computational complexity point of view.

1. INTRODUCTION

Various problems arising from Physics, Fluid Dynamics, Chemistry, Biology, etc.

can be modeled mathematically by means of partial differential equations. It is known

that, sometimes, the exact solution (or solutions) is difficult to be determined, so

one has to compute an approximation of it, generated by means of the approximate

problem attached to the continuous one.

In order to solve the approximate problem, obtained by discretizing the initial,

continuous problem, several numerical methods can be used: direct (e.g. Gaussian

elimination, factorization techniques, etc.) or iterative (e.g. Jacobi, Gauss-Seidel,

SOR, multigrid, etc.).

6

Sometimes the direct solvers are preferred, but if the problem is too large, the

iterative ones are more appropriate. It seems to be more attractive, too, from the

computation point of view, if more than one processor are used, it means from the

parallel calculus point of view (see [6], [7]).

The aim of this paper is to make a review of some parallel abordations of the Ja-

cobi, Gauss-Seidel, SOR and multigrid methods, emphasizing the last one and trying

to reduce its computational complexity by using a different type of communication

among processors. In order to present these ideas, the Poisson’s equation will be used

as the model problem.

2. REVIEW OF THE DISCRETE POISSON’S EQUATION

This equation may arise in heat flow, electrostatics, gravity, etc. and, in 2-

dimensions, is:
∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= f(x, y) in Ω (1)

with Ω, let’s say, the unit square 0 < x, y < 1, and with some boundary conditions,

let’s consider the simplest case

u(x, y) = 0 on ∂Ω (2)

This is the continuous problem we have to solve. We discretize this equation by

means, e.g., of finite differences (see [3]). We use an (n + 1) × (n + 1) grid on Ω (it

means on the unit square), where h =
1

n + 1
is the grid spacing. Let’s denote uij the

approximate solution at x = ih and y = ih. This is shown in fig.1, for n = 7.

Denoting bij = −f(ih, jh) · h2, the approximate problem becomes:

4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1 = bij (3)

for all 1 ≤ i, j ≤ n.

In the matrix form, (3) is a linear system of N = n2 equations with N unknowns,

let’s write it

A · u = b. (4)

7

������������
	�����������
�
	
�

�
�
�
�

��� � �

�

�
���

�� �

�

��

!�" #%$ � $'&)(%*,+�" - . / * 0 " 1 * +2+�3 4657" 8 9�:)" 0 (<; � �

�

�����

�

�

�

�	�
� ��� �

���� �

�����

��� ��� ��� �

� ��� � � ��� �

��� ��� � � �!� "$# % & � ' # (*)+& (�# &,) -	.$"�/0"$) 12"$32) "4% � 5 �+& � (

�

8

Using the linearized order of unknowns on a 2D grid, as in fig.2, the system will

be:

4 −1 −1

−1 4 −1 −1

−1 4 −1 −1

−1 4 −1

−1 4 −1 −1

−1 −1 4 −1 −1

−1 −1 4 −1 −1

−1 −1 4 −1

−1 4 −1 −1

−1 −1 4 −1 −1

−1 −1 4 −1 −1

−1 −1 4 −1

−1 4 −1

−1 −1 4 −1

−1 −1 4 −1

−1 −1 4

∗

u11

u21

u31

u41

u12

u22

u32

u42

u13

u23

u33

u43

u14

u24

u34

u44

=

b11

b21

b31

b41

b12

b22

b32

b42

b13

b23

b33

b43

b14

b24

b34

b44

3. CLASSICAL RELAXATION SCHEMES

We include here Jacobi, Gauss-Seidel and SOR methods.

Denoting by k and k + 1 two successive iterations, these methods derive from (3)

in the following way:

u
(k+1)
ij = (u

(k)
i−1,j + u

(k)
i,j−1 + u

(k)
i+1,j + u

(k)
i,j+1 + bij)/4 (5)

u
(k+1)
ij = (u

(k+1)
i−1,j + u

(k+1)
i,j−1 + u

(k)
i+1,j + u

(k)
i,j+1 + bij)/4 (6)

u
(k+1)
ij = u

(k)
ij + ω(u

(k+1)
i−1,j + u

(k+1)
i,j−1 + u

(k)
i+1,j + u

(k)
i,j+1 + bij − 4u

(k)
ij)/4 (7)

(with 1 < ω < 2 to have over-relaxation).

In [4], parallel alternatives for these methods are given, when a lattice connectivity

among processors is used. A comparison among their computational complexities is

made, which can be sumarized in the following table:

p = number of processors

f = time per flop

α = startup for a message

9

β = time per word in a message

Complexity (Jacobi) = number of steps ∗ cost per step =

= O(N) ∗ ((N/p)f + α + (n/p)β) =

= O(N2/p)f + O(N)α + O(N
3
2 /p)β

Complexity (SOR) = number of steps ∗ cost per step =

= O(
√

N) + ((N/p)f + α + (n/p)β) =

= O(N
3
2 /p)f + O(

√
N)α + O(N/p)β

Remark. The Gauss-Seidel method converges twice as fast as Jacobi, but requires

twice as many parallel steps, using the ”checkerboard” ordering of nodes (see [4], [2],

[3]), so about the same run time, in practice. This is the reason why it does not

appear in the table.

In [3] we show that changing the connectivity among processors, and using a ring

communication, the cost per step for SOR method can be made lower, and then the

whole complexity of the SOR parallel method.

4. THE MULTIGRID METHODS

It is known (see e.g. [1], [5]) that multigrid is a divide-and-conquer algorithm for

solving a discrete problems. It is widely used on partial differential equations, as well.

It is divide-and-conquer in two related senses. First, it obtains an initial solution for

an (n× n) grid using an
(

n

2
× n

2

)
grid as an approximation, taking every other grid

point from the (n × n) grid. The coarser
(

n

2
× n

2

)
grid is in turn approximated by

an
(

n

4
× n

4

)
grid, and so on recursively.

The second way multigrid uses divide-and-conquer is in the frequency domain.

This requires us to think of the error as a sum of sine-curves of different frequencies.

10

Then the work we do on a particular grid will eliminate the error in half of the

frequency components not eliminated on other grids.

Without loss of generality, one consider a (2m − 1) × (2m − 1) grid of unknowns

and adding the nodes at the boundary, which have the given value 0, one get a

(2m +1)× (2m +1) grid on which the algorithm will operate. Let’s denote n = 2m +1.

Also, let P (i) denote the problem of solving Poisson’s equation on a (2i + 1)× (2i +

1) grid, with (2i − 1) × (2i − 1) unknowns. The problem is specified by the grid

size i, the coefficient matrix Ai and the right hand side, bi. A sequence of related

problems P (m), P (m−1), . . . , P (1) on coarser and coarser grids are generated, where

the solution to P (i− 1) is a good approximation to the solution of P (i). Some grids

for n = 9 are shown in fig.3.

If we denote bi the right hand side of the linear system P (i) and xi an approximate

solution of P (i) (thus xi and bi are (2i − 1) × (2i − 1) arrays of values at each grid

point), the basic Multigrid V-cycle is (MGV):

function MGV (bi, xi) {return an improved solution} xi to P (i)

if i = 1 {only one unknown}

compute the exact solution x1 on P (1)

return (b1, x1)

else

xi = Si(bi, xi) {improve the solution}

(bi, di) = Ii−1(MGV (Ri(bi, xi))) {solve recursively}

xi = xi − di {correct fine grid solution}

xi = Si(bi, xi) {improve solution some more}

return (bi, xi)

endif

11

���������

���������

���������

���������

���������

� � �

� � �

� � �

��� �
	 ��������
� � ���
���� � ��� �
��� ���
� � � � ��!"�"#��"� $��"�
�%�
� ��� ��& '
(*) &) � � '
�)+�"' � �
� �%�,) -,��. � '
� �) ���
� � �

��� � 	 �/���/��
� � ���
���*�
� ��� �
��� ���
� � ���
�%!,�"#��"� $0�"�
�%�
� ��� ��& '
(*) &) � � ' �)+�"' � �
� �%�,) -,��. � '
� �) ���
� � �

�1� � 	 ���� ��� � � ��� �%�*�
� ��� �
� � � � � � ��� �%!"�,#��"� $��,�

2%� �,3 ��342%� �")+' �"��. �
' � �)+� � � �,�0� �
�05 67�

�

Remark 1. Si denotes the smoothing operator (see e.g. [1]), which finally is one

or more relaxation steps; Ii−1 is the prolongation operator which takes an approximate

solution xi−1 for P (i−1) and converts it to an approximation xi for the problem P (i)

12

on the next finer grid; Ri is the restriction operator, which maps the approximate

solution for P (i) to the next coarser grid; di is the defect, it means how much the

solution xi fails in verifying the system.

Remark 2. The algorithm is called V-cycle because if we draw it schematically

in space and time (with grid number i), with a point for each recursive call to MGV,

it lookd like fig.4, starting with a call to MGV (P (5), x5) in the upper left corner.

This calls MGV on grid 4, then 3, and so down to the coarsest grid 1, and then back

up to grid 5, again.

�

�

�

� � ���

�

	

�

�

 � ��� � ������� � � ��� � ����� ���� � �"!�# � � � � �%$

�

If we perform the algorithm on a serial computer (so with one processor), the

complexity of MGV can be determined, in the terms of big-Oh, in the following

way: we observe that the work at each point in the algorithm is proportional to the

number of unknowns, since the value at each grid point is just averaged with its

nearest neighbors. Thus, each point at grid level i on the ”V” in the V-cycle will cost

13

(2i − 1)2, which is of order O(4i) operations. If the finest grid is at level m, the total

serial work will be given by the geometric sum

m∑

i=1

(2i − 1)2, which is of order O(4m)

so the total serial work is proportional to the number of unknowns. In general, is of

order O(N), with N = n2.

Remark. In [4], the Full Multigrid algorithm which uses Multigrid V-cycle as a

building block is also studied. We do not insist here on it, because it is shown that it

has the same serial complexity like the Multigrid V-cycle.

5. THE COMPLEXITY OF PARALLEL MULTIGRID METHOD

We know that multigrid requires each grid point to be updated depending on as

many as 8 neighbors (those to the N, E, W, S, NW, SW, SE and NE). [4] studies

the case in which a lattice of processors is used in order to execute the multigrid

algorithm. So, having a n = (2m + 1)× (2m + 1) grid of data, one suppose that this

is laid out on an s× s grid of processors (so p = s2 processors), with each processor

owning an
(

n− 1

s
× n− 1

s

)
subgrid. This situation is illustrated in the fig.5, taking

into account a 33× 33 mesh, with 4× 4 processor grid.

The grid points in the top processor row have been labeled by the grid number

i of the problem P (i) in which they participate. There is exactly one point labeled

2 per processor. The only grid point in P (1) with a nonboundry value is owned by

the processor above the coloured one. In the lower half of the mesh, grid points

labeled m need to be communicated to the coloured processor in problem P (m) of

multigrid. The coloured processor owns grid points inside the coloured box, and will

communicate with his neighbours in the following way: to update its own grid points

for P (5), it requires 8 grid point values from its N, D, E and W neighbors, as well

as single point values from its NW, SW, SE and NE neighbors. Similarly, updating

the values for P (4), it requires 4 grid point values from the N, S, E and W neighbors,

and one each from the NW, SW, SE and NE neighbors. This pattern continues until

14

each processor has only one grid point. After this, only some processors participate

in the computation, requiring one value each from 8 other processors.

��� � � ������������������������

�����	�
�����	�
�����	�
�����	�

�

�
 �

��������

�
�
�
�

���������� ����

�

�

�

��

�

�
 � ��
� ��

 � ��
� ��
�
 � ��� � ���
 � ��� � �����
 � � �
��

��� ��� ��������� � � � � � �! �"$#�#&%�# #�')(* +-,�� � +-.�%$.)/�� �0 (* * ��� � � �

1

Making a big-Oh analysis of the computation costs, for simplicity, let’s consider

p = 4k = 22k, so each processor owns a (2m−k × 2m−k) subgrid. Consider a V-cycle

starting at level m. Denoting with f – the time per flop, α – the time for a message

startup and β – the time per word to send a message, the following study of complexity

can be made: (see [4]).

At the levels k to m

• Time at level i is:

O(4i−k) ∗ f+ (number of flops, proportional to the number of grid, points per

processor)

+O(1) ∗ α+ (send a constant number of messages to neighbors)

+O(2i−k) ∗ β (number of word sent)

15

Summing all these terms for i = k to m, yields

• Time at levels k to m is:

O(4m−k) ∗ f+

+O(m− k) ∗ α+

+O(2m−k) ∗ β =

= O(n2/p) ∗ f+

+O(log(n/p)) ∗ α+

+O(n/
√

p) ∗ β

At level k − 1 to 1

Because in levels k−1 through 1, fewer than all processors will own an active grid

point, some processors will remain idle, and then the time complexity differs:

• Time at level i is:

O(1)∗f+ (number of flops proportional to the number of grid points per processor)

+O(1) ∗ α+ (send a constant messages to neighbors)

+O ∗ 1) ∗ β (number of words sent)

Summing all this for i = 1 to k − 1, yields

• Time at level 1 to k − 1 is:

O(k − 1) ∗ f+

O(k − 1) ∗ α+

O(k − 1) ∗ β =

= O(log(p)) ∗ f+

+O(log(p)) ∗ α+

+O(log(p)) ∗ β

So, the total time for a V-cycle starting at the first level is therefore

Time:

O(n2/p + log(p)) ∗ f+

+O(log(n)) ∗ α+

+O(n/
√

p + log(p)) ∗ β

Remark. Denoting N = n2 the number of unknowns, we can state that, for

p ¿ N , the speed up of the serial multigrid is nearly perfect, but if we have enough

16

processors, it means at p = N , it reduces to log2(N).

Some improvements in the speed up of the multigrid V-cycle method can be

made if the cost of communication per step is made lower. It can be done if we use

another connectivity among processor, different from the lattice one, for instance a

tree network.

Let’s consider, firstly, the 1D situation, with n = 9. In fig.6 we see the grids used

in computation:

��� � �

��� � �

��� � �

�	�
�� ���������
�� � ������� � ��� ��� �� �!���" � ��
�!�� ��#�$ � %����� &'� (�&*) � + �

�

We have n = 2m + 1 data, (with m = 3 in our example) on the finest grid. Let’s

memorize the data in p = n processors leaves of a m-ary tree, like that in fig.7.

�
�

� �
� �

�
�

� �
� ��

�
� �

� �

�

� �

	�

�

��
���
���
���
���
���
���
���
��

�� �
�� �
�� �

�� �

��� ��� ���!#"%$'& ($ $*) +-,.,./10%�) 2-& � + 0301$ & 45+ (6%7849� & ";:=<?>

@

Each processor at a level k computes one unknown, using the values of three

processors from the level k + 1, and sending the result to processor k − 1.

17

• Time at level k is:

O(1) ∗ f+ (number of flops proportional to the number of grid points per proces-

sors)

+O(1) ∗ α+ (send a constant number of messages to neighbor)

+O(1) ∗ β (number of word sent)

Summing all these terms for k = 1 to m, yields

• Time at level 1 to m is:

O(m) ∗ f+

+O(m) ∗ α+

+O(m) ∗ β =

= O(m) ∗ (f + α + β) = O(log(n)) ∗ (f + α + β)

Remark. The complexity in this way is also of order O(log(n)). One can show

that the result is similar for the 2D case, using a more complex tree communication.

6. CONCLUSIONS

Comparing Jacobi, Gauss-Seidel, SOR and multigrid methods for solving discrete

Poisson’s equation on a n × n grid of N = n2 unknowns for complexity point of

view, we see that the best method is the multigrid. But there are also other iterative

methods (of Krylov type like FFT) which generate same good times of execution.

References

[1] Briggs, W., A multigrid tutorial, SIAM, 1987.

[2] Chiorean, I., On some 2D Parallel Relaxation Schemes, Proceeding of

ROGER2002, Sibiu, 2002, Burg-Verlag, 2002, 77-85.

[3] Chiorean, I., On the complexity of some relaxation schemes, Proc. of ICAM3,

Borşa, Oct. 2002, Bul. Şt. Univ. Baia-Mare, Ser. B, Vol. XVIII (2002), nr. 2,

171-176.

18

[4] Demmel, J., Lecture Notes on Numerical Linear Algebra, Berkeley Lecture Notes

in Mathematics, UC Berkeley, 1996.

[5] Hackbusch, W., An Introduction to Multigrid Method, Springer Verlag, 1983.

[6] Kumar, V. et al., Introduction to Parallel Computing, The Benjamin Cumming

Pub. Company, 1994.

[7] Modi, J. J., Parallel Algorithms and Matrix Computation, Oxford, 1987.

