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Abstract. In [1] D. Blair gave a complete classification of 3–type curves in the space E3.

In a recent paper [8] we gave a complete classification of 3–type curves in the space E4. In

this paper a complete classification of 3–type curves in the space E5 is given.

The notion of finite type curves was introduced by B. Y. Chen around 1980. A

closed curve γ in a Euclidean space En is of finite type (type k, k ∈ N) if its Fourier

series expansion with respect to an arclength parameter is finite (has exactly k nonzero

terms).

It is proved in [3] that a closed curve γ : [0, 2πr] 7→ En is of k–type (k ∈ N) if and

only if there is a vector A0 ∈ En, natural numbers p1 < p2 < . . . < pk, and vectors

A1, . . . , Ak, B1, . . . , Bk ∈ En such that ‖Ai‖2 + ‖Bi‖2 6= 0 (i = 1, . . . , k) and

γ(s) = A0 +
k∑

i=1

(Ai cos
pis

r
+ Bi sin

pis

r
).

It is shown in [5] that every curve of the type k in the space En lies in an affine

subspace of the dimension 2k. Hence, the only interesting case is n ≤ 2k.
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In particular, 3–type curves in the space E3, have been investigated several times

in the literature (see e.g. [1], [9], [10]). One of the most important papers in that

direction is the paper [1] by D. Blair, where a complete classification of such curves

in the space E3 is given. In [8] we have classified all 3–type curves in the space E4.

In this paper we will go a step further, and classify 3–type curves in the space E5.

In a subsequent paper we shall also consider 3–type curves in the space E6. This will

obviously complete the investigation of 3–type curves in Euclidean spaces.

Our paper is close to the paper [1], but it is not a simple imitation of this paper.

Namely, in the space Ek+1 (k ∈ N) we often really meet some cases and situations

which are contradictory in the space Ek. This paper is also very closed to the paper

[8], in particular the methods which we use are similar to the corresponding methods

in the paper [8]. In view of these similarities, we very often mention only results

omitting the proofs.

It is also important to say that, referring to the parameters p1, p2, p3 which are

involved for all 3–type curves in any Euclidean spaces, some cases which are impossible

in the space E4 become quite possible in the space E5, of one dimension more.

We also need to mention here that by usual lifting (x, y, z, t) 7→ (x, y, z, t, 0) of the

space E4 in E5, every 3–type curve in the space E4 becomes a 3–type curve in the

space E5. So, it is interesting to search only for 3–type curve in the space E5 which

are not of such a type.

By the general statement, we have that a curve γ ⊆ E5 is of 3–type if there are natu-

ral numbers p1 < p2 < p3 (frequency numbers of the curve) such that γ : [0, 2πr] 7→ E5

has the form

γ(s) = A0 +
3∑

i=1

(Ai cos
pis

r
+ Bi sin

pis

r
),

where A0 ∈ E5 and A1, A2, A3, B1, B2, B3 ∈ E5 are such that ‖Ai‖2 + ‖Bi‖2 6= 0 for

each i = 1, 2, 3.

It is proved in [3] that the last condition is equivalent to the following system of

equations:
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(O)
3∑

i=1

p2
i Dii = 2r2,

I(l)
3∑

i=1
2pi=l

p2
i Aii + 2

3∑
i,j=1
i>j

pi+pj=l

pipjAij −
3∑

i,j=1
i>j

pi−pj=l

pipjDij = 0,

I(l)
3∑

i=1
2pi=l

p2
i Aii + 2

3∑
i,j=1
i>j

pi+pj=l

pipjAij −
3∑

i,j=1
i>j

pi−pj=l

pipjDij = 0,

where

Aij = 〈Ai, Aj〉 − 〈Bi, Bj〉, Aij = 〈Ai, Bj〉+ 〈Aj, Bi〉,
Dij = 〈Ai, Aj〉+ 〈Bi, Bj〉, Dij = 〈Ai, Bj〉 − 〈Aj, Bi〉,

(i, j = 1, 2, 3), and l runs the set

A = {2p1, 2p2, 2p3, p1 + p2, p1 + p3, p2 + p3, p2 − p1, p3 − p1, p3 − p2}.

The main theorem of this paper is the following.

Theorem. If γ(s) is a 3–type curve in the Euclidean space E5, then γ(s) belongs

to a k–parameter family of curves where k is one of the numbers 4, 6, 9, 11, 13, and

we have one of equalities p2 = 3p1, p3 = 3p1, 3p2, 2p1 + p2, 2p2 + p1, 2p2 − p1.

The proof of this theorem follows from a series of propositions which we are going

to prove.

In the sequel, the most important thing is to differ the cases when all indices in

the set A are distinct, or some of them coincide.

The complete classification of all these cases is as follows.

p2 6= 3p1, p3 6= 3p1, 3p2, p2 + 2p1, 2p2 ± p1 (10)

p2 = 3p1, p3 6= 5p1, 7p1, 9p1 (20)

p2 6= 2p1, p3 = 3p1 (30)

p2 6= 3p1, p3 = 3p2 (40)
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p2 6= 3p1, p3 = p2 + 2p1 (50)

p2 = 3p1, p3 = 5p1 (60)

p2 6= 3p1, p3 = p1 + 2p2 (70)

p2 = 3p1, p3 = 7p1 (80)

p2 6= 2p1, 3p1, p3 = 2p2 − p1 (90)

p2 = 2p1, p3 = 3p1 (100)

p2 = 3p1, p3 = 9p1. (110)

We shall discuss all these cases separately. First introduce the following notations:

A1 = (a11, a12, a13, a14, a15), B1 = (b11, b12, b13, b14, b15),

A2 = (a21, a22, a23, a24, a25), B2 = (b21, b22, b23, b24, b25),

A3 = (a31, a32, a33, a34, a35), B3 = (b31, b32, b33, b34, b35),

If some index in the set A differs of all other indices in this set , we shall call it

”single”. The set A obviously has at least two single indices, namely 2p3 and p2 + p3.

These indices are evidently the greatest in A.

Lemma 1. By a suitable change of the coordinate system, we can assume that

A3 = (µ, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0) (µ 6= 0).

In this system we have b21 = −a22, b22 = a21, thus B2 = (−a22, a21, b23, b24, b25).

We omit the proof since it is quite similar to the corresponding proof of Lemma 1

in [8]. The similar is true in the next lemma.

Lemma 2. If 2p2 and p3 − p2 are single parameters, then by a suitable change of

coordinate system we can assume that

A2 = (0, 0, ν, 0, 0), B2 = (0, 0, 0, ν, 0),

for some ν 6= 0.

Proposition 1. The case (10) is impossible.



111

We again omit the proof.

Proposition 2. In the case (20) a curve γ(s) has the type 3 if and only if, in a

coordinate system, we have

A1 = (0, 0, a13, a14, a15), B1 = (0, 0,−a14, a13, b15),

A2 = (0, 0, ν, 0, 0), B2 = (0, 0, 0, ν, 0) (ν 6= 0),

A3 = (µ, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0) (µ 6= 0),

where

a13 =
a2

15 − b2
15

6ν
, a14 = −a15b15

3ν
.

Note that the case (20) is impossible in the space E4. But in the space E5 this

case obviously generates the whole family of curves. Namely, we can obviously take

that a15, b15, µ, ν are arbitrary parameters such that µ, ν, a2
15 + b2

15 6= 0. Hence we get

a 4–parameter family of curves.

Proposition 3. In the case (30) a curve γ(s) has the type 3 if and only if, in a

coordinate system, we have

A1 = (a11, a12, 0, 0, a15), B1 = (−a12, a11, 0, 0, b15),

A2 = (0, 0, ν, 0, 0), B2 = (0, 0, 0, ν, 0) (ν 6= 0),

A3 = (µ, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0) (µ 6= 0),

where

a11 =
a2

15 − b2
15

6µ
, a12 = −a15b15

3µ
.

The case (30) is also impossible in the space E4. But in the space E5 it also

generates the whole family of curves. Namely, we can take that a25, b25, µ, ν are

arbitrary parameters such that µ, ν, a2
25 + b2

25 6= 0, while a21, a22 are expressed by

them. Hence we again get a 4–parameter family of curves.
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Proposition 4. In the case (40) a curve γ(s) has the type 3 if and only if, in a

coordinate system, we have

A1 = (0, 0, ν, 0, 0), B1 = (0, 0, 0, ν, 0) (ν 6= 0),

A2 = (a21, a22, 0, 0, a25), B2 = (−a22, a21, 0, 0, b25),

A3 = (µ, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0) (µ 6= 0),

where

a21 =
a2

25 − b2
25

6µ
, a22 = −a25b25

3µ

and a2
21 + a2

22 6= 0.

Note that the case (40) is also impossible in the space E4. But in the space E5 it

generates a 6–parameter family of curves.

Proposition 5. (Case (50)) (p2 6= 3p1, p3 = p2 + 2p1). In this case a curve γ(s)

has the type 3 if and only if in a coordinate system we have

A1 = (a11, a12, a13, a14, a15), B1 = (−a12, a11, b13, b14, b15),

A2 = (a21, a22, ν, 0, 0), B2 = (−a22, a21, 0, ν, 0)

A3 = (µ, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0),

where µ 6= 0, a2
21 + a2

22 + ν2 6= 0 and

a11a21 + a12a22 = −ν

2
(a13 + b14), (1)

a11a22 − a12a21 =
ν

2
(a14 − b13), (2)

5∑
i=3

(a2
1i − b2

1i) =
2p2p3

p2
1

µa21, (3)

5∑
i=3

a1ib1i = −p2p3 µ a22

p2
1

, (4)
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ν(a13 − b14) =
p3 µ a11

p2

, (5)

a11a22 − a12a21 + ν b13 = −p3 µ a12

p2

. (6)

Since the case (50) generates a whole family of curves in the space E4, the similar

is true in the space E5.

Note that in the system of equations (1)–(6) we can take µ, ν, a11, a12, a21, a22 as

parameters, while the other entries a13, a14, a15, b13, b14, b15 can be expressed explicitly

by them. Namely, first observe that by (2) one can write equation (6) as

a14 + b13 = −2p3µ

p2ν
a12. (7)

Therefore, equations (2) and (7) easily give a14 and b13 as functions of a11, a12, a21, a22, ν.

Similarly, equations (1) and (5) give a13 and b14 as functions of a11, a12, a21, a22, ν.

Next, substitute the obtained values for a13, a14, b13, b14 in equations (3) and (4), and

consider the last equations as equations in a15 = x, b15 = y. Observe that they are of

the form

x2 − y2 = α, xy = β.

Since the last system has an explicit solution in x, y for any value of real parameters

α, β, we conclude that one can express a15, b15 in a explicit form as functions of the

entries a11, a12, a21, a22, µ, ν. Therefore the considered system defines a 6–parameter

family of curves in the space E5.

A similar situation is true in cases (60)–(110), so in each of these cases there is at

least one 3–type curve (and evenmore the whole family of such curves) in the space

E5.

Proposition 6. (Case (60)) (p1 : p2 : p3 = 1 : 3 : 5) In this case a curve γ(s) has

the type 3 if and only if, in a coordinate system we have
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A1 = (a11, a12, a13, a14, a15), B1 = (b11, b12, b13, b14, b15),

A2 = (a21, a22, a23, a24, a25), B2 = (−a22, a21, b23, b24, b25),

A3 = (µ, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0),

where µ 6= 0 and

5∑
i=1

(a2
1i − b2

1i) = 3
[ 5∑

i=1

a1ia2i − b11a22 + b12a21 +
5∑

i=3

b1ib2i

]
+ 30 µa21 (1)

5∑
i=1

a1ib1i = 1, 5
5∑

i=1

(a2ib1i − a1ib2i)− 15µ a22 (2)

5∑
i=1

a1ia2i − (−a22b11 + a21b12 +
5∑

i=3

b1ib2i) =
5 µ

6
(a11 + b12) (3)

5∑
i=1

b1ia2i − a11a22 + a12a21 +
5∑

i=3

a1ib2i =
5 µ

6
(b11 − a12) (4)

5∑
i=3

(a2
2i − b2

2i) = −10

9
µ (a11 − b12) (5)

5∑
i=3

a2ib2i = −5

9
µ (a12 + b11). (6)

It can be proved that in this case the considered system of equations defines a

13–parameter family of curves.
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Proposition 7. (Case (70)) (p2 6= 3p1, p3 = p1 + 2p2). In this case a curve γ(s)

is of type 3 if and only if, in a coordinate system we have

A1 = (a11, a12, ν, 0, 0), B1 = (−a12, a11, 0, ν, 0),

A2 = (a21, a22, a23, a24, a25), B2 = (−a22, a21, b23, b24, b25),

A3 = (µ, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0),

where µ 6= 0, a2
11 + a2

12 + ν2 6= 0 and

a11a21 + a12a22 = −ν

2
(a23 + b24), (1)

a11a22 − a12a21 =
ν

2
(b23 − a24), (2)

5∑
i=3

(a2
2i − b2

2i) =
2p1p3µ

p2
2

a11, (3)

5∑
i=3

a2ib2i = −p1p3µ

p2
2

a12, (4)

ν (a23 − b24) =
p3 µ

p1

a21, (5)

ν (a24 + b23) = −p3µ

p1

a22. (6)

We shall prove that the parameters a23, a24, a25, b23, b24, b25 can be expressed by

a11, a12, a21, a22, µ, ν.

Indeed, by equations (1) and (5) we can obviously express a23, b24 by a11, a12,

a21, a22, µ, ν. Similarly, by equations (2) and (6) we can express a24, b23 by the same

parameters. Substituting next the obtained values for a23, a24, b23, b24 in the equa-

tions (3),(4) and putting a25 = x, b25 = y, we obviously get a system of the form as

in Proposition 5, where α, β are the explicit functions of a11, a12, a21, a22, µ, ν. Since

such a system always has an explicit solution in x, y, we get a25, b25 as some explicit

functions of a1i, a2i, µ, ν (i = 1, 2). Therefore the considered system (1)–(6) defines a

6–parameter family of curves in the space E5.
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Proposition 8. (Case (80)) (p1 : p2 : p3 = 1 : 3 : 7). In this case a curve γ(s) is

of type 3 if and only if, in a coordinate system, we have

A1 = (a11, a12, a13, a14, a15), B1 = (−a12, a11, b13, b14, b15),

A2 = (a21, a22, a23, a24, a25), B2 = (−a22, a21, b23, b24, b25),

A3 = (µ, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0),

where µ 6= 0 and

5∑
i=3

(a2
2i − b2

2i) =
14

9
µ a11, (1)

5∑
i=3

a2ib2i = −7

9
µ a12, (2)

5∑
i=3

(a1ia2i − b1ib2i) = 7 µ a21, (3)

5∑
i=3

(a1ib2i + b1ia2i) = −7 µ a22, (4)

5∑
i=3

(a2
1i − b2

1i) = 6a11a21 + 6a12a22 + 3
5∑

i=3

(a1ia2i + b1ib2i), (5)

5∑
i=3

a1ib1i = 3a11a22 − 3a12a21 + 1, 5
5∑

i=3

(b1ia2i − a1ib2i). (6)
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We shall prove that in the obtained system (1)–(6) parameters a11, a12, a13,

a21, a22, b13 can be expressed explicitly by parameters a14, a15, b14, b15, a23, a24, a25,

b23, b24, b25, µ.

First since µ 6= 0, by equations (1)–(4) we can express a11, a12, a21, a22 by a1i, b1i,

a2i, b2i (i = 3, 4, 5). Substituting this in the equations (5),(6) and putting a13 =

x, b13 = y, the last equations get the form

ax2 + by2 + cx + dy + e = 0, (7)

αxy + βx + γy + δ = 0, (8)

where a, b, c, d, e, α, β, γ, δ are some expressions in a14, a15, b14, b15, a23, a24, a25, b23,

b24, b25, µ.

Since the system (7)–(8) is of the 4 order in x (and in y) (the polynomial equations

of the 4 order), it can be solved explicitly in x, y.

Hence the considered system (1)–(6) defines a 11–parameter family of curves in the

space E5.

Proposition 9. (Case (90)) (p2 6= 2p1, 3p1, p3 = 2p2 − p1). In this case a curve

γ(s) is of type 3 if and only if in a coordinate system we have

A1 = (a11, a12, ν, 0, 0), B1 = (a12,−a11, 0, ν, 0),

A2 = (a21, a22, a23, a24, a25), B2 = (−a22, a21, b23, b24, b25),

A3 = (µ, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0),

where µ 6= 0, a2
11 + a2

12 + ν2 6= 0 and

a11a21 + a12a22 =
ν

2
(b24 − a23), (1)

a11a22 − a12a21 =
ν

2
(a24 + b23), (2)

5∑
i=3

(a2
2i − b2

2i) = −4p1p3 µ

p2
2

a11, (3)
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5∑
i=3

a2ib2i = −2p1p3 µ

p2
2

a12, (4)

ν (a23 + b24) = −2p3

p1

µ a21, (5)

ν (a24 − b23) =
2p3

p1

µ a22. (6)

In this case we shall prove that parameters a23, a24, a25, b23, b24, b25 can be explicitly

expressed by the parameters a11, a12, a21, a22, µ, ν.

First by equations (1),(5) we see that parameters a23, b24 can be obviously explicitly

expressed by a11, a12, a21, a22, µ, ν. Similarly holds for a24, b23 using the equations

(2),(6).

Substituting now the obtained values for a23, a24, b23, b24 in equations (3),(4) we

obviously get a system of the form

a2
25 − b2

25 = α, a25b25 = β,

which can be explicitly solved in a25, b25.

Hence the considered system (1)–(6) defines a 6–parameter family of curves in the

space E5.

Proposition 10. (Case (100)) (p1 : p2 : p3 = 1 : 2 : 3). In this case γ(s) is of type

3 if and only if, in a coordinate system, we have

A1 = (a11, a12, a13, a14, a15), B1 = (b11, b12, b13, b14, b15),

A2 = (a21, a22, a23, a24, a25), B2 = (−a22, a21, b23, b24, b25),

A3 = (µ, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0),
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where µ 6= 0 and

5∑
i=1

a1ia2i = −b11a22 + a21b12 +
5∑

i=3

b1ib2i, (1)

5∑
i=1

b1ia2i = a11a22 − a12a21 −
5∑

i=3

a1ib2i, (2)

5∑
i=1

(a2
1i − b2

1i) = 3 µ (a11 + b12), (3)

5∑
i=1

a1ib1i = 1.5 µ (b11 − a12), (4)

5∑
i=1

a1ia2i − b11a22 + b12a21 +
5∑

i=3

b1ib2i = −6 µa21, (5)

5∑
i=1

a2ib1i + a11a22 − a12a21 −
5∑

i=3

a1ib2i = 6µ a22, (6)

5∑
i=3

(a2
2i − b2

2i) = −1.5 µ (a11 − b12), (7)

5∑
i=3

a2ib2i = −3

4
µ (b11 + a12). (8)

In this case one can prove that the above system defines a 11–parameter family of

curves.
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Proposition 11. (Case (110)) (p1 : p2 : p3 = 1 : 3 : 9). In this case a curve γ(s)

has the type 3 if and only if in a coordinate system we have

A1 = (0, 0, a13, a14, a15), B1 = (0, 0, b13, b14, b15),

A2 = (a21, a22, a23, a24, a25), B2 = (−a22, a21, b23, b24, b25),

A3 = (µ, 0, 0, 0, 0), B3 = (0, µ, 0, 0, 0),

where µ 6= 0 and
5∑

i=3

(a1ia2i − b1ib2i) = 0, (1)

5∑
i=3

(a1ib2i + a2ib1i) = 0, (2)

5∑
i=3

(a2
1i − b2

1i) = 3
5∑

i=3

(a1ia2i + b1ib2i), (3)

5∑
i=3

a1ib1i = 1, 5
5∑

i=3

(b1ia2i − a1ib2i), (4)

5∑
i=3

(a2
2i − b2

2i) = 6µ a21, (5)

5∑
i=3

a2ib2i = −3µ a22. (6)

Finally, in this case one can prove that the above system defines a 9–parameter

family of curves.
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