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Abstract. The estimation of the remainder term in trapezoid formula for mappings with

bounded variation and for lipschitzian mappings are given. Applications for special means
are also pointed out.

1. INTRODUCTION

The following inequality is well known in the literature as the trapezoid inequality

[ s@ye = PTG oy 1< L - (R

where the mapping f : [a,b] — R is supposed to be twice differentiable on the

interval (a,b) and having the second derivative bounded on (a,b), that is || f" ||c:=
SUDg¢(a,b) | f”(l’) |< Q.

Now, if we assume that I}, : a = 29 < 21 < ... < x,,_1 < T, = b is a partition of

the interval [a,b] and f is as above, then we have the trapezoid quadrature formula:

/ab f(@)dz = Ap(f, 1) + Re(f, In) (1.2)
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where Ap(f,1I},) is the trapezoid rule

f:Ih Z 377, +f ZUH,l)]h

=0

and the remainder term Ry (f,I;) satisfies the estimation

| Re(f, 1) |_ 5 1" o Z hy

where h; :== z;;1 —x; fori =0,...,n — 1.

When we have an equidistant partitioning of [a, b] given by

b—

a. .
I,:z;:=a+ 1, ©=0,...,m

then we have the formula

[ £@)iz = () + Bra()

where
b—a' —a. —a,.
Arp(f) = == _( i)+ fla+ (i +1))]
i=0
and the remainder satisfies the estimation
(b - a)3 n
| Bra(f) 1< 55 O £ o

For other trapezoid type’s inequalities see the recent book [1].

(1.3)

(1.4)

(1.5)

(1.6)

(1.8)
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2. TRAPEZOID INEQUALITY FOR MAPPINGS WITH BOUNDED
VARIATION

The following trapezoid inequality for mappings with bounded variation holds:

Theorem 2.1. Let f :[a,b] — R be a mapping with bounded variation on [a,b].

Then we have the inequality

fla) + £0)
[ syar - T o) 1< Lo - at) (2.1

where VP(f) is the total variation of f on the interval [a, b].
The constant % 15 the best possible one.
Proof. Using the integration by parts formula for Riemann-Stieltjes integral we

have

[ 0wy = 1O o) [ ey 22)

If p: [a,b] — R is continuous on [a, b] and v : [a,b] — R is with bounded variation
on [a,b], then

[ paddota) 1< max | ple) [ V20) (23)
Applying the inequality (2.3) for p(z) = z — 22, v(z) = f(z),z € [a,b], we get
b a+b a+b _, b—a_,
- < — = . 2.4
[ o= S5 @) < max o= S92 VI = TRV (24)

and the inequality (2.1) is proved.
Now, assume that the inequality (2.1) holds with a constant C' > 0,i.e.,

f(a) + f(b)
2

[ ey - (b~ a) |< CO—a)VA(). (2.5



28
Consider the mapping f : [a,b] — R,

f(x):{ 1 if z € {a,b},

0 if z€(a,b).
Then f is with bounded variation and we have
b fla)+ f(b
/a f(@)de — %(b —a)=—(b—a)
and

Vi (f)(b—a)=2(b—a)

and then by (2.5) we get
b—a<2C(b—a)

which implies that C' > % and the sharpness of (2.1) is proved.
The following corollary holds:

Corollary 2.2. Let f : [a,b] — R be a differentiable mapping on (a,b) whose

derivative is integrable on (a,b). Then we have the inequality:

f(a) + f(b)
2

b 1 ,
[ Fayda - (b=a) <5 I1£ 1l (b~ o). (2.6

Remark 2.3. It is well known that if f : [a,b] — R is a convex mapping on |a, b],

then Hermite-Hadamard’s inequality holds

f(a;rb)sbia/abf(x)dfcsw. (2.7)

Now, if we assume that f : I C R — R is convex on [ and a,b € Int(I),a < b;
then f’ is monotonous nondecreasing on [a,b] and by Theorem 2.1 we get

fla)+fb) 1
2 b—a

0 < [ f@r < Sl - a) (2.8)
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which provides a counterpart for the second membership of Hermite-Hadamard’s

inequality.
The following corollary for trapezoid composite formula holds:

Corollary 2.4. Let f :[a,b] — R be a mapping with bounded variation on [a,b]
and I, a partition of [a,b]. Then we have the trapezoid quadrature formula (1.2) and

the remainder term Ry(f, 1) satisfies the estimation:

| Relf, 1) 1< 51 (VD). 29)

where y(h) := max{h;|i =0,...,n — 1}.

Moreover, the constant % 1S the best possible one.
The case of equidistant partitioning is embodied in the following corollary:

Corollary 2.5. Let I,, be an equidistant partitioning of [a,b] and f be as in The-

orem 2.1. Then we have the formula (1.6) and the remainder satisfies the estimation:

| Bralf) |< (0= @)V (). (2.10)

Remark 2.6. If we want to approximate the integral fff(x)dx by trapeziod
formula Az, (f) with an accuracy less that ¢ > 0, we need at least n. € N points for

the division [,,, where

1

Nne = [25

(b= a)Vy ()] +1

and [r] denotes the integer part of r € R.
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Comments 2.7. If the mapping f : [a,b] — R is neither twice differentiable
nor the second derivative is bounded on (a,b), then we can not apply the classical
estimation in trapezoid formula using the second derivative. But if we assume that
f is with bounded variation, then we can use instead the formula (2.9).

We give here a class of mappings which are with bounded variation but having
the second derivative unbounded on the given interval.

Let foq : a,b] = R, fyq(z) = (29 — a9)? where p € (1,2) and ¢ > 2. Then
obviously

fr () == pgz? H(z7 — a®)? 1 2 € (a,b)

p.q

and

_ 2" ¥[(pg — D7 — (¢ — 1)a’]
9 (x4 — a9)2-p

, © € (a,b).
It is clear that f is with bounded variation and
Vo(f) = (b —a”)" < o0

but lim, . f, ,(7) = +oo.

3. TRAPEZOID INEQUALITY FOR LIPSCHITZIAN MAPPINGS

The following trapezoid inequality for lipschitzian mappings holds:

Theorem 3.1. Let f : [a,b] — R be an L—lipschitzian mapping on [a,b]. Then

we have the inequality

| /abf(a:)da: _ M(b _a) < iL(b o). (3.1)

The constant i 1s the best possible one.
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Proof. Using the integration by parts formula for Riemann-Stieltjes integral we

have

[ = IO oy - [ pwan 32)

If p:[a,b] — R is Riemann integrable on [a,b] and v : [a,b] — R is L-lipschitzian
on [a,b], then

|/ ) dv(z |<L/|p | da. (3.3)
Applying the inequality (3.3) for p(z) = z — “2, v(z) = f(z),z € [a,b], we get
b a+b b a+b
|/Q(a:— ; )df(a:)|§L/G|x— — | dz. (3.4)

But

b b b—a)?
/|x_a+ |dx:( a)
a 2 4

and then by (3.4), via the identiry (3.2), we deduce the desired inequality (3.1).
Now, assume that the inequality (3.1) holds with a constant C' > 0,i.e.,

| / )dz — W(b —a) |< CL(b — a). (3.5)

Consider the mapping f : [a,b] = R, f(z) =| z — %t | . Then

a+b a+b
| —ly—

I<lz -y

| f(x) = fly) =] = -

for all x,y € [a, b]; which shows that f is L—lipschitzian with the constant L = 1.

For this mapping we have

/abf(x)dx -t L

and

and then by (3.5) we get
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which implies that C' > 1 and the sharpness of (3.1) is proved.
The following corollary holds:

Corollary 3.2. Let f : [a,b] — R be a differentiable mapping on (a,b) whose

derivative is bounded on (a,b). Then we have the inequality:

fla) + f(b)
2

b 1 l 2
[ Fa)da - (=) 1< 711 f' Il (b= 0)?. (3.6)

Remark 3.3. It is well known that if f : [a,b] — R is a convex mapping on |[a, b],
then Hermite-Hadamard’s inequality holds (see (2.7)).
Now, if we assume that f: I C R — R is convex on I and a,b € Int(I),a < b;

then f! is monotonous nondecreasing on [a,b] and by Theorem 3.1 we get

0< 1O [ pyar < L1000 - a) (3.7

which provides another counterpart for the second membership of Hermite-Hada-

mard’s inequality.
The following corollary for trapezoid composite formula holds:

Corollary 3.4. Let f : [a,b] — R be an L—lipschitzian mapping on [a,b] and
Iy, a partition of [a,b]. Then we have the trapezoid quadrature formula (1.2) and the

remainder term Rr(f,I,) satisfies the estimation:

n—1
| Rr(f, 1n) |< %L > b (3.8)

1=0
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Moreover, the constant i 15 the best possible one.

The case of equidistant partitioning is embodied in the following corollary:

Corollary 3.5. Let I,, be an equidistant partitioning of [a,b] and f be as in The-

orem 3.1. Then we have the formula (1.6) and the remainder satisfies the estimation:

| Rralf) 1< 5

S

(b—a)’. (3.9)

Remark 3.6. If we want to approximate the integral fff(x)dx by trapeziod
formula Az, (f) with an accuracy less that ¢ > 0, we need at least n. € N points for
the division I,,, where

1L 9
nE.—[4 5(b a)’] + 1.
4. APPLICATIONS FOR SPECIAL MEANS

Let us recall the following means:

1. Arithmetic mean

A= A(a,b) := atb

— &, b 2 05
2. Geometric mean

G =G(a,b) = Vab, a,b > 0;
3. Harmonic mean

2
H = H(a,b) := n

,a,b > 0;

SH

1
b
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4. Logarithmic mean

L = L(a,b) := ﬁ’ a,b > 0,a # b;
5. Identric mean
I =1I(ab):= E(Z—Z)ﬁ,a,b > 0,a # b;
6. p-Logarithmic mean
prtl _ gl

1
L,=Ly(a,b) := [ ] ,p € R\{—1,0},a,b > 0,a #b.

(P+1)(b—a)
It is well known that L, is monotonous nondecreasing over p € R with L_; := L

and Ly := I. In particular, we have the following inequalities

H<G<L<I<A. (4.1)

In what follows, by the use of Theorem 2.1, we point out some new inequalities
for the above means.
1. Let f:]a,b] = R (0 <a <b),f(x)=2F,pe R\{—1,0}. Then

b i a /abf(x)dx = Ly(a,b), M = A(a”, V"),

£l =l p | (b—a)Lj=1,p € R\{~1,0,1}.

Using the inequality (2.6) we get
| L2(a,b) — A(a”, bP) |< uLg:}(b —a). (4.2)

2

b—a
G?(a,b)

[ sz = 10,0, BT — i), 1) =



Using the inequality (2.6) we get

(b—a)*
262

0<L-H< LH.
3. Let f:[a,b] > R(0<a<b),f(x)=Inz. Then

1
b—a

a b b—a
w =InG(a,b),||f'|| =

b
/ f(z)dx =1nl1(a,b),
Using the inequality (2.6) we get

(b—a)?
2L

.

1< =K [
ex
o= p

Now, using Theorem 3.1 we can also state the following inequalities:

4. Let f:a,b) > R (0 <a<b), f(x)=2aP,pe R\{—1,0}. Then

, o L pbp_l lf p Z 17
1" llo = 0p(a, b) := { |p|a™t if pe (—oo,1)\{~1,0}.

Using the inequality (3.6) we get

| L3(a,) — A, ) |< 15,(a, D)6 — ).

5. Let f:[a,b] = R (0 <a <b), f(z) =1<. Then

1
1 N0 = =

a?’

Using the inequality (3.6) we get

b—a
0<L-H<
- — 4q?

LH.

L(a,b)
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(4.4)

(4.6)
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6. Let f:[a,b] = R (0 <a<b),f(r)=Inz. Then
1
! ——
T
Using the inequality (3.6) we get

b—a
4a

ex
G P

). (4.7)
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