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Abstract. The theory of functions of several complex variables which is a natural devel-
opment of the theory of functions of one complex variable, has come to the fore due to
effective applications of the method of this theory in a variety of sciences.

On the theory, Boulami [1] created an algebraic structure, this structure we found to be
interesting as it has some attributes in the area of functional analysis when an appropriate
metric is defined upon it . This paper is based majorly on the theorems of Hartog.

1. PRELIMINARIES

In an n-dimensional complex space C™ the point z = (z1, 29, ..., 2,) is n-tuppled
and each 2z, = Top_1 +ix9k, kK =1,2,...,n. The complex space C™ may be interpreted
as an ordinary Euclidean space of the real variables z;, j = 1,2, ..., 2n of dimension
2n hence C™ = R*". For this reason, the notions of an open and a closed region, an
interior, an exterior and a boundary point, a § — neighbourhood of a point z° etc, can
be explained from R?" point of view . For instance the set C(d,2°) contains points

z € C"™ that satisfy the condition:

|Zk—2k0 |< 6k7 k:1,2,...,n.
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where the symbol § = (dy,ds, ..., §,) stands for an ordered collection of real numbers
6 >0, D(r,z%) = C(r,2%). r = (ri,r9,...,mn), T& > 0 is called a disk centred at
20 = (2% 20, ..., 2,%). Let w = f(2) be a function defined on A C C™ then wy, = f,(zx)
where zj, is obtained by fixing all z;, j =1,2,....,k = 1,k+1,...,n.

Suppose for arbitrarily fixed values: 20,23, ...,20_|, 20,1, ..., 23 each function wy is

analytic in the corresponding domains Ay C C™ then

owy lim f(z1, 29, o2k 1, 2k + Azky 2ks1s s 2n) — f(21, 22, ooey 20)
0z,  Az—0 Az

exists and w = f(z) is analytic in C™ (Hartog’s). Let 7 be a cover of C™ and let

¢ : 7 — C be a function of class C'! on 7 then:

R PN
dgzﬁ—]z::la ’dz]+‘yz::la§jdz]

J

where
o0 _1( 06 0
8zj 2 8:62]-,1 6372]'
and
o _1( 0o 00
85]' N 2 8372]',1 aib'gj
since
2% _ 8(/) 81'2]'_1 I 8(/) 81'2]'
sz 8x2j_1 8zj 81‘2]' 6zj ’
3;92?];1 =1 and 389:; =i. The set of all analytic function in 7 is denoted by H (7).

Notations: We adopt the following notations for the sake of brevity:

e By bd we mean the boundary of a polydisk d = dizd>x...d,,x in C™ where each

di, 1 =1,2,...,n is a disk in the complex plane C.

For any f € N™ there are m-tuples that is 5 = (31, 52, ...0m) € N™

i Bi=bi+ Bt + B
o 2 =117 27

32?:1 Bj

e 0° =
m B
Hj=18zj
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Dy = 0/0zy so that Doy = 0/0x9,1 and Doy, = 0/0xo

The smallest convex set in 7" C 7 denoted by A
o T'=A" and 0T = A"

e (2 is a cover of C such that Q" = 7.

Cauchy’s theorem for a triangle. Suppose A is a closed triangle in a plane

open set ), p € Q, fis continuous on Q and f € H(Q — p) then

/bA f(z)dz = 0.

Morera’s theorem. Suppose f is a continuous complex function in an open set

Q such that:
dz = 0.
IRICLE

For every closed triangle /\ C Q) then f € H(Q).

Remark.

e The above theorems are valid for a single complex variable z. For z = (z1, 2s,

..., Zn), we merely repeat their applications as in:
/ ¢(2)dz < / / / fi(z1) fa(z2)... fu(2n)d21d2s...dzy = 0
T bA Jon  Jen

e The theorems also apply for f € H(2). For more explanation as well as the
proofs of the theorems see Rudin [6] pp. 221-224.
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2. RESULTS

Theorem. The set H(T) is a ring and a vector space over C.

Proof. Let f,g € H(7) and «, 3 scalars, then af, fg € H(7) now:

af = af(z, 22, ..., 2)
= aF(r1,29,...,29,)
= Ozuf(xl,xg,,...,xgk,l) +iavf(x2,x4,...,:c2k)

= aul + i, k=1,2,..,2n.
similarly, 5 = fu? + iSv? hence:
af + Bg = aul + puf +i(av! + pv?) = U +iV.

By the C' — R equations;

Do au! = D2kcwf, Dorou! = =Dy 100
and
DZk—lﬁug = D2kﬁvga DZkﬁug = _D2k—lﬁvga k= ]-7 27 teey 2TL,
then;
Dy U = Doy (Oéuf + Bug) = Doy, (OéUf + 5“9) = Dy V
and

DQkU == ng (CY’LLf + Bug) == _D2k—1 (&Uf + 51)9) == —ng_ﬂ/

the C' — R equations are satisfied, consequently; af + fg = Bg + af € H(7).
It is easy to see that: (a+ 8)f =af + 8f = f(a+ B) € H(7). As before,

h(z) = h(z;) =U"+4dV" i=1,2,...,2n

and

g=UI+iV?
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then;
gh = (U +iV?) (U" +iV") = (U'U" = VOVh) +i (VIU" + UV = U +iV,
then
Dy U = Doy (UU" — VIVM) = Doy (VIU" + UIVH) = Dy, V.
Also
D1V = Do (VIU" + UIV") = — Doy, (UU" — VIV") = —DyU.
It is easy to see that:
af(Bg) = Bagf € H(T)

and

(9+ f)h=gh+ fh=h(g+f)€ H(T).
Thus the proof is established.
Theorem. Let d be a polydisk covering of C™ and let ¢ be a continuous function

in d which on d is an analytic function relative to each of coordinate z; when other

coordinates are fixed in 7. Then ¢ € C* N H(d) and

_ 1 ¢(€17§27 7€n)
¢(2) = 2" ?{d (& — 21) (& — 22)... (& — zn)d&d&'"dgn’ zed.

Proof. For every k = 1,2, ...,n the function z; — ¢(z1, 22, ..., 2,,) is continuous in
d, and is analytic in dj, the other coordinates, i.e., 21, 22, ..., Zk—1, Zks1, - Zn being

fixed as ay, g, ..., p_1, Q)1 1, ..., y. By the Cauchy integral formula in one variable,

we have:
1 A, 9y ey Q1 k) O « e, O
Ok (215 22y wovy Qg oa2y) = =— D01, 09, 0y Q1 2y V1) V2, 0y On) dz.
271 Jbdy, (2 — ag)
We have
1 (21, 0, (3, ...y ()
(g, 22,y ey 2n) = — 2 0 N dzy.

270 Joay (21 — o)
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Now let as, ay, ..., o, be constants and vary z, whilst z; € bd;, remains asd it is, then
from the function zy — ¢(21, 22, a3, ..., ;) which is analytic in ds and continuous in

dy we have

dZQ .

1
¢k)(a17a27z37247 7Zn) = 5 ¢(ZI,Z2,Q3,Q4, ,an)
271 Jody (22 — an)

If we continue in this fashion and combine our result, we have

1 ¢(Zl,22,...,zn)
ey Q) = —— dz1dzy...dz,.
P01, 02, -5 Q) 27" 7{,1 (21 — 1) (20 — ) ...(2n — Q) 10F2--0

By interchanging between «; and z;, j = 1,2,...,n the theorem is proved .Also the
integrand in the above equation is of class C'* and it is analytic with respect to z

hence ¢ € C*° N H(d)

Corollary. Let 7 be a covering of C™, then for any compact T C T and any
neighbourhood covering d of T and B = (B, P2, ..., Bm) there exist constant Cyz such
that for all ¢ € H(T)

lubr | 0°¢ 1< C || ¢ [la) -

Proof. Suppose that d = d;,d>,...,d, covers any polydisk containing 7. The
proof follows from the repeated use of Cauchy’s inequality and the fact that 7T is

covered by a finite number of polydisk each of which is contained in d:

lub ¢ <C 7{ | ¢(z1, 2 Zm) | dxidx
T 62;?1 > VB i 1y %2y -++y “m 1 2-
Also
b + a9 b
luby |——— 027{ ——@(21, 29y vy Zm) | dxsdx
T PPN B2 8z11¢( 1, 22 )| dxsdzy

< Cp,Cp, ?ile | (21, 22, .., 2m) | dardzadrsda,.

2

continuing in this fashion, we have

lubr | o) |< C’g}é | &(21, 29, oy 2m) | dx1dxs...dToy.
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Theorem. Let (¢,,) be a sequence of analytic functions in T which converges

uniformly on a compact subset T of T to a function ¢ then ¢ € H(T).

Proof. Let ¢,,, € H(7) for m; = 1,2,... i=1,2,...,n and ¢,,, — ¢ uniformly
on the compact subset T of 7. Then the convergence is uniform on each compact disc

in 7, ¢ is continuous, since 7' is compact, then

2z = i 7{ .
bT¢ z mlgloo ¢Z

< lim lim --- lim 7{ 7{ ---7{Afl(zl)fg(zz)...fn(zn)dzleQ...dzn:O

mi1—00 Mo —>00 Mp—>00 bA JbA

since each
bA

by Cauchy’s theorem. Hence Morera’s theorem implies that ¢ € H(7).

Corollary. By defining the metric:

0 j=k
d(¢f’¢k)‘{|¢j—¢k|,j7ék

as that induced by the norm
& 1) = C—lUbT 1 0%9 |

(H(1),d) is Banach whilst (H(T),d) is a normed space of complex functions with

respect to pointwise addition and scalar multiplication.
Proof. It suffices it to show that
> L by | 07
||¢||L1(d)—c_ﬁuT| ¢ |

induces d(¢;, ¢r), see Simmons [7] p. 81.
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