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Faculty of Technical Sciences, 21000 Novi Sad,

Serbia and Montenegro

Dedicated to Prof. Dr. Mileva Prvanović

Abstract. R. Miron and Gh. Atanasiu studied the geometry of OsckM . Among many
various problems which was solved, they introduced the adapted basis, the d-connection
and gave its curvature theory. Different structures as almost product structure, metric
structure was determined and the spray theory was given.

Here the attention on E = Osc3M will be restricted. In Osc3M the Liouville vector
fields have important role at definition of almost contact structure J and using J and
the Liouville vector fields the sprays are defined. The geodesic lines are integral curves of
sprays. The Zermello’s conditions which give the independence of the integral of action
from the parametrization of the curve are also expressed by the Liouville vector fields.

Almost all the results obtained here can be found in Miron’s book [19], [20], even for
the space OsckM , but here the transformation group is slightly different and the methods
of some proofs are new.
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1 Adapted basis in T (Osc3M) and T ∗(Osc3M)

Let E = Osc3M be a 4n dimensional C∞ manifold. In some local chart (U,ϕ) some point
u ∈ E has coordinates

(xa, y1a, y2a, y3a) = (y0a, y1a, y2a, y3a) = (yαa),

where xa = y0a and

a, b, c, d, e, . . . = 1, 2, . . . , n, α, β, γ, δ, κ, . . . = 0, 1, 2, 3.

If in some other chart (U ′, ϕ′) the point u ∈ E has coordinates (xa′ , y1a′ , y2a′ , y3a′), then
in U ∩ U ′ the allowable coordinate transformation are given by:

(a) xa′ = xa′(x1, x2, . . . , xn) (1.1)

(b) y1a′ =
∂xa′

∂xa
y1a =

∂y0a′

∂y0a
y1a

(c) y2a′ =
∂y1a′

∂y0a
y1a +

∂y1a′

∂y1a
y2a

(d) y3a′ =
∂y2a′

∂y0a
y1a +

∂y2a′

∂y1a
y2a +

∂y2a′

∂y2a
y3a.

Some nice example of the space E can be obtained if the points (xa) ∈ M (dimM = n)
are considered as the points of the curve xa = xa(t) and yαa, α = 1, 2, 3, are defined by

y1a =
dxa

dt
, y2a =

d2xa

dt2
=

dy1a

dt
, y3a =

d3xa

dt3
=

dy2a

dt
.

M is the base manifold and (xa) ∈ M is the projection of (xa, y1a, y2a, y3a) ∈ E on M .
In [15], [16] yαa = 1

α!
dαxa

dtα , α = 1, . . . , k and the transformations (1.1) have different form.
If in U ∩ U ′ the equation

xa′ = xa′(x1(t), x2(t), . . . , (xn(t))

is valid, then it is easy to see that

y1a′ =
dxa′

dt
= y1a′(xa, y1a), (1.2)

y2a′ =
dy1a′

dt
= y2a′(xa, y1a, y2a),

y3a′ =
dy2a′

dt
= y3a′(xa, y1a, y2a, y3a),
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satisfy (1.1b), (1.1c) and (1.1d) respectively and the explicite form of (1.1) is the following:

xa′ = xa′(x1, x2, . . . , xn) (1.3)

y1a′ =
∂xa′

∂xa
y1a,

y2a′ =
∂2xa′

∂xa∂xb
y1ay1b +

∂xa′

∂xa
y2a,

y3a′ =
∂3xa′

∂xa∂xb∂xc
y1ay1by1c + 3

∂2xa′

∂xa∂xb
y1ay2b +

∂xa′

∂xa
y3a.

Theorem 1.1 The transformations determined by (1.1) form a pseudogroup.

With determination of the group of allowable coordinate transformations the first step
to construction of some geometry is made. The second important step is the construction of
the adapted basis in T (E), which depends on the choice of the coefficients of the nonlinear
connections, here denoted by N and M .

The following abbreviations

∂αa =
∂

∂yαa
, α = 1, 2, 3, and ∂a = ∂0a =

∂

∂xa
=

∂

∂y0a

will be used. From (1.3) it follows

∂0ay
0a′ = ∂1ay

1a′ = ∂2ay
2a′ = ∂3ay

3a′ =
∂xa′

∂xa
= Aa′

a , (1.4)

dAa′
a

dt
= ∂0ay

1a′ =
1
2
∂1ay

2a′ =
1
2

2
3
∂2ay

3a′ =
∂2xa′

∂xa∂xb
y1b = Ba′

a ,

dBa′
a

dt
= ∂0ay

2a′ =
1
3
∂1ay

3a′ =
∂3xa′

∂xa∂xb∂xc
y1by1c +

∂2xa′

∂xa∂xb
y2b = Ca′

a ,

dCa′
a

dt
= ∂0ay

3a′ = Da′
a .

The natural basis B̄ of T (E) is

B̄ = {∂0a, ∂1a, ∂2a, ∂3a} = {∂αa} (1.5)

The elements of B̄ with respect to (1.1) are not transformed as d-tensors. They satisfy
the following relations:

∂0a = (∂0ay
0a′)∂0a′ + (∂0ay

1a′)∂1a′ + (∂0ay
2a′)∂2a′ + (∂0ay

3a′)∂3a′

∂1a = (∂1ay
1a′)∂1a′ + (∂1ay

2a′)∂2a′ + (∂1ay
3a′)∂3a′

∂2a = (∂2ay
2a′)∂2a′ + (∂2ay

3a′)∂3a′

∂3a = (∂3ay
3a′)∂3a′ .

(1.6)
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The natural basis B̄∗ of T ∗(E) is

B̄∗ = {dxa, dy1a, dy2a, dy3a} = {dyαa}. (1.7)

The elements of B̄∗ with respect to (1.1) are transformed in the following way (see
(1.2)):

dxa′ =
∂xa′

∂xa
dxa ⇔ dy0a′ = (∂0ay

0a′)dy0a (1.8)

dy1a′ = (∂0ay
1a′)dy0a + (∂1ay

1a′)dy1a

dy2a′ = (∂0ay
2a′)dy0a + (∂1ay

2a′)dy1a + (∂2ay
2a′)dy2a

dy3a′ = (∂0ay
3a′)dy0a + (∂1ay

3a′)dy1a + (∂2ay
3a′)dy2a + (∂3ay

3a′)dy3a.

The adapted basis B∗ of T ∗(E) is given by:

B∗ = {δy0a, δy1a, δy2a, δy3a}, (1.9)

where

δy0a = dxa = dy0a (1.10)
δy1a = dy1a + M1a

0b dy0b

δy2a = dy2a + M2a
1b dy1b + M2a

0b dy0b

δy3a = dy3a + M3a
2b dy2b + M3a

1b dy1b + M3a
0b dy0b.

Theorem 1.2 The necessary and sufficient conditions that δyαa are transformed as d-
tensor field, i.e.

δyαa′ =
∂xa′

∂xa
δyαa, α = 0, 1, 2, 3,

are the following equations:

(a) M1a
0b ∂1ay

1a′ = M1a′
0b′ ∂0by

0b′ + ∂0by
1a′ (1.11)

(b) M2a
1b ∂2ay

2a′ = M2a′
1c′ ∂1by

1c′ + ∂1by
2a′

(c) M2a
0b ∂2ay

2a′ = M2a′
0c′ ∂0by

0c′ + M2a′
1c′ ∂0by

1c′ + ∂0by
2a′

(d) M3a
2b ∂3ay

3a′ = M3a′
2c′ ∂2by

2c′ + ∂2by
3a′

(e) M3a
1b ∂3ay

3a′ = M3a′
1c′ ∂1by

1c′ + M3a′
2c′ ∂1by

2c′ + ∂1by
3a′

(f) M3a
0b ∂3ay

3a′ = M3a′
0c′ ∂0by

0c′ + M3a′
1c′ ∂0by

1c′ + M3a′
2c′ ∂0by

2c′ + ∂0by
3a′ .
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From (1.11) and (1.4) it follows that (1.11) is a system in which equations of second,
third and fourth order appeared, so there are infinity functions

M1a
0b = M1a

0b (x, y1), M2a
1b = M2a

1b (x, y1), M3a
2b = M3a

2b (x, y1), (1.12)
M2a

0b = M2a
0b (x, y1, y2), M3a

1b = M3a
1b (x, y1, y2),

M3a
0b = M3a

0b (x, y1, y2, y3),

which are the solutions of (1.11). From the choise of M depends the adapted basis B∗

((1.9)).
Let us denote the adapted basis of T (E) by B, where

B = {δ0a, δ1a, δ2a, δ3a} = {δαa}, (1.13)

and
δ0a = ∂0a − N1b

0a∂1b − N2b
0a∂2b − N3b

0a∂3b,
δ1a = ∂1a − N2b

1a∂2b − N3b
1a∂3b

δ2a = ∂2a − N3b
2a∂3b

δ3a = ∂3a.

(1.14)

Theorem 1.3 The necessary and sufficient conditions that B ((1.13)) be dual to B∗

((1.9)), (when B̄ ((1.5)) is dual to B̄∗ ((1.7)) i.e.

< δαaδy
βb >= δβ

αδb
a

are the following relations:

N1b
0a = M1b

0a (1.15)
N2b

0a = M2b
0a −M2b

1c N1c
0a

N3b
0a = M3b

0a −M3b
1c N1c

0a −M3b
2c N2c

0a

N2b
1a = M2b

1a

N3b
1a = M3b

1a −M3b
2c N2c

1a

N3b
2a = M3b

2a.

Theorem 1.4 The necessary and sufficient conditions that δαa with respect to (1.1) are
transformed as d-tensors, i.e.

δαa′ =
∂xa

∂xa′ δαa, α = 0, 1, 2, 3, (1.16)
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are the following formulae:

N1b′
0a′∂0ay

0a′ = N1c
0a∂1cy

1b′ − ∂0ay
1b′ (1.17)

N2b′
0a′∂0ay

0a′ = N2c
0a∂2cy

2b′ + N1c
0a∂1cy

2b′ − ∂0ay
2b′

N3b′
0a′∂0ay

0a′ = N3c
0a∂3cy

3b′ + N2c
0a∂2cy

3b′ + N1c
0a∂1cy

3b′ − ∂0ay
3b′

N2b′
1a′∂1ay

1a′ = N2c
1a∂2cy

2b′ − ∂1ay
2b′

N3b′
1a′∂1ay

1a′ = N3c
1a∂3cy

3b′ + N2c
1a∂2cy

3b′ − ∂1ay
3b′

N3b′
2a′∂2ay

2a′ = N3b
2a∂3by

3b′ − ∂2ay
3b′ .

From (1.13) and (1.14) it follows

∂3a = δ3a (1.18)
∂2a = δ2a + M3b

2aδ3b

∂1a = δ1a + M2b
1aδ2b + M3b

1aδ3b

∂0a = δ0a + M1b
0aδ1b + M2b

0aδ2b + M3b
0aδ3b.

2 The adapted basis which is conprehensive

with J, Liouville vector fields

It is obvious that the introduced transformation group given by (1.1) instead of that
introduced by R. Miron [16], [17] results a new adapted basis B ((1.13)) and B∗ ((1.9)).
These bases are dual to each other, their elements transform as d-vector (or covector)
fields, but they are not convenient for the presentation of the almost tangent structure J ,
for which J4 = 0 and JTH = TV1 , JTV1 = TV2 , JTV2 = TV3 , JTV3 = 0. To obtain such a
basis we take:

δy0a = dy0a = dxa (2.1)
δy1a = dy1a + M1a

0b dy0b

δy2a =
1
2
dy2a + M2a

1b dy1b + M2a
0b dy0b

δy3a =
1
6
dy3a +

1
2
M3a

2b dy2b + M3a
1b dy1a + M3a

0b dy0b.

Theorem 2.1 The necessary and sufficient conditions that δyαa(α = 0, 1, 2, 3) given by
(2.1) are transformed as d-tensor fields, are the following equations:

M1a
0b ∂0ay

0a′ = M1a′
0b′ ∂0by

0b′ + ∂0by
1a′ (2.2)
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M2a
1b ∂2ay

2a′ = M2a′
1b′ ∂1by

1b′ +
1
2
∂1by

2a′

M3a
2b ∂3ay

3a′ = M3a′
2b′ ∂2by

2b′ +
1
3
∂2by

3a′

M2a
0b ∂2ay

2a′ = M2a′
0b′ ∂0by

0b′ + M1a′
1b′ ∂0by

1b′ +
1
2
∂0by

2a′

M3a
1b ∂3ay

3a′ = M3a′
1b′ ∂1by

1b′ +
1
2
M3a′

2b′ ∂1by
2b′ +

1
6
∂1by

3a′

M3a
0b ∂3ay

3a′ = M3a′
0b′ ∂0by

0b′ + M3a′
1b′ ∂0by

1b′ +
1
2
M3a′

2b′ ∂0by
2b′ +

1
6
∂0by

3a′ .

From (1.4) it follows that M1a
0b , M2a

1b and M3a
2b have the same law of transformation,

also M2a
0b and M3a

1b transform in the same way. This fact allows us to take

M1a
0b = M2a

1b = M3a
2b , M2a

0b = M3a
1b . (2.3)

If (2.3) is valid the adapted basis

B′∗ = {δ′y0a, δ′y1a, δ′y2a, δ′y3a} (2.4)

is given by

δ′y0a = dxa = dy0a (2.5)
δ′y1a = dy1a + M1a

0b dy0b

δ′y2a =
1
2
dy2a + M1a

0b dy1b + M2a
0b dy0b

δ′y3a =
1
6
dy3a +

1
2
M1a

0b dy2b + M2a
0b dy1b + M3a

0b dy0b.

Theorem 2.2 The structure J defined on T ∗(E) by

J(dy3a) = 3dy2a, J(dy2a) = 2dy1a, J(dy1a) = dy0a, J(dy0a) = 0 (2.6)

is a tensor field of type (1,1), and satisfies the relation J4 = 0.

From (2.6) and (2.5) it follows

J(δ′y3a) = δ′y2a, J(δ′y2a) = δ′y1a, J(δ′y1a) = δ′y0a, J(δ′y0a) = 0. (2.7)

Let us denote by
B′ = {δ′0a, δ

′
1a, δ

′
2a, δ

′
3a}
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the adapted basis of T (E) given by

δ′0a = ∂0a −N1b
0a∂1b − 2N2b

0a∂2b − 6N3b
0a∂3b

δ′1a = ∂1a − 2N1b
0a∂2b − 6N2b

0a∂3b

δ′2a = 2∂2a − 6N1b
0a∂3b

δ′3a = 6∂3a.

(2.8)

Theorem 2.3 The adapted basis B′ and B′∗ are dual to each other if

N1b
0a = M1b

0a, (2.9)
N2b

0a = M2b
0a −M1b

0c N1c
0a

N3b
0a = M3b

0a −M2b
0c N1c

0a −M1b
0c N2c

0a

or equivalently

(2.9a)
M1b

0a = N1b
0a,

M2b
0a = N2b

0a + N1b
0c N1c

0a

M3b
0a = N3b

0a + N2b
0c N1c

0a + N1b
0c N2c

0a + N1c
0aN1d

0c N1b
0d

Theorem 2.4 The elements of basis B′ given by (2.8) are transformed as d-tensor fields
if

N1b′
0a′∂0ay

0a′ = N1c
0a∂1cy

1b′ + ∂0ay
1b′ (2.10)

N2b′
0a′∂0ay

0a′ = N2c
0a∂2cy

2b′ +
1
2
N1c

0a∂1cy
2b′ − 1

2
∂0ay

2b

N3b′
0a′∂0ay

0a′ = N3c
0a∂3cy

3b′ +
1
3
N2c

0a∂2cy
3b′ +

1
6
N1c

0a∂1cy
3b′ − 1

6
∂0ay

3b′ .

Theorem 2.5 The tensor J considered as a linear transformation on T ∗(E) in the basis
B̄ and B̄∗ has the form:

J = dy0bJ1a
0b ⊗ ∂1a + dy1bJ2a

1b ⊗ ∂2a + dy2bJ3a
2b ⊗ ∂3a, (2.11)

where
J1a

0b = δa
b , J2a

1b = 2δa
b , J3a

2b = 3δa
b ,

or in the matrix form

J = [dy0bdy1bdy2bdy3b]




0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0


⊗




∂0b

∂1b

∂2b

∂3b


 . (2.12)

The tensor J in the basis B′ and B′∗ determined by (2.8) and (2.4) has the form

J = δ′y0a ⊗ δ′1a + δ′y1a ⊗ δ′2a + δ′y2a ⊗ δ′3a. (2.13)
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Theorem 2.6 The tensor J considered as a linear transformation on T (E) in the basis
B̄ and B̄∗ has the form

J = ∂1a ⊗ dy0a + 2∂2a ⊗ dy1a + 3∂3a ⊗ dy2a (2.14)

and in the basis B′ and B′∗ has the form

J = δ′1a ⊗ δ′y0a + δ′2a ⊗ δ′y1a + δ′3a ⊗ δ′y2a. (2.15)

From (2.14) and (2.15) it follows

J(∂0a) = ∂1a, J(∂1a) = 2∂2a, J(∂2a) = 3∂3a, J(∂3a) = 0 (2.16)

J(δ′0a) = δ′1a, J(δ′1a) = δ′2a, J(δ′2a) = δ′3a, J(δ′3a) = 0. (2.17)

Definition 2.1 With respect to the coordinate transformation (1.3) the Liouville vector
fields have the form

Γ(1) = y1a∂3a, Γ(2) = y1a∂2a + 3y2a∂3a, (2.18)

Γ(3) = y1a∂1a + 2y2a∂2a + 3y3a∂3a.

In the geometry where Miron’s transformation group is used ([15], [16], [17]) Γ(1) and
Γ(3) are the same as here, but Γ(2) = y1a∂2a + 2y2a∂3a.

The vector fields Γ(α), α = 1, 2, 3 given by (2.18) in the basis B has the form

Γ(1) = z3a
1 δ3a, Γ(2) = z2a

2 δ2a + z3a
2 δ3a, (2.19)

Γ(3) = z1a
3 δ1a + z2a

3 δ2a + z3a
3 δ3a.

The relation between the components is given by:

z3a
1 = y1a, z2a

2 = y1a, z3a
2 = 3y2a + y1bM3a

2b (2.20)
z1a
3 = y1a, z2a

3 = 2y2a + y1bM2a
1b

z3a
3 = 3y3a + 2y2bM3a

2b + y1bM3a
1b .

The proof is obtained by (1.18). All z from (1.20) with respect to (1.3) are transformed
as tensors of type (1,0).

Theorem 2.7 The J structure transforms the Liouville vector fields in the following way:

JΓ(1) = 0 JΓ(2) = 3Γ(1) JΓ(3) = 2Γ(2). (2.21)
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The proof follows from (2.16) and (2.18).

Theorem 2.8 The Liouville vector fields in the basis B′ have the coordinates

Γ(1) = z′3a
1 δ′3a Γ(2) = z′2a

2 δ′2a + z′3a
2 δ′3a (2.22)

Γ(3) = z′1a
3 δ′1a + z′2a

3 δ′2a + z′3a
3 δ′3a,

where

6z′3a
1 = 2z′2a

2 = z′1a
3 = y1a (2.23)

2z′3a
2 = z′2a

3 = y2a + M1a
0b y1b

z′3a
3 =

1
2
y3a + M1a

0b y2b + M2a
0b y1b.

Proof. If we substitute ∂1a, ∂2a and ∂3a from (2.8) into (2.18) and compare with
(2.19) we obtain (2.23).

Remark. Γ(1), Γ(2) and Γ(3) determined by (2.19) and (2.22) satisfy (2.21).

3 The 3-sprays

Definition 3.1 A 3-spray on E is a vector field S ∈ χ(E), with the property

JS = Γ(3), (3.1)

where Γ(3) (see (2.1)) has the form

Γ(3) = y1a∂1a + 2y2a∂2a + 3y3a∂3a. (3.2)

Remark. As (3− (i− 1))!Γ(i) = Γ(i) (Γ(i) is the notation of Liouville vector field used
by R.Miron), so we have Γ(3) = Γ(3).

Definition 3.2 A curve c : I → M is a 3-path on M if its 3-extension c̃ is the integral
curve of a 3-spray.

Let us denote the curve c̃ in E = Osc3M by

c̃(t) : (xi(t), y1i(t), y2i(t), y3i(t)). (3.3)

The position vector r(t) of arbitrary point on c̃(t) is given by

r(t) = y0i∂0i + y1i∂1i + y2i∂2i + y3i∂3i. (3.4)
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If we introduce the notation

Γ(t) = y0i∂0i + y1i∂1i + y2i∂2i, (3.5)

then (3.4) can be written in the form

r(t) = Γ(t) + y3i∂3i. (3.6)

The tangent vector of c̃(t) is dr(t) = ṙ(t)dt and in the basis B̄ it can be expressed as

dr = dy0i∂0i + dy1i∂1i + dy2i∂2i + dy3i∂3i. (3.7)

Theorem 3.1 The tangent vector dr of c̃(t) in the basis B′ has the form

dr = δ′y0iδ′0i + δ′y1iδ′1i + δ′y2iδ′2i + δ′y3iδ′3i. (3.8)

Proof. From (2.8) we have

6∂3a = δ′3a

2∂2a = δ′2a + N1b
0aδ′3b

∂1a = δ′1a + N1b
0a(δ′2b + N1c

0b δ′3c) + N2b
0aδ′3b

∂0a = δ′0a + N1b
0a[δ′1b + N1c

0b (δ′2c + N1d
0c δ′3d) + N2c

0b δ′3c +
N2b

0a(δ′2b + N1c
0b δ′3c) + N3b

0aδ′3b.

The substitution of the above equations into (3.7) results

δr = dy0aδ′0a + (dy1a + N1a
0b dy0b)δ′1a +

[
1
2
dy2a + N1a

0b dy1b + (N2a
0c + N1a

0d N1d
0c )dy0c]δ′2a +

[
1
6
dy3a +

1
2
N1a

0b dy2b + (N2a
0b + N1c

0b N1a
0c )dy1b +

(N3a
0b + N2a

0c N1c
0b + N1a

0c N2c
0b + N1c

0aN1d
0c N1a

1d )dy0b]δ′3a.

Using (2.9a) and (2.5) the above equation takes the form (3.8).
From (3.8) it is clear, that dr is a vector field with respect to the coordinate transfor-

mations of form (1.1), i.e.

dr = δ′y0i′δ′0i′ + δ′y1i′δ′1i′ + δ′y2i′δ′2i′ + δ′y3i′δ′3i′ .

Using the notations ṙ = dr
dt , Γ̇ = dΓ

dt , from (3.6) we obtain

ṙ = Γ̇ +
dy3i

dt
∂3i, (3.9)

where
Γ̇ = y1i∂0i + y2i∂1i + y3i∂2i. (3.10)
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Proposition 3.1 . Γ̇ is not a vector field, but it has the property

J Γ̇ = Γ(3). (3.11)

Proof. If we apply the linear transformation J on Γ̇ and use (2.16) and (3.2), we get

J Γ̇ = y1iJ∂0i + y2iJ∂1i + y3iJ∂2i =

y1i∂1i + 2y2i∂2i + 3y3i∂3i = Γ(3).

Theorem 3.2 The vector fields S, which has the property JS = Γ(3) can be written in
the form

S = Γ̇ + G3i∂3i, (3.12)

where G3i are such functions, which under (1.1) transform in the following way:

G3i′ = G3i∂3iy
3i′ + Γ̇(y3i′). (3.13)

Proof. From (3.12), (3.11) and (2.16) it is obvious, that

JS = J Γ̇ + G3iJ∂3i = J Γ̇ = Γ(3).

From the above equation it can be seen that JS = Γ(3) is satisfied, when in (3.12) G3i

are arbitrary functions. When S is a vector field, G3i must satisfy some special conditions
with respect to (1.1). S is a vector field if

S = y1i∂0i + y2i∂1i + y3i∂2i + G3i∂3i = (3.14)

y1i′∂0i′ + y2i′∂1i′ + y3i′∂2i′ + G3i′∂3i′ .

Substituting ∂0i, ∂1i, ∂2i, ∂3i from (1.6) into (3.14) and equating the coefficients beside
the basis vectors, we get

∂0i′ : y1i′ = y1i∂0iy
0i′ (3.15)

∂1i′ : y2i′ = y1i∂0iy
1i′ + y2i′∂1iy

1i′

∂2i′ : y3i′ = y1i∂0iy
2i′ + y2i∂1iy

2i′ + y3i∂2iy
2i′

∂3i′ : G3i′ = G3i∂3iy
3i′ + y1i∂0iy

3i′ + y2i∂1iy
3i′ + y3i∂2iy

3i′ =

G3i∂3iy
3i′ + Γ̇(y3i′).

The first 3 equations in (3.15) are exactly the allowable coordinate transformatins
given by (1.1).
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Theorem 3.3 The vector field S is the tangent vector of the curve c̃(t) given by (3.3) if
and only if the functions G3i beside transformation law (3.13) satisfy the relations

G3i =
dy3i

dt
. (3.16)

Proof. From (3.9) and (3.12):

ṙ = Γ̇ +
dy3i

dt
∂3i, S = Γ̇ + G3i∂3i

it is obvious that S is parallel to ṙ if and only if (3.16) is satisfied.
The transformation law of G3i can be expressed in function of M ’s.

Theorem 3.4 When S is a spray with spray coefficients G3i, then S can be written in
the form

S = S0iδ0i + S1iδ1i + S2iδ2i + S3iδ3i, (3.17)

where

S0i = y1i (3.18)

S1i = y2i + y1jM1i
0j

S2i = y3i + y2jM2i
1j + y1jM2i

0j

S3i = G3i + y3jM3i
2j + y2jM3i

1j + y1jM3i
0j .

Sαi (α = 0, 1, . . . , 3) are d-tensors of type (1,0) i.e.

Sαi′ =
∂xi′

∂xi
Sαi. (3.19)

For α = 3 we have

G3i′ + y3j′M3i′
2j′ + y2j′M2i′

1j′ + y1j′M2i′
0j′ = (3.20)

∂xi′

∂xi
(G3i + y3jM3i

2j + y2jM3i
1j + y1jM3i

0j)

Proof. Substituting ∂0i, ∂1i, ∂2i, ∂3i from (1.18) into the first equation of (3.14) we
obtain (3.17) and (3.18). From (3.17) and (3.18) follow (3.19) and (3.20).
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Theorem 3.5 The vector fields Γ(1), . . . ,Γ(3), S and the linear transformation J are con-
nected by

JS = Γ(3)

J2S = 2!Γ(2)

J3S = 3!Γ(1)

J4S = 0.

(3.21)

Proof. (3.21) follows from (2.21) and (3.1).

4 Zermello’s conditions in Osc3M

The integral of action Ic∗ does not depend on the parametrization of the curve c∗ if
∫ 1

0
L(x, y1, y2, y3)dt =

∫ 1

0
L(x, y1′ , y2′ , y3′)ds, (4.1)

for any change of parameter s = s(t), where s(t) is at least C4 function, s′(t) > 0, s(0) = 0,
s(1) = 1, and

yαa′ = dα
s xa =

dαxa

dsα
, α = 1, 2, 3.

(4.1) will be satisfied if

L(x, y1, y2, y3) = L(x, y1′ , y2′ , y3′)s′, (4.2)

where s′ = ds
dt . We shall use the notation

s(α) =
dαs

dtα
, α = 1, 2, 3.

The equations which give the invariance of Ic∗ from the parametrization of the curve c∗

are called Zermello’s conditions.By pure calculation we get:

y1a = y1a′s′, (4.3)
y2a = y2a′(s′)2 + y1a′s′′,
y3a = y3a′(s′)3 + y2a′3s′s′′ + y1a′s′′′,
dy3a

dt
=

dy3a′

ds
(s′)4 + y3a′6s′2s′′ + y2a′(3(s′′)2 + 4s′s′′′) + y1a′s

′v.

Taking the partial derivatives of (4.2) with respect to s′, s′′, s′′′ and s
′v we get:

(∂1aL)y1a′ + (∂2aL)2s′y2a′ + (∂3aL)(3(s′)2y3a′ + 3s′′y2a′) = L(x, y1′ , y2′ , y3′), (4.4)
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(∂2aL)y1a′ + (∂3aL)(3s′y2a′) = 0 (4.5)

(∂3aL)y1a′ = 0. (4.6)

In (4.4)-(4.6) L = L(x, y1, y2, y3). If we multiply (4.4) with s′, (4.5) with 2s′′, (4.6)
with 3s′′′ and add all these equations we obtain:

(∂1aL)y1a′s′ + 2(∂2aL)(y2a′(s′)2 + y1a′s′′) +
3(∂3aL)(y3a′(s′)3 + 3y2a′s′s′′ + y1a′s′′′) = L(x, y1′ , y2′ , y3′)s′.

The substitution of (4.3) and (4.2) into above equations results

(∂1aL)y1a + 2(∂2aL)y2a + 3(∂3aL)y3a = L. (4.7)

If we (4.5) multiply with s′, (4.6) with 3s′′ and add all such obtained equations we get:

(∂2aL)(y1a′s′) + 3(∂3aL)(y2a′(s′)2 + y1a′s′′) = 0,

i.e.
(∂2aL)y1a + 3(∂3aL)y2a = 0. (4.8)

From (4.6) it follows:
(∂3aL)y1a = 0. (4.9)

Theorem 4.1 Equation (4.7)-(4.9) are the Zermello’s conditions in Osc3M .

The comparation of (4.7)-(4.9) with (1.21) results.

Theorem 4.2 The Zermello’s condition in Osc3M are:

Γ(1)L = 0, Γ(2)L = 0, Γ(3)L = L.

They are the necessary conditions for the invariance of Ic∗ from the parametrization
of the curve c∗.
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