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Abstract. A necessary condition for qualitative stability of the solutions of first order
linear autonomous ordinary differential systems is given.

1. INTRODUCTION

In an earlier work, Collins [2] derived some necessary and sufficient algebraic
conditions for the origin of a homogeneous polynomial planar vector field of arbitrary
degree to be a centre, an unstable focus or a stable focus. Also, Sleeman et al
[10] investigated the minimum number of limit cycles which a certain trigonometric
autonomous ordinary differential system has. In this paper, the author established
a condition for two first order linear autonomous ordinary differential systems to be

qualitatively stable. We prove the following:
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Theorem. Let

A= AX (1)
Y' = BY (2)

be two linear first order one-dimensional autonomous ordinary differential systems
which are qualitatively equivalent. Suppose 61,0, are the eigenvalues of the coefficient
matriz A of (1) and py, po the eigenvalues of the coefficient matriz B of (2) such that
det(A) = ajjas — a2a91, det(B) = byibys — biaber, 01 < J3 < 0 and p; < pe < 0.
Then a necessary condition for the solutions of (1) and (2) to be qualitatively stable
is the existence of two real non-singular matrices, M and N defined by det(M) =
M1 Mag — MyaMay and det(N) = nyinge — nyangy such that

(i)

tr(A) + X det(M)
tr(A) — A Compgmg ! "
(i)
tr(B)+A det(N) _, (R2)

t?"(B) — A N12M21
where 61 = p1 = A1, 02 = pa = Ao, A < Ao, A= Xy — Ao, myamar # 0 and nyongy # 0.

2. QUALITATIVE CLASSES

Let

Xi = fi(X) (3)
Y =g;(V) (4)
be two systems of first order autonomous ordinary differential equations. Then the
systems are said to be qualitatively equivalent if there exists a continuous bijection
which maps the phase portrait of (3) into that of (4) in such a way that the orientation
of their trajectories is maintained [8, 9]. A relation p between the two qualitatively

equivalent systems (3) and (4) is thus an equivalence relation [4]. If S represents the set

of all first order autonomous ordinary differential systems, then the qualitative classes
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are the disjoint equivalence classes into which S is partitioned by p. In general, there
are ten qualitative classes for linear systems. Each of these classes is characterized
by a unique phase portrait called an algebraic type. The ten algebraic types are
further grouped into four qualitative (or topological) types according to the following
distinct qualitative behaviour viz (a) Stable behaviour (b) Unstable behaviour (c)
Centre (d) Saddle. The four algebraic types which exhibit stable behaviour are the

node, improper node, focus (or spiral) and star.

3. JORDAN CANONICAL FORM

There is a connection between qualitative equivalence of differential systems and
similarity (or equivalence) of matrices in the sense that if two differential systems
are qualitatively equivalent, then their coefficient matrices are similar [6]. Now, two
matrices A and B are similar if there exists a non-singular matrix P such that B =
P~7'AP. Consider the two systems (1) and (2) which belong to the same qualitative

class. The solutions of these systems are related by the equation
X = PY, (5)

where B = P~1AP.

Now consider the canonical system
Z'=JZ (6)

for (1) and (2) where J is the Jordan canonical form or matrix. Using the fact that
similarity of matrices is an equivalence relation on the set of n x n real matrices [7],

we have

J=M"'AM = N 'BN (7)

where M and N are non-singular matrices. Hence, all qualitatively equivalent systems
have the same Jordan canonical form. In particular, since similar matrices have the

same eigenvalues, then all differential systems which belong to the same qualitative
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class necessarily have the same eigenvalues. It thus follows that the solutions of (1)

and (2) are obtained by solving (6) and using the following relationships:
X =Mz (8)

Y =NZ. (9)

4. PROOF OF THEOREM

Since §; < d3 < 0 and p; < pe < 0, then the phase portraits of (1) and (2) are

(M0
=% )

where \; = 0; = p1, Ay = 03 = py. We note that since A and B are similar, then

stable nodes. Therefore,

there exist non-singular matrices M and N such that (7) is satisfied. Using (7) , we

have
m22m11(011 - >\1) + MaoosMmaiai2 — m12m21(a22 + >\1) — mygmyiag = 0 (10)
n22n11(b11 - )\1) + ngong b — 71127121(522 + )\1) — ny2n11byy =0 (11)
—m12m21(a11 - )\2) + m11m22(a22 - )\2) — M1 M1z + Mi1myaag = 0 (12)
_n12n21(b11 - >\2) + n11n22(b22 - >\2) — Ng1Naabia + ny1nyebe = 0. (13)

Adding (10) and (12), and (11) and (13), we have
maiimaa[(a1r — A1) + (age — A2)] — maamar [(age + A1) + (@11 — A2)] =0 (14)

n11n22[(b11 - )\1) + (b22 - )\2)] - n12n21[(622 + )\1) + (bll - )\2)] =0 (15)

from which the final results follow.
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5. DISCUSSION

As can be seen from (8) and (9), the critical issue in arriving at the solutions
of (1) and (2) is the ability to construct the non-singular matrices M and N. Our
theorem enables one to construct these matrices. For example, consider the following

two differential systems which are qualitatively stable viz

X, =-X;
X, = —2X, (16)
and
X, =X, —2X,
X, = 3X, — 4X,. (17)
Here,

~1 0 1 -2
) I C )}

tr(A) =tr(B) = =3, d; = pp = —2 and §, = py = —1. From (R1) and (R2),
mi1Moy = 2MiaMa; (18)

N11M22 = 2M12N91. (19)

When mjama; # 0, then (18) is satisfied by, for instance, m; = 2, mgy = 1, myy =

21
v=nv=(71)

satisfies (R1) and (R2). We note that (R1) and (R2) are also satisfied by the following

mo; = 1. Hence,

matrices amongst others :

(a) (12) (32)
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