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Abstract In this note we give short review of known results and announce new re-
sults ( see below Theorem 8 and Theorem 6 and its generalizations) . In the first part
of this review paper , we focus on ultrahyperbolic metric and Ahlfors lemmas and to the
estimate opposite to Ahlfors-Schwarz lemma proved by the author(Theorem 5-6 ). The
second part is devoted to Ahlfors-Schwarz lemma for harmonic-quasiregular maps and

some results obtained in [AMM].

INTRODUCTION

In Section 1 , of this review paper , we focus on ultrahyperbolic and pseudoher-
mitian metrics , Ahlfors lemmas and to the estimate opposite to Ahlfors-Schwarz
lemma proved by the author(Theorem 5-6 ).

Section 2 is devoted to Ahlfors-Schwarz lemma for harmonic-quasiregular maps .

In [W], Wan showed that every harmonic quasi-conformal diffeomorphism f from
the unit disk A onto itself with respect to Poincaré metric is a quasi-isometry of
Poincaré disk.

Let po = o of|f.| and Ky = K,, the Gaussian curvature of the metric py. In his
proof Wan [W] used the method of sub-solutions and super-solutions and the fact
that pg is complete metric.

We will show in a forthcoming paper that we can use Ahlfors-Schwarz lemma and
the estimate opposite to Ahlfors-Schwarz lemma (Theorem 6 ) instead of the method
of sub-solutions and super-solutions to prove Wan’s result and get further general-
izations of it .

Also , we announce the following result which we call Ahlfors-Schwarz lemma for

harmonic-quasiregular maps ( see also Theorem 8 below ) :
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Theorem A . Let R be hyperbolic surfaces with Poincare metric densities Aand
S be another with Poincare metric densities o and let the Gaussian curvature of
the metric ds®> = p(w)|dw|? be uniformly bounded from above on S by the negative
constant —a. Then any harmonic k-quasiregular map f from R into S decreases
distances up to a constant depending only on a and k .

Let po = o of |p| and Ky = K, the Gaussian curvature of the metric po.

A proof of Theorem A can be based on the estimate of the curvature Ky =
Ks (1 —|u|?) and Ahlfors-Schwarz lemma.

In Section 3, we discuss some results obtained in [AMM] .

An uniform estimate of radius of maximal ¢-disks of the Hopf differential of a
quasiregular harmonic map with respect to strongly negatively curved metric(see
below Theorem 9) is proved. As an application we show that the Hopf differential
of a quasiregular harmonic map with respect to strongly negatively curved metric
belongs to Bers space.

Finally ,in Section 4 , we state several dimensional generalization of Schwarz lemma

due to Yau and Royden .

1. AHLFORS-SCHWARZ LEMMA

Hyperbolic distance and Schwarz lemma . By A we denote the unit
disk . Let B be the disk with center at zy and radius r. Using the conformal

automorphisms ¢,(z) = 7=, a € A, of A, one can define pseudo-hyperbolic

distance on A by
d(a,b) = |pa(b)], a,be A.

Next, using the conformal map A(¢) = C;ZO from B onto A, one can define

pseudo-hyperbolic distance on B by
op(z,w) = 6(A(z2), A(w))

and the hyperbolic metric on B by

1+0p(z,w)

A =log ——————=
(z7w) Og]._(;B(Z,w)

for z,w € B.

In particular , hyperbolic distance on the unit disk A is

1+ [7=5]

1—|

Az,w) =1n

=

The classic Schwarz lemma states : If f : A — A is an analytic function , and if
f(0) =0, then |f(2)| < |z| and |f'(0)| < 1. Equality |f(z)| = |z| with z # 0 or
|f/(0)] = 1 can occur only for f(z) = e!® 2 , «ais a real constant .

It was noted by Pick that result can be expressed in invariant form . We refer the

following result as Schwarz-Pick lemma .
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Theorem 1. ( Schwarz — Pick lemma ) . Let F' be an analytic function from a
disk B to another disk U. Then F' does not increase the corresponding hyperbolic
(pseudo-hyperbolic) distances.

Curvature. A Riemannian metric given by the fundamental form
ds® = p*(dz? + dy?)
or ds = pldz| , p > 0, is conformal with euclidian metric.

If p > 0is a C? function on A ,the Gaussian curvature of a Riemannian metric

p on A is expressed by the formula
K=K,=-p ?Alnp.
Also we write K (p) instead of K, .

Recall that a pseudohermitian metric on A is a non-negative upper semicontinuous
function p such the set p~1(0) is discrete in A .

If w is an upper semicontinuous function , the lower generalized Laplacian of u
is defined by ([AP], see also [GeVi])

1 1 (2 _
Apu(w) = 4li£n_>161f 7(% /0 u(w + re't)dt — u(w)).
When u is a C? function , then the lower generalized Laplasian of u reduces to the
usual Laplacian
AU = Uy + Uyy -
The Gaussian curvature of a pseudohermitian metric p on A is defined by the
formula
K=K,= —p 2AypInp.
For all a > 0 define the family of functions A,
2
S

Also, it is convenient to write A\ instead of A\; .The Gaussian curvature of \, is
K (X\;) = —a. This family of Hermitian metrics on A is of interest because it allows

an ordering of all pseudohermitian metrics on A in the sence of the following ([AP]).
Theorem 2. Let p be a pseudohermitian metric on A such that

K,)(z) < —a
for some a >0 . Then p < A,

This kind of estimate is similar to Ahlfors-Schwarz lemma .
Ahlfors lemma can be found in Ahlfors [Ah].

Ahlfors-Schwarz lemma
A metric p is said to be ultrahyperbolic in a region ) if it has the following

properties :
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(a) p is upper semicontinuous ; and
(b) at every z there exits a supporting metric pg , defined and class C? in a neigh-
borhood V' of 2y , such that py < p and K,, < —11in V' , while po(20) = p(z0) -

Theorem 3. (Ahlfors Lemma 1). Suppose p is an ultrahyperbolic metric on A .
Then p < X\ .

The version presented in [Ga] has a slightly modified definition of supporting
metric.This modification and formulation is due to Earle . This version has been
used (see [Ga]) to prove that Teichmiiller distance is less than equal to Kobayashi's
on Teichmiiller space .

Ahlfors [Ah] proved a stronger version of Schwarz’s lemma and Ahlfors lemma 1 .

Theorem 4. (Ahlforslemma 2) . Let f be an analytic mapping of A into a
region on which there is given ultrahyperbolic metric p . Then p[f(2)]|f'(z)] < A .

The proof consists of observation that p[f(2)]|f’(z)| is ultrahyperbolic metric
on A .Observe that the zeros of f/(z) are singularities of this metric.

Note that if f is the identity map on A we get Theorem 3 ( Ahlfors lemma 1
)from Theorem 4 .

The notation of an ultrahyperbolic metric makes sense , and the theorem remains
valid if € is replaced by a Riemann surface .

In a plane region €2 whose complement has at least two points , there exists a

unique maximal ultrahyperbolic metric ,and this metric has constant curvature —1

The maximal metric is called the Poincaré metric of 2 , and we denote it by
Aq . It is maximal in the sense that every ultrhyperbolic metric p satisfies p < Aq
throughout 2 .

The hyperbolic metric of a disk |z| < R is given by

Ar(z) = R22—R|z|2 .

If p is ultrhyperbolic in |z| < R , then p < Ag . In particular , if p is ultrhy-
perbolic in the whole plane , then p = 0. Hence there is no ultrahyperbolic metric
in the whole plane .

The same is true of the punctured plane C* = {z : z # 0}. Indeed, if p were
ultrahyperbolic metric in the whole plane, then p(e*) | e* | would be ultrahyper-
bolic in the hole plane. These are only cases in which ultrahyperobolic metric fails
to exist .

Ahlfors [Ah] used Theorem 4 to prove Bloch and the Picard theorems.Ultrahypebolic
metrics ( without the name ) were introduced by Ahlfors . They found many ap-

plications in the theory of several complex variables .
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An inequality opposite to Ahlfors-Schwarz lemma

Mateljevi¢ [Ma] proved an estimate opposite to Ahlfors-Schwarz lemma .

A metric H|dz| is said to be superhyperbolic in a region Q if it has the following
properties :
(a) H is continuous ( more general, lower semicontinuous ) on 2
(b) at every zo there exists a supporting metric Hy ,defined and class C? in a
neighborhood V' of zg , such that Hy > H and Kp, > —1in V , while Hy(z) =
H(z) .

Theorem 5. ( [Ma]).Suppose H is a superhyperbolic metric on A for which
(c) H(z) tends to +00 when |z| tends to 1_
Then A < H .

By applying a method developed by Yau in [Yal] ( or by generalized maximum
principle of Cheng and Yau [CYa] ), it follows that this result holds if we suppose
instead of (c) that

(d) H is a complete metric on A .

Theorem 6. . If p and o are two metrics on A, o complete and 0 > K, > K,
on A, theno >p .

This theorem remains valid if p is ultrahyperbolic metric and o superhyperbolic
metric on A .Also , we can get further generalizations if A is replaced by a Riemann
surface .

The method of sub-solutions and super-solutions have been used in study harmonic
maps between surfaces . We will show in a forthcoming paper that we can use
Theorem 6 instead of the method of sub-solutions and super-solutions .

2. SCHWARZ LEMMA FOR HARMONIC AND QUASICONFORMAL MAPS

Wan [W] showed that

Theorem 7. (Wan) . Every harmonic quasi-conformal diffeomorphism from A

onto itself with respect to Poincaré metric is a quasi-isometry of Poincaré disk.

Let po = o of|f.| and Ky = K,, the Gaussian curvature of p. In his proof
Wan [W] used the method of sub-solutions and super-solutions and the fact that
po is complete metric. Recall ;we will show in a forthcoming paper that we can use
Ahlfors-Schwarz lemma and Theorem 6 instead of the method of sub-solutions and

super-solutions and, in particular , that a proof of Wan’s result can be based on
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these results .
Definition and properties of Harmonic and quasiregular maps

Let R and S be two surfaces. Let o(2)|dz|? and p(w)|dw|? be the metrics with
respect to the isothermal coordinate charts on R and S respectively, and let f be
a C?-map from R to S.

It is convenient to use notation in local coordinates df = pdz+qdz, wherep = f,
and ¢ = fz. Also we introduce the complex (Beltrami) dilatation
q

pf = Belt[f] = »
where it is defined.

The energy integral of f is

E(f,p) = /Rp of (Ip* + |q|?) dxdy .

A critical point of the energy functional is called a harmonic mapping. The
Euler-Lagrange equation for the energy functional is

7(f) = fzz + (logplwofpq=0.

Thus, we say that a C?-map f from R to S is harmonic if f satisfies the above
equation. For basic properties of harmonic maps and for further information on
the literature we refer to Jost [Jo] and Schoen-Yau [SYa3].

The following facts and notation are important in our approach:

A1l If f is a harmonic mapping then

@dz* = pofpqdz®

is a quadratic differential on R, and we say that ¢ is the Hopf differential of f and
we write ¢ =Hopf(f).

A2 The Gaussian curvature on S is given by

K = 1 Alnp .
2 p

A3 We will use the following notation p = Belt[f] = ;1) and 7 = log ﬁ and

Bochner formula (see [SYa3])

Aln|0f| = -KsJ(f) + Kr,
Aln|df| = Ks J(f) + Kr,
AT =—Kg|p| sinh.

A4 Definition of quasiregular function. Let R and S be two Riemann
surfaces and f : R — S be a C2?-mapping. If P is a point on R, P = f(P) € S, ¢
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a local parameter on R defined near P and 1 a local parameter on S defined near
P, then the map w = h(z) defined by h = o f o ¢~ |y (V is a sufficiently small
neighborhood of P) is called a local representer of f at P. The map f is called
k-quasiregular if there is a constant & € (0,1) such that for every representer h, at
every point of R, |hz| < k|h,]|.

Ahlfors-Schwarz lemma for harmonic-quasiregular maps

Let po = o of |p| and Ky = K, the Gaussian curvature of p.

Using that Ky = Kg (1 — |u|?) and Ahlfors-Schwarz lemma we can prove the

following result .

Theorem 8. . Let R be hyperbolic surfaces with Poincare metric densities Aand
S be another with Poincare metric densities o and let the Gaussian curvature of
the metric ds® = p(w)|dw|? be uniformly bounded from above on S by the negative
constant —a. Then any harmonic k-quasiregular map f from R into S decreases

distances up to a constant depending only on a and k .

3. APPLICATIONS

Uniformly bounded maximal ¢-disks, Bers space and harmonic maps
Let ¢ be an analytic function on the unit disk A. Then ¢ belongs to Bers space
Q= Q) if

esssupw(2)?|o(2)] < 400,
where w(z) =1 — |2]?.

In this section we will give an uniform estimate of radius of maximal y-disks
of the Hopf differential of a quasiregular harmonic map with respect to strongly
negatively curved metric (see below Theorem 9).As an application we show that the
Hopf differential of a quasiregular harmonic map with respect to strongly negatively
curved metric belongs to Bers space. First we define maximal -disks.

Maximal p-disk. Let ¢ be an analytic function on the unit disk A and let zg
be a regular point of ¢, i.e. ¢(z9) # 0. Let @y be a single valued branch of

w:@(z):/mdz

near zg, ®(z9) = 0. There is a neighborhood U of zy which is mapped one-to-one
conformally onto an open set V' in the w-plane. We can assume, by restriction,
that V' is a disk around w = 0. The inverse ®;' is a conformal homeomorphism of
V into A and evidently there is a largest open disk Vj around w = 0 such that the
analytic continuation of ®; 1 (which is still denoted by ®, 1) is homeomorphic, and
that ®;'(Vp) C A. The image Uy = ®; ' (Vp) is called the mazimal ¢-disk around
203 its ¢-radius (injectivity radius) ro is the Euclidean radius of Vj.

For the definition of p-disks and a discussion of their important role in the theory
of holomorphic quadratic differentials we refer the interested reader to Strebel’s
book [St].
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Theorem 9. ( [AMM)]) Let p be the metric on A with Gaussian curvature K
uniformly bonded from above on A by the negative constant —a,and let f be a
harmonic k-quasiregular map from A into itself with respect to the metric p. If
R = R, is the radius of the mazimal p-disk around z, where ¢ =Hopf(f), then R

is bounded from above by the constant C which depends only on k and a.

Proof. Let R = R, be the radius of the maximal ¢-disk U = U, around z € A.
Since f is k-qusiregular then 7 > m, where m = log % m > 0. Let ( = ®(2) be the
natural parameter in U and ®(U) =V = B(0, R) With respect to the parameter ¢

the Bochner formula takes the simple form
AT = —KsinhT.
Since K < —a and 7 > m, we conclude that
(1) AT >de" onV
where § = ¢8hm Tt ds = \(¢)|d(|, where A(¢) = RQ%IEIQ is the hyperbolic metric

on V and let A\(¢) = (%eT(C)) * From (1) we have for the Gaussian curvature of the

metric d5 = A\(¢)|d¢| on V that K < —1 and then we can use the Ahlfors-Schwarz

Lemma 1 (see also [Ah]) to obtain

s -
2 o< R0 < X(0).
Setting ¢ = 0 in (2) one obtains

, 8k
(3) R* < 5

O

In [AMM],I. Anié, V. Markovié and M. Mateljevi¢ characterize Bers space by
means of maximal ¢-disks. As an application, using Theorem 9 , they show that the
Hopf differential of a quasiregular harmonic map with respect to strongly negatively
curved metric belongs to Bers space. Also they give further sufficient or necessary
conditions for a holomorphic function to belong to Bers space.

Let ¢ be a quadratic differential on a hyperbolic Riemann surface R with Poincaré
metric ds? = p(z)|dz|?. Let p € R and let z be a local parameter near p. We will
define

lell (@) = p~" (z(p)) 0 (2(p))]-

We say that ¢ belongs to the Bers space of R (notation Q(R)) if ||¢]| is a uniformly
bounded function on R.

Theorem 10. ([AMM]) Let R and S be hyperbolic surfaces with metric densities o
and p respectively and let the Gaussian curvature of the metric ds?> = p(w)|dw|? be
uniformly bounded from above on S by the negative constant —a. If f is a harmonic

k-quasiregular map from R into S with Hopf differential o, then ¢ € Q(R).
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Proof. Let f be the lifting of f which maps A into itself and let ¢ be the lifting
of the quadratic differential ¢. Let p be the lifting of the density p. Since fis
harmonic with respect to the metric 5()|d@|?> on A and k-quasiregular then, by
Theorem 2 [AMM], ¢ € Q(A). Hence ¢ € Q(R). O

4. FURTHER RESULTS

There are many results related to subject of this note .We will mention only a
few of them.

Yau [Ya2] proved the following generalization of Schwarz lemma .

Theorem 11. (Yau) . Let M be a complete Kahler manifold with Ricci curvature
bounded from below by a constant, and N be another Hermitian menifold with
holomorphic bisectional curvature bounded from above by a negative constant . Then
any holomorphic mapping f from M into N decrease distances up to a constant

depending only on the curvature of M and N .
Royden [Ro] improved the estimate in Yau theorem.

Theorem 12. ( Royden) . Let M be a complete Hermitian manifold with holomor-
phic sectional curvature bounded from below by a constant k <0, and N be another
Hermitian menifold with holomorphic sectional curvature bounded from above by a
negative constant K < 0 . Assume either that M has Riemann sectional curvature
bounded from below or that M is Kahler with holomorphic bisectional curvature

bounded from below. Then any holomorphic mapping f from M into N satisfies
k
dfI*> < — .
laf|” <+

In [Ya2], Yau mentioned that in order to draw a useful conclusion in the case
of harmonic mappings between Riemannian manifolds, it seems that one has to
assume the mapping is quasi-conformal.

Since we can consider Theorem 8 as a version of Schwarz lemma for harmonic-
quasiregular maps between surfaces it seems natural to ask whether there exists a
version of Yau-Royden theorem for harmonic-quasiregular maps.

Pseudoholomorphic version of the Schwarz Lemma ( known as Gromov-Schwarz
Lemma ) is important tool in symplectic geometry .

The author is indebted to the referee for useful suggestions which improved expo-

sition .
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