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Abstract. Let M be a CR submanifold of maximal CR dimension in a complex
projective space such that the distinguished vector field ξ is parallel with respect
to the normal connection. In this article we treat the special case when the shape
operator with respect to this vector field has exactly two distinct eigenvalues and we
give another sufficient condition for M to be an open subset of a geodesic sphere by
discussing its holomorphic sectional curvature.

1. Introduction

Many differential geometricians have investigated hypersurfaces of real and com-
plex space forms with constant principal curvatures. Much of the work has involved
finding sufficient conditions for a hypersurface to be one of the “standard examples”,
characterized by the fact that they have one or two distinct constant principal cur-
vatures. Especially, real hypersurfaces in complex space forms are equipped with a
distinguished tangent vector field JN obtained by applying the complex structure J
to the unit normal field N , and it was found that computations were more tractable
when JN is a principal vector field. Further, it was observed that JN is principal
for all homogeneous hypersurfaces in complex projective space. Moreover, geometric
characterizations of this property were found and hypersurfaces that satisfy it are
now called Hopf hypersurfaces [3], [6], [13].

On the other hand, it is well-known that the holomorphic sectional curvature is an
important invariant when investigating the differential geometric properties of Kähler
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manifolds. Especially, complex space forms, which have constant holomorphic sec-
tional curvature, are the most fundamental examples among the Kähler manifolds. In
[7] the author considered an analogous invariant with respect to the real hypersurfaces
in complex projective space and obtained the classification of all these hypersurfaces
such that this invariant is constant. Above all, it was proved that when this constant
is greater than 4, this hypersurface is an open subset of a geodesic hypersphere.

In this article we consider a similar problem by studying one class of CR submani-
folds of maximal CR dimension in complex projective space. Namely, let Mn be a real
submanifold of the complex manifold (M

n+p
, g) with complex structure J . If, for any

x ∈ M , the tangent space Tx(M) of M at x satisfies dimR(JTx(M)∩Tx(M)) = n−1,
then M is called a CR submanifold of maximal CR dimension. Therefore it fol-
lows that there exists a unit vector field ξ normal to M such that JTx(M) ⊂
Tx(M) ⊕ span{ξx}, for any x ∈ M . A real hypersurface is a typical example of CR
submanifold of maximal CR dimension and the generalization of some results which
are valid for real hypersurfaces to CR submanifolds of maximal CR dimension may be
expected, see for example [4]. This paper is devoted to the study of CR submanifolds
of maximal CR dimension whose shape operator with respect to ξ has exactly two
distinct eigenvalues and whose holomorphic sectional curvature g(R(X, FX)FX, X)
is constant, where R denotes the Riemannian curvature tensor of M and F is the
skew-symmetric endomorphism acting on T (M). In section 2 we recall some general
preliminary facts concerning CR submanifolds and in section 3 we prove the

Main Theorem. Let M be a connected n–dimensional (n > 2p − 1, p ≥ 2) CR
submanifold of CR dimension n−1

2 of a complex projective space P
n+p

2 (C) such that
the distinguished normal vector field ξ is parallel with respect to the normal con-
nection. If the shape operator with respect to the distinguished normal vector field
ξ has exactly two distinct eigenvalues and if the holomorphic sectional curvature
g(R(X,FX)FX,X) is constant, then M is an open subset of a geodesic sphere.

The author thanks Prof. M. Okumura for his valuable suggestions during the
preparation of this paper.

2. CR submanifolds of maximal CR dimension of complex space forms

Let M be an (n+p)–dimensional Kähler manifold with Kähler structure (J, ḡ) and
let M be an n–dimensional real submanifold of M with the immersion ı of M into
M . Then the tangent bundle T (M) is identified with a subbundle of T (M) and a
Riemannian metric g of M is induced from the Riemannian metric ḡ of M in such
a way that g(X, Y ) = g(ıX, ıY ) where X, Y ∈ T (M) while we denote also by ı the
differential of the immersion. The normal bundle T⊥(M) is the subbundle of T (M)
consisting of all X ∈ T (M) which are orthogonal to T (M) with respect to Riemannian
metric ḡ.

Further,let the maximal J-invariant subspace of the tangent space Tx(M) at x ∈ M ,
called the holomorphic tangent space at x, has constant dimension for any x ∈ M .
Then the submanifold M is called the Cauchy-Riemann submanifold or briefly CR
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submanifold and the constant complex dimension of the holomorphic tangent space is
called the CR dimension of M [11], [17]. Now, let M be a CR submanifold of maximal
CR dimension, that is, at each point x of M , the tangent space Tx(M) satisfies
dimR(JTx(M)∩Tx(M)) = n−1 . We note that in this case the above-given definition
of CR submanifolds coincides with the definition of CR submanifolds given by Bejancu
in [1]. We refer to [5] for more details and examples of CR submanifolds of maximal
CR dimension. Moreover, then it follows that M is odd–dimensional and that there
exists a unit vector field ξ normal to M such that JTx(M) ⊂ Tx(M) ⊕ span{ξx},
for any x ∈ M . Hence, for any tangent vector field X, choosing a local orthonormal
basis ξ, ξ1, . . . , ξp−1 of vectors normal to M , we have the following decomposition into
tangential and normal components:

JıX = ı FX + u(X)ξ ,(2.1)

Jξ = −ı U + Pξ,(2.2)

Jξa = −ı Ua + Pξa (a = 1, . . . , p− 1),(2.3)

where F and P are skew–symmetric endomorphisms acting on T (M) and T⊥(M),
respectively, U , Ua, a = 1, . . . , p−1 are tangent vector fields and u is one form on M .
Moreover, using (2.1), (2.2) and (2.3), the Hermitian property of J implies

g(U,X) = u(X) , Ua = 0 (a = 1, . . . , p− 1),(2.4)

F 2X = −X + u(X)U,(2.5)

u(FX) = 0 , FU = 0 , P ξ = 0 .(2.6)

and therefore, relations (2.2) and (2.3) may be written in the form

(2.7) Jξ = −ıU , Jξa = Pξa (a = 1, . . . , p− 1) .

Bringing into use that {η ∈ T⊥(M), η ⊥ ξ} is J-invariant, from now on we denote
the orthonormal basis of T⊥(M) by ξ, ξ1, . . . , ξq, ξ1∗ , . . . , ξq∗ , where ξa∗ = Jξa and
q = p−1

2 . Further, let us denote by ∇ and ∇ the Riemannian connection of M and
M , respectively, and by D the normal connection induced from ∇ in the normal
bundle of M . They are related by the following well-known Gauss and Weingarten
equations

∇ıX ıY = ı∇XY + h(X,Y ) ,(2.8)

∇ıXξ = −ıAX +
q∑

a=1

{sa(X)ξa + sa∗(X)ξa∗},(2.9)

∇ıXξa = −ıAaX − sa(X)ξ +
q∑

b=1

{sab(X)ξb + sab∗(X)ξb∗},(2.10)

∇ıXξa∗ = −ıAa∗X − sa∗(X)ξ +
q∑

b=1

{sa∗b(X)ξb + sa∗b∗(X)ξb∗},

(2.11)
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for all X, Y ∈ T (M), where h denotes the second fundamental form, A, Aa, Aa∗

denote the shape operators for the normals ξ, ξa, ξa∗ , respectively, and s’s are the
coefficients of the normal connection D.

Next, if the ambient manifold is a Kaehler manifold, then ∇J = 0 and, using (2.10)
and (2.11), it follows that

Aa∗X = FAaX − sa(X)U,(2.12)

sa∗(X) = u(AaX) = g(AaX, U) = g(AaU,X),(2.13)

sa∗b∗ = sab, sa∗b = −sab∗ ,(2.14)

h(X, Y ) = g(AX,Y )ξ +
q∑

a=1

{g(AaX, Y )ξa + g(Aa∗X, Y )ξa∗},(2.15)

for all vectors X, Y tangent to M . Moreover, differentiating relations (2.1) and (2.2)
covariantly and comparing the tangential and normal parts, using relation (2.7), we
get

(∇Y F )X = u(X)AY − g(AY,X)U ,(2.16)

(∇Y u)(X) = g(FAY,X) ,(2.17)

∇XU = FAX .(2.18)

Further, assuming that the vector field ξ is parallel with respect to the normal
connection D, it follows that DXξ =

∑q
a=1{sa(X)ξa + sa∗(X)ξa∗} = 0, from which

sa = sa∗ = 0 (a = 1, . . . , q). Now, using relations (2.12) and (2.13) we obtain

Aa∗ = FAa (a = 1, . . . , q),(2.19)

AaU = 0 (a = 1, . . . , q).(2.20)

Since the second fundamental form h(X,Y ) is symmetric with respect to X,Y , (2.15)
and (2.19) imply that FAa∗ , a = 1, . . . , q are symmetric and hence it follows

(2.21) FAa + AaF = 0, FAa∗ + Aa∗F = 0, (a = 1, . . . , q).

Finally, if the ambient manifold M is a complex space form, i.e. a Kähler manifold
of constant holomorphic sectional curvature 4k, then the curvature tensor R of M
has a special form and the Gauss equation becomes

R(X,Y )Z = k {g(Y, Z)X − g(X,Z)Y + g(FY, Z)FX − g(FX,Z)FY

−2g(FX, Y )FZ}+ g(AY, Z)AX − g(AX,Z)AY

+
q∑

a=1

{g(AaY,Z)AaX − g(AaX, Z)AaY

+g(FAaY, Z)FAaX − g(FAaX, Z)FAaY } ,(2.22)
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for all X,Y, Z tangent to M , where R denotes the Riemannian curvature tensor of
M ([9]).

3. A characterization of a geodesic sphere

In this section, we prove the Main theorem. We begin by preparing, without
proofs, the following results important for later consideration. To that purpose, let us
assume that M is an n-dimensional, n ≥ 3, CR submanifold of CR dimension n−1

2 of
(n + p)-dimensional Kähler manifold M of constant holomorphic sectional curvature
4k, such that the distinguished vector field ξ is parallel with respect to the normal
connection. Then, if the shape operator A with respect to ξ has only one eigenvalue,
it follows that k = 0 ([4, Lemma 3.3.]). Moreover, if k 6= 0 and the shape operator A
has exactly two distinct eigenvalues, then U is an eigenvector of A ([4, Lemma 3.4.]).
Especially, if M is the complex projective space P

n+p
2 (C) with constant holomorphic

sectional curvature 4k, k > 0 and n > 3, then if the shape operator A has exactly two
distinct eigenvalues, it follows that they are constant ([4, Lemma 4.1.]). Moreover, for
n > 2p−1, p ≥ 2, the multiplicity of the eigenvalue µ corresponding to the eigenvector
U of the shape operator A is one ([4, Lemma 4.5.]). If we further suppose that the
complex projective space P

n+p
2 (C) is equipped with Fubini-Study metric of constant

holomorphic sectional curvature 4, denoting the second eigenvalue of A by λ and the
corresponding eigenvector by X, we may write

(3.1) AX = λX + (µ− λ)u(X)U.

Furthermore, let us recall that although there are no umbilic hypersurfaces in
complex projective space, one sheet of the focal set of a geodesic hypersphere is
precisely its center and T. E. Cecil and P. J. Ryan proved

Theorem A. [3] Let M be a connected real hypersurface in a complex projective
space, with at most two distinct principal curvatures at each point. Then M is an
open subset of a geodesic hypersphere.

This theorem was first proved by R. Takagi [16], under the additional condition
that the principal curvatures are constant.

We now consider the holomorphic sectional curvature g(R(X, FX)FX, X) of the
CR submanifold of CR dimension n−1

2 of a complex projective space P
n+p

2 (C)
equipped with Fubini-Study metric of constant holomorphic sectional curvature 4.
Namely, using the Gauss equation (2.22) and relation (2.21), a straightforward com-
putation yields
(3.2)

g(R(X, FX)FX, X) = 4 + g(AX,X)g(AFX, FX)− g(FX, AX)2 − 2‖k(X,X)‖2,
where k : T0(M)× T0(M) → span{ξ1, ..., ξq, ξ1∗ , ..., ξq∗} is a symmetric bilinear form
defined by

k(X, Y ) = h(X,Y )− g(AX,Y )ξ =
q∑

a=1

{g(AaX, Y )ξa + g(Aa∗X,Y )ξa∗}
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and T0(M) = {X ∈ T (M)|g(X,U) = 0}.
Now, let us prove the following

Lemma 3.1. Let M be a connected n–dimensional (n > 2p− 1, p ≥ 2) CR submani-
fold of CR dimension n−1

2 of a complex projective space P
n+p

2 (C) such that the distin-
guished normal vector field ξ is parallel with respect to the normal connection. If the
shape operator with respect to the distinguished normal vector field ξ has exactly two
distinct eigenvalues and if the holomorphic sectional curvature g(R(X, FX)FX, X)
is constant, then Aa = Aa∗ = 0, a = 1, . . . , q, where Aa, Aa∗ are the shape operators
for the normals ξa, ξa∗ , respectively.

Proof: Using the above notations, relations (3.1) and (3.2) imply

(3.3) g(R(X, FX)FX, X) = 4 + λ2 − 2‖k(X,X)‖2.

¿From the hypothesis that g(R(X, FX)FX, X) and λ are constant, it follows that
‖k(X,X)‖ is constant, too.

Furthermore, we note that F is an almost complex structure on T0(M). Since
the subbundle T⊥1 (M) = {η ∈ T⊥(M)|g(η, ξ) = 0} of the normal bundle T⊥(M) is
J-invariant, using (2.1), (2.7) and the Gauss equation (2.8), it follows that

(3.4) Jk(X, Y ) = k(X, FY ),

which shows that the bilinear form k is almost complex. The discriminant ∆ of k for
a plane span{X,Y } is given by

∆XY =
g(k(X, X), k(Y, Y ))− ‖k(X, Y )‖2

g(X,X)g(Y, Y )− g(X, Y )2
.

Then, by (3.4), for a unit vector field X belonging to T0(M), we have ∆XFX =
−2||k(X,Y )||2. We note that ∆XFX is just corresponding to the holomorphic differ-
ence ∆hol in [14].

Now, we bring into use O’Neil’s results proved in [14]. Namely, since ‖k(X, X)‖
is constant, it follows that the discriminant ∆XFX is constant and using Lemma
6. [14], it follows that k is isotropic. Finally, using Lemma 8. [14], we con-
clude that n−1

2

(
n−1

2 + 1
)

= n2−1
4 vectors k(ei, ej), Jk(ei, ej) are orthogonal, where

e1, . . . , en−1
2

, Je1, . . . , Jen−1
2

is an orthonormal basis for T0(M). However, since p <

n+1
2 , it follows that n2−1

4 > p−1 and therefore k(ei, ej) = 0, i.e. h(X, Y ) = g(AX, Y )ξ,
or, equivalently, Aa = 0, Aa∗ = 0, a = 1, . . . , q. ¤

Making use of this result, we prove

Theorem 3.2. Let M be an n–dimensional (n > 2p − 1, p ≥ 2) CR submanifold
of CR dimension n−1

2 of a complex projective space P
n+p

2 (C) such that the distin-
guished normal vector field ξ is parallel with respect to the normal connection. If the
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shape operator with respect to the distinguished normal vector field ξ has exactly two
distinct eigenvalues and if the holomorphic sectional curvature g(R(X, FX)FX,X) is
constant, then there exists a real n+1-dimensional totally geodesic complex projective
space P

n+1
2 (C) such that M ⊂ P

n+1
2 (C).

Proof: First, let us define N0(x) = {ξ ∈ T⊥x (M)|Aξ = 0} and let H0(x) be the max-
imal J-invariant subspace of N0(x), that is, H0(x) = JN0(x) ∩ N0(x). Then, using
Lemma 3.1., it follows that N0(x) = span{ξ1(x), . . . , ξq(x), ξ1∗(x), . . . , ξq∗(x)}. More-
over, by the second equation of (2.7), we obtain JN0(x) = N0(x) and consequently
H0(x) = span{ξ1(x), . . . , ξq(x), ξ1∗(x), . . . , ξq∗(x)}. Hence the orthogonal complement
H1(x) of H0(x) in T⊥(M) is spanned by ξ. Further, since ξ is parallel with respect
to the normal connection, we can apply the codimension reduction theorem for real
submanifolds of complex projective space ([12]) and conclude that there exists a real
(n + 1)-dimensional totally geodesic complex projective space of P

n+p
2 (C) such that

M is its real hypersurface. ¤
Therefore, we can apply the results of real hypersurface theory and prove the Main

theorem. Namely, using Theorem 3.2., the submanifold M can be regarded as a real
hypersurface of P

n+1
2 (C) which is a totally geodesic submanifold in P

n+p
2 (C). In what

follows we denote P
n+1

2 (C) by M ′ and by ı1 the immersion of M into M ′ and by ı2
the totally geodesic immersion of M ′ into P

n+p
2 (C). Then, from the Gauss equation

(2.8), it follows that
∇′ı1X ı1Y = ı1∇XY + g(A′X, Y )ξ′,

where A′ is the corresponding shape operator and ξ′ is a unit normal vector field to
M in M ′. Consequently, by using the Gauss equation and ı = ı2 · ı1, we derive

(3.5) ∇ı2·ı1X ı2 · ı1Y = ı2∇′ı1X ı1Y + h̄(ı1X, ı1Y ) = ı2(ı1∇XY + g(A′X, Y )ξ′),

since M ′ is totally geodesic in P
n+p

2 (C). Further, comparing relation (3.5) with
relation (2.8), it follows that ξ = ı2ξ

′ and A = A′. As M ′ is a complex submanifold
of P

n+p
2 (C) with the induced complex structure J ′, we have Jı2X

′ = ı2J
′X ′, X ′ ∈

T (M ′). Thus, from (2.1) it follows that

JıX = ı2J
′ı1X = ıF ′X + ν′(X)ı2ξ′ = ıF ′X + ν′(X)ξ

and therefore, we conclude that F = F ′ and ν′ = u.
Finally, since in Theorem 3.2. we established that M , with exactly two distinct

eigenvalues of the shape operator A with respect to the distinguished vector field ξ, is
a real hypersurface of P

n+1
2 (C), we prove the Main theorem by using the well known

Theorem A cited at the beginning of this section.
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