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Introduction

In some sense reversing the historical traject, in §1 it will be indi-
cated how all scalar-valued intrinsic curvatures of Riemannian mani-
folds can be determined in terms of the curvatures of associated Eu-
clidean curves. This involves the consideration of arbitrary-dimensional
normal sections of submanifolds in Euclidean spaces and their projec-
tions on appropriate subspaces. In terms of such normal sections of
Euclidean submanifolds and of such projections, in §2 some comments
will be made concerning general inequalities for Euclidean submani-
folds between their scalar curvature and their mean- and normal scalar
curvatures.

1. Extrinsic views on intrinsic curvatures

In accordance with our intuition, the curvature of curves in Euclidean
planes was determined around 1670 by Newton, using the notion of
osculating circles, (cf. [1]). And, in terms of the curvature of Euclidean
planar curves, using Euler’s notion of normal sections of surfaces in M2
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in Euclidean 3-dimensional spaces E3, since 1760, also the curvature
behaviour of such surfaces became well describable. Depending on
the nature of the problems under investigation, as combinations of
the principal curvatures, various geometrical curvature characteristics
of surfaces M2 in E3 were introduced and studied, such as the mean
curvature of Germain, the Gauss curvature, the Casorati curvature (or
“curvedness”) and the shape-index of Koenderink-van Doorn (cf. [2]
[3]).

The theorema which asserts the invariance of the Gauss curvature
under isometric deformations of surfaces M2 in E3 is indeed egregium,
as Gauss labeled it in his general theory of curved surfaces and as its
impact on the development of mathematics has amply shown, (cf. [4]).
Amongst others, it immediately yielded the distinction between the
intrinsic and the extrinsic qualities of such surfaces. And, as Gauss
anticipated, it led to the creation in 1854 of, amongst others, the Rie-
mannian geometry, which, in the words of Chern [5], forms the core of
modern differential geometry. The main characteristics of Riemannian
spaces are their curvatures, (cf. [6]). Essentially, all curvature in-
formation regarding a Riemannian manifold (Mn, g) is contained in its
Riemann-Christoffel curvature tensor R, or, equivalently, in the knowl-
edge of its Riemannian or sectional curvatures. As shown by Riemann,
the sectional curvature K(P ) of (Mn, g) for the plane P spanned by
any two orthonormal tangent vectors X and Y at any of its points
p,K(P ) = R(X, Y ; Y, X), is the intrinsically determinable Gauss cur-
vature KG2

P
(p), i.e. : the Gauss curvature at p of the 2-dimensional

surface G2
P which is formed by the geodesics of (Mn, g) passing through

p and tangent to P .
By the isometric inbedding theorem of Nash, all n-dimensional Rie-

mannian manifolds (Mn, g) can be seen as submanifolds Mn of Eu-
clidean spaces En+m with certain codimensions m, (for basic notions
and results on Riemannian submanifolds, see [7] [8]). Let Mn be a
submanifold of a Euclidean space En+m and let P be any 2-dimensional
section of its tangent space TpM

n at any of its points p. Let (e1, · · · , en,
ξ1, · · · , ξm) be any adapted orthonormal frame around p on Mn in
En+m, whereby e1, · · · , en and ξ1, · · · , ξm are respectively tangent and
normal to Mn and such that, at p, ei∧ej = P , (i, j ∈ {1, · · · , n}; α, β ∈
{1, · · · ,m}). Then, the equation of Gauss for Mn in En+m shows
that the intrinsic Riemannian curvature K(P ) of (Mn, g) is given by
K(P ) = Kij =

∑
α[hα

iih
α
jj − (hα

ij)
2](p), whereby h denotes the second

fundamental form of Mn in En+m. Now, let
∑2

P be the 2-dimensional



141

normal section of the submanifold Mn of En+m corresponding to P ,
i.e. : the intersection of Mn with the affine (2 + m)-dimensional sub-
space of En+m spanned by P and T⊥

p Mn, the normal space of Mn at p.

This normal section
∑2

P , further also denoted by M2
ij, thus is a surface

in E2+m. Its equation of Gauss shows that its Gauss curvature K∑2
P
(p)

at p is given by K∑2
P
(p) =

∑
α[hα

iih
α
jj − (hα

ij)
2](p).

Theorem 1. The sectional curvature K(P ) of any submanifold Mn

of a Euclidean space En+m, for any tangent plane section P at any
of its points p, equals the Gauss curvature at p of the corresponding
2-dimensional normal section

∑2
P of Mn in En+m.

The summants [hα
iih

α
jj − (hα

ij)
2](p) occuring above, (called “partial

curvatures” by Ricci), can readily be seen to equal the Gauss cur-
vatures at p of the surfaces M2

ijα in E3 which are the projections of

the normal sections M2
ij =

∑2
P on the affine 3-dimensional spaces in

E2+m = P ⊕ T⊥
p Mn at p which are spanned by P = ei ∧ ej and the

vectors ξα at p (for each individual α). Now, observe that by Euler’s
formula which expresses all normal curvatures, i.e. the curvatures of
all (1-dimensional) normal sections of a surface M2 in E3, in terms of
its principal curvatures, the Gauss curvature K of any such surface
equals ± the square of the curvature of (in general precisely two such)
normal sections, or still, K equals ±π times the inverse of the area of
their osculating circles. Therefore, by eventually making an appropri-
ate choice of normal frame (ξ1, · · · , ξm) on Mn in En+m, one obtains
the following.

Theorem 2. Any sectional curvature of a submanifold Mn of En+m

is determined by the curvatures of at most two associated Euclidean
planar curves.

Similarly, eventually making use of k-dimensional normal sections of
submanifolds Mn in En+m for appropriate k ∈ {1, · · · , n− 1}, also the
Riemannian scalar curvature and the scalar-valued curvature invariants
introduced since 1993 by B.Y. Chen (as his so-called δ-curvatures and
their very recently introduced refinements for specific classes of semi-
Riemannian manifolds, cf. [8] [9] [10] [11]), can be determined by the
curvatures of associated curves.
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2. Inequalities between intrinsic and extrinsic curvatures

The series of optimal inequalities between scalar-valued intrinsic-
Chen curvatures of a submanifold Mn in En+m and its extrinsic squared
mean curvature H2, and several related studies that originated in this
context, amongst others, can be considered as first systematic steps
in making an effective use and in achieving a better understanding of
the isometric inbedding theorem of Nash, (cf. [8] [9] [10] [11]; simi-
lar inequalities were, of course, also established for submanifolds of the
“nicest” non-Euclidean semi-Riemannian ambient spaces). Concerning
similar inequalities involving in addition extrinsic scalar-valued normal
curvatures, as far as we know, the only general result is the inequality
ρ ≤ H2−ρ⊥, (∗), whereby ρ and ρ⊥ respectively denote the normalised
scalar curvature and the normalised normal scalar curvature of Mn

in En+m (and in the other real space forms), which is proven to be
valid for n = 2 and arbitrary m and for arbitrary n and m = 2, (cf.
[12][13][14][15]; in case n = 2 the normal curvature ρ⊥ is the area of
the curvature ellipse modulo 2π, and (∗)was conjectured in [15] to hold
for all dimensions n and codimension m). In the cases of either 2-
dimensional or 2-codimensional submanifolds, (∗) is an equality if and
only if the second fundamental form h has a very specific expression
(asserting geometrically for n = 2 that the curvature ellipse then actu-
ally is a circle) and many concrete examples are known of submanifolds
realising the equality in (∗).

As an illustration of possible applications of arbitrary dimensional
normal sections of submanifolds and of their projections mentioned
above, their use will be indicated now in obtaining such new opti-
mal inequalities which involve other scalar-valued normal curvatures
of Euclidean submanifolds. In the following explicitations, hereby re-
striction will be made to 2-dimensional normal sections. Let Mn be
a submanifold in En+m with an adapted frame (e1, · · · , en, ξ1, · · · , ξm).
For any tangent plane section P = ei ∧ ej, for any i 6= j, consider,
for all α, the projections M2

ijα in E3 of the corresponding normal sec-

tion
∑2

P = M2
ij in E2+m. Let kα

1 and kα
2 be the principal curvatures

of the surface M2
ijα in E3. Then its Gauss and mean curvature are re-

spectively given by K(M2
ijα) = kα

1 kα
2 and H(M2

ijα) = 1
2
(kα

1 + kα
2 ), and

K(M2
ijα) ≤ H2(M2

ijα) whereby equality holds if and only if kα
1 = kα

2 .
Thus, for all tangent indices i 6= j and normal indices α one has
4[hα

iih
α
jj − (hα

ij)
2] ≤ (hα

ii + hα
jj)

2 whereby equality holds if and only if
hα

ij = 0 and hα
ii = hα

jj. Summing up these inequalities over all α yields
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4K(P ) = 4Kij on the left hand side, and next summing up over all
i 6= j by taking into account that the Riemannian scalar curvature τ
of Mn and the squared mean curvature H2 of the submanifolds Mn in
En+m are respectively given by τ =

∑
i<j Kij and H2 = 1

n2

∑
α(

∑
i h

α
ii)

2

gives 2nτ +2(n−2)
∑

α,i<j(h
α
ij)

2 ≤ n2(n−1)H2, whereby equality holds
if and only if hα

ij = 0 and hα
ii = hα

jj for all α and for all i < j. The
normal connection of Mn in En+m is flat if and only if all shape op-
erators are simultaneously diagonalisable, i.e. if, for an appropriate
frame hα

ij = 0 for all α, i < j. So the quantity
∑

α,i<j(h
α
ij)

2 ≥ 0 is
a certain scalar measure for the deviation from triviality of the nor-
mal bundle of Mn in En+m. For simplicity of formulation, we put
ρ = 2

n(n−1)
τ (the normalised scalar curvature of the Riemannian man-

ifold Mn) and κ⊥1 = inf 2(n−2)
n2(n−1)

∑
α,i<j(h

α
ij)

2, whereby inf is taken over

all adapted frames on Mn in En+m. Then, the above general pointwise
inequality becomes : ρ ≤ H2 − κ⊥1 whereby equality holds everywhere
if and only if Mn is (a part of) an n-plane or a round n-sphere in
En+m. Similarly, considering the projections M2

ijαβ on the space E4

given by the affine 4-plane ei ∧ ej ∧ eα ∧ eβ(i 6= j, α 6= β) of the 2-
dimensional normal sections M2

ij in E2+m of Mn in En+m, the Wintgen-

inequality for M2
ijαβ in E4 states that [hα

iih
α
jj−(hα

ij)
2]+[hβ

iih
β
jj−(hβ

ij)
2] ≤

1
4
[(hα

ii + hα
jj)

2 + (hβ
ii + hβ

jj)
2] − 1

2π
· A(Eijαβ) whereby A(Eijαβ) denotes

the area of the curvature ellipse Eijαβ of the surface M2
ijαβ in E4, and

whereby equality holds if and only if Eijαβ is a circle. Summing up
these inequalities over all i 6= j and α 6= β then yields the following
general pointwise inequality for Mn in En+m : ρ ≤ H2 − κ⊥2 , whereby

κ⊥2 = inf[ 2(n−2)
n2(n−1)

∑
α,i<j(h

α
ij)

2+2π ·∑α<β,i<j A(Eijαβ)] ≥ 0 and whereby

equality is characterised by a specific expression of the second funda-
mental form h (cf. [13]). Finally, the Rouxel-Guadalupe-Rodriguez-
inequality for each 2-dimensional normal section M2

ij in E2+m itself

states that
∑

α[hα
iih

α
jj−(hα

ij)
2] ≤ 1

4

∑
α(hα

ii +hα
jj)

2− 1
2π
·A(Eij), whereby

A(Eij) denotes the area of the curvature ellipse Eij of the surface M2
ij

in E2+m, and whereby equality holds if and only if Eij is a circle. Sum-
ming up these inequalities over all i 6= j and α 6= β then yields the
following general pointwise inequality for Mn in En+m : ρ ≤ H2 − κ⊥m
whereby κ⊥m = inf[ 2(n−2)

n2(n−1)

∑
α,i<j(h

α
ij)

2 + 1
2π
· ∑

i<j A(Eij)] ≥ 0 and

whereby equality holds if and only if the second fundamental form h has
a specific expression, (cf. [13][14]). Summarising, thus making use of
the 2-dimensional normal sections of submanifolds Mn in En+m and of
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their projections on Euclidean subspaces with codimension 1, 2, · · · ,m,
respectively, the following results are obtained.

Theorem 3. Let Mn be any submanifold in a Euclidean space En+m.
Then its intrinsic Riemannian invariant ρ and its extrinsic submanifold
invariants H2 and κ⊥1 , κ⊥2 , · · · , κ⊥m (each of whose vanishing character-
ising that Mn has a trivial normal bundle in En+m) satisfy the following
pointwise general inequalities : ρ ≤ H2 − κ⊥α , whereby equality holds if
and only if the second fundamental form h of Mn in En+m has a very
specific known expression.

Making use of higher-dimensional normal sections of submanifolds Mn

in En+m and of their projections, similarly further such inequalities in-
volving other scalar-valued normal curvatures κ⊥ can be obtained and
the submanifolds realising the corresponding equalities can be charac-
terised. Along these lines, amongst others, also new extrinsic normal
curvatures could be introduced, and studied in particular in the con-
text of such inequalities for Euclidean submanifolds, in analogy with
the intrinsic Chen curvatures of semi-Riemannian manifolds and their
recent refinements to special classes of such manifolds.
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