
81

Kragujevac J. Math. 25 (2003) 81–90.

AN ALGORITHM FOR CALCULATION OF

(+, ·) - EXPRESSIONS WITH NATURAL NUMBERS

Verica Milutinović

Faculty of Education, Milana Mijalkovića 14, 35000 Jagodina,
Serbia and Montenegro

(Received July 1, 2003)

Abstract. Let t (+, ·, 0, 1, 2, . . .) be any expression containing natural numbers 0, 1,
2, . . . and operation symbols + and · . In this paper we describe an algorithm for calculation
of such expressions values, on which a program written in C language is made.

1. INTRODUCTION

In this paper we will represent value calculation of t (+, ·, 0, 1, 2, . . .), where t is any

expression containing natural numbers 0, 1, 2, . . . and operation symbols + and ·. For

the algorithm, as well as for the program we are intending to expose, it is important

to define expressions in syntax, i.e. as specific words. We translate calculation into

the characters and words manipulation instead of intuitive numbers.

This paper is organized as follows. In the Section 2 we will define the natural-

number expressions (terms) and adopt some substitutions concerning operations of

addition and multiplication, and then we shall define the case in which we find the

expression evaluated. In the third Section, through several examples, the procedure

of such calculation is explained, and the flow of finding term value by algorithm

82

is described in details in Section 4. With this algorithm we could find the value

of unlimited length expressions. In Section 5 the program made on the basics of

established algorithm is explained. Section 6 brings the conclusion.

2. DEFINITIONS OF EXPRESSIONS, FIRST ALGORITHM

We starts with the language:

L = {0,′ , +, ·}
where + and · are operation symbols of length 2, ′ operation symbol of length 1

and 0 is a constant symbol.

Terms (expressions) are defined by the following inductive definition:

Definition 2.1.

(i) 0 is term

(ii) If P, Q are terms, than the words P ′, (P + Q), (P ·Q) are terms as well.

Examples of expressions: 0, 0′′, (0 + 0′′), (0 · 0′′′), . . .
For 0, 0′, 0′′, 0′′′, . . . (that could be called numerals) we shall use the following

abbreviations 1, 2, 3, . . . respectively, where 0′ stands for 1, 0′′ stands for 2,

So, we can write:

2 −→ 0′′ −→ 1′, 3 −→ 0′′′ −→ 1′′ −→ 2′, (∗)

Substitutions (Peano’s) that we are adopting are:

(P1) (t + 0) −→ t

(P2) (t + u′) −→ (t + u)′

(P3) (t · 0) −→ 0

(P4) (t · u′) −→ ((t · u) + t)

We know that value calculation of an expression (i.e. ((2 + 3) · 6)) depends on

adopted agreement (or definition). To evaluate some expression A means finding

another equal expression which is, by definition, evaluated. Let us define the case in

which we find the term evaluated.

83

Definition 2.2. As evaluated we find the terms that do not contain brackets,

addition and multiplication symbols (i.e. 0, 0′′′, 7, 9′′ . . .) which are basic (resumed)

terms .

Let us adopt the rule that value of term we get with applying substitutions (∗) as

long as there is ′-s in the term.

Under the calculation of term value we find the flow (algorithm) whose starting

point is term in which in every step we apply a substitution of the form:

Expression → value(Expression) (∗∗)

where Expression is some sub-term, and value(Expression) is its value. Value can

be reached by application (∗) or some of substitutions (P1) to (P4). We are doing

so as long as we reach the expression which is by definition evaluated. That is how

in a new way, by words (expressions, terms) instead of numbers we could reach the

result. Algorithm is described in details in Section 4. The main role in it plays well

known algorithm of the first right bracket(see [1]).

In the given term we find ”pieces” i.e. sub-terms of the form a′, (a + b) or (a · b),
and then substitute them with appropriate value. Thus step by step we come to the

value of the expression.

The question is how to find such sub-terms? In the given expression, realized as

word, we ”walk” from left to right as long as we reach the first character of right

bracket. Then, from that spot we are retracing left to first character of left bracket

and those two bracket are enclosing sub-term of desired form. This algorithm is

so called algorithm of the first right bracket which belongs to the most important

algorithms in the field of computation.

In the next section through several examples the procedure of finding value of

different expressions is proposed in details. We will use natural numbers arithmetic

and algorithm of the first right bracket.

3. EXAMPLES

Let us now see in practice through several examples how our term calculation

84

looks like. By definition as evaluated we find the terms that do not contain brackets,

addition and multiplication characters (i.e. 0, 0′′′, 7, 9′′ . . .).

Example 3.1. Find the value of term (2 + 2).

Solution:

The flow (happening) of calculation is running in the next way:

(2 + 2)
(∗)−→ (2 + 0′′)

(P2)−→ (2 + 0′)′

(P2)−→ (2 + 0)′′

(P1)−→ 2′′

(∗)−→ 3′

(∗)−→ 4

Example 3.2. Find the value of expression:

10 (5 + 3)

20 (5 · 3)

30 (6 + (2 · (3 + 1)))

Solution:

10 In this example we are talking about addition of terms, which means that we

will use substitutions of the form (∗), (P1) and (P2) in our calculation:

(5 + 3)
(∗)−→ (5 + 2′)

(P2)−→ (5 + 2)′
(∗)−→ (5 + 1′)′

(P2)−→ (5 + 1)′′

(∗)−→ (5 + 0′)′′
(P2)−→ (5 + 0)′′′

(P1)−→ 5′′′
(∗)−→ 8

20 Now we are talking about multiplication of terms so we will use substitutions of

the form (∗), (P3) and (P4) in calculation, but also (P1) and (P2) because multipli-

cation is reduced to addition. In this example we could see in practice the procedure

of term multiplication.

(5 · 3)
(∗)−→ (5 · 2′) (P4)−→ ((5 · 2) + 5)

(∗)−→ ((5 · 1′) + 5)
(P4)−→ (((5 · 1) + 5) + 5)

(∗)−→ (((5 · 0′) + 5) + 5)
(P4)−→ ((((5 · 0) + 5) + 5) + 5)

(P3)−→ (((0 + 5) + 5) + 5)
(P1)−→ ((5 + 5) + 5)

(∗)−→ ((5 + 4′) + 5)
(P2)−→ ((5 + 4)′ + 5)

(∗)−→ ((5 + 3′)′ + 5)
(P2)−→ ((5 + 3)′′ + 5)

(∗)−→ ((5 + 2′)′′ + 5)
(P2)−→ ((5 + 2)′′′ + 5)

(∗)−→ ((5 + 1′)′′′ + 5)
(P2)−→ ((5 + 1)′′′′ + 5)

(∗)−→ ((5 + 0′)′′′′ + 5)

85

(P2)−→ ((5 + 0)′′′′′ + 5)
(P1)−→ (5′′′′′ + 5)

(P2)−→ (5 + 5′′′′)′
(P2)−→ (5 + 5′′′)′′

(P2)−→ . . .
(P2)−→ (5 + 5)′′′′′

(∗)−→ (5 + 4′)′′′′′
(P2)−→ (5 + 4)′′′′′′

(∗)−→ (5 + 3′)′′′′′′

(P2)−→ (5 + 3)′′′′′′′
(∗)−→ (5 + 2′)′′′′′′′

(P2)−→ (5 + 2)′′′′′′′′
(∗)−→ (5 + 1′)′′′′′′′′

(P2)−→ (5 + 1)′′′′′′′′′
(∗)−→ (5 + 0′)′′′′′′′′′

(P2)−→ (5 + 0)′′′′′′′′′′
(P1)−→ 5′′′′′′′′′′

(∗)−→ 15

Notice. Let us describe term addition and multiplication procedures which we

used by now.

Procedure of addition:

(S): In term A (which equals (x+y) at the moment) we investigate second addend

i.e. the forth character y. If y:

. is a numeral of the form c′ – apply (P2) on A. With new term A = (x+ c)′

while y = c go to (S).

. is not a numeral – transform it into numeral of the form c′ by applying (∗).
Substitute y with c′ in A and go to (S).

. equals 0 – apply (P1) on A. Ending the procedure with new value.

Procedure of multiplication:

(M) In term A (which equals (x · y) at the moment) from left to right we split the

first piece i.e. sub-term t of the form (a · b), (a + b) or a. If term t takes the form of:

. (a + b) – Apply (S) on t. Substitute sub-term t with new value and with

such A go to (M).

. (a · b) – Investigate next literal (b) behind the literal ” · ”. If b:

↪→ is numeral of the form c′ – apply (P4) on t. Substitute sub-term t in

A with new term. ((a · c) + a) and go to (M).

↪→ is not numeral – substitute b in sub-term t of term A with appropriate

numeral. Go to (M)

↪→ equals 0 – apply (P3) on t.

. a – End the procedure with message that a is the value of the term.

. is of some other form – End the procedure with message that word is not

term i.e. isn’t written in appropriate way.

30 Fore-solution. Given term is a ”word” composed of characters (in this example

86

it is: ”(”, ”6”, ” + ”, ”(”, ”2”, . . .). When we are reading character by character of the

term from left to right and reach to the first appearance of character ”)”, then we

return to the first character ”(” and collect all characters in returning (it ought to

be three of them). We check the value of middle character and if it is ”+”, we apply

addition procedure (S), if it is ”·”, we apply multiplication procedure (M), and if it

is some other character, the word is not the term and we could not find its value.

Solution. We are reading character by character of the term (6+(2 · (3+1))) from

left to right. First right bracket is in sub-term (3 + 1), we call the procedure (S) for

addition calculation and substitute sub-term with new value 4.

(6 + (2 · (3 + 1)))

−→ (6 + (2 · 4)) We continue to go right to the next right bracket,

We split sub-term (2 · 4), call the procedure (M) for multiplication

calculation of terms and substitute it with evaluated term 8,

−→ (6 + 8) Again we go right to the next right bracket, and split (6 + 8)

We call the procedure (S) for addition calculation and substitute the

term with its value 14

−→ 14.

As there are no more operation characters, nor brackets we reached to the end i.e.

to the value of starting expression.

Example 3.3. Find the value of term: (((2 + 3) · 5) + (4 · (3 + 1)))

Solution:

Having in mind presented procedure in every step we apply some of the procedures

(S) or (M):

(((2 + 3) · 5) + (4 · (3 + 1)))
(S)−→ ((5 · 5) + (4 · (3 + 1)))

(M)−→ (25 + (4 · (3 + 1)))
(S)−→ (25 + (4 · 4))

(M)−→ (25 + 16)
(S)−→ 41

4. ALGORITHM FOR CALCULATION OF TERM VALUE

Let us describe the general procedure for calculation of term value denoted by t.

In this description we use auxiliary variables Lis and string.

87

Step 1 : We read character by character of the term (i.e. word) t and by the way

we load a new list Lis in this manner:

(A) From left to right we split character of the term t which can be:

10 Type (*). We put it into string, and then put string on the top of the list Lis

and go to (A).

20 Some of characters: ” + ”, ” · ” or ”(”. Than we put this character into string,

and put string on the top of the list Lis, then go to (A).

30 Character ”)”. Go to Step2.

40 Symbol for the end of the input. We reached to the end of term i.e. there isn’t

characters we could read. Then:

• If the list Lis is containing only one member, exactly that member repre-

sents the value of the term and algorithm is ending with that value.

• If Lis is containing more than one member algorithm is ending with the

message that input data are wrong i.e. expression whose value is supposed

to be calculated is not a term.

50 Some other cases. Algorithm is ending with message about wrong input term.

Step 2 : From the list Lis we take first three elements, erase them from the list

Lis and the forth element of the list Lis substitute with new value Rez attained in

this way:

We check the value of the second of three elements we get from the list Lis. If its

value is:

10 ”+”, we call the procedure (S)(addition of terms) and the new value is placed

into variable Rez.

20 ”·”, we call the procedure (M) (multiplication of terms) and the new value is

placed into Rez.

30 not ”+” nor ”·”, then algorithm ends with the message about the wrong input

data.

When we replace the first four elements of the list Lis with the result Rez we go

to Step 1, so we can continue to read the term t as long as we reach its end.

Notice. We could adopt additional substitutions (addition and multiplication ta-

88

bles) and use them in the algorithm instead of using procedures (S) or (M):

(1 + 1) −→ 2 , (2 + 1) −→ 3 . . .

(44 + 21) −→ 65

. . .

(1 · 1) −→ 1 , (2 · 1) −→ 2

. . .

Algorithm of the first right bracket is up to the values of expressions in the form

(a + b) or (a · b), where a and b are natural numbers (numerals).

5. ABOUT THE PROGRAM ITSELF

Let us describe the program which implements given procedure (algorithm). To

allow more efficient usage of memory we use dynamic structures. Input data are

words (terms) whose value we are calculating (i.e. ((4 + 2) · (3 + 7))).

For the purpose of saving characters of the input term we utilize the structure

struct drvo{

char *glava;

struct drvo *levi, *desni;} ;

Since we need to create the list Lis in the program the new structure is utilized

struct lista{

struct drvo *glava;

struct lista *rep;};

which is used for saving characters of the term we are dealing with as a list. In natural

words, we are making ”avenue”. The whole algorithm runs using this structure.

After starting the program, the very first thing to do is to enter the term that

we are evaluating. End of inputting term is denoted with double < Enter >. While

entering term it is immediately being calculated. Because the algorithm of the first

right bracket we are using for term calculation, is up to the values of expressions in

89

the form (a + b) or (a · b), where a and b are natural numbers (numerals) we could

work in the tree language as well, and that is how this program is working.

When program ”reads” the character it makes a small tree out of it which is of

type struct drvo and whose head is containing the value of that character, while left

and right arms are equal to NULL (because of that, we are calling it a small tree).

So we arrange trees into the avenue Lis by putting each new at the beginning of the

list, till we come to the first right bracket. Then calculation is done in a tree algebra

i.e. out of first three ”trees” from Lis we make a new tree whose head contains the

middle tree the left arm contains the first, and the right contains the third tree. The

new tree is located in place of the first following tree in Lis containing, in fact, the

left bracket.

We continue reading the term till the next right bracket when we return once again.

We keep doing it till we reach the end of the term. We could immediately calculate

the values of the sub-term within the left and right bracket either using procedures

(S) and (M) or by using additional substitutions (addition and multiplication tables),

instead of using the trees. However, in such a cases we could not gradually print all

mid-results. In the end list Lis (if we feed the data correctly) is reduced to one big tree

dr, whose value should be calculated. It is done through function izracunaj term.

It helps calculate the value of the term and print mid-results. The function is given

by pseudo-code:

void izracunaj term(struct drvo *dr) {
while (dr is not a small tree){
pom=dr;

while (pom is not a small tree){
while (pom->levi is not a small tree)

pom=pom->levi;

if (pom->desni is a small tree) {
if (pom->glava == ’*’)

pom->glava = proizvod (pom->levi, pom->desni);

pom->levi i pom->desni becomes NULL }

90

if (pom->glava == ’+’)

{ pom->glava =zbir (pom->levi, pom->desni);

pom->levi i pom->desni becomes NULL }
print dr;

}
else pom=pom->desni;

}
}
Functions proizvod and zbir calculate the final result of its input argument values

based on algorithms (M) and (S).

6. THE CONCLUSION

Natural numbers are natural to us, but computer can only operates with preciously

defined syntax not intuitive definitions. Because of that, we adopt syntax definitions

and substitutions for natural numbers using terms and develop algorithm for value

calculation of such terms. The aim is to show the students that mathematics consists

of presently adopted symbols, language and rules that should be studied and learned,

but that it is the discipline still developing, with new ideas appearing and creativity

expressed but not as final outcomes. By using the explained program students could

view the given calculation in a practical way and understand its substance easier.

References

[1] Prešić, S., Milić S., Ognjanović S., Vujić S., Produbnice (matematičke) Arhimedes,

Beograd, (1999), 33–35.

[2] Prešić, S. , Raznice, II, Prosvetni pregled, Beograd, (1998), 9–11.

