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Abstract. In this paper we consider the free Z-module generated by finite words in a certain
alphabet and three multiplications on such modules and their dual comultiplications and
we find which of these operations can be combined to obtain Hopf structures. We will direct
a special attention on one of those structures, known as overlapping shuffle algebra and its
properties.

1. WHAT IS HOPF ALGEBRA

Definition 1.1. An associative, unitary k-algebra is a pair (A,m), where A is a

k-module and m : A
⊗

A→ A is a k-linear map, called the multiplication, such that:

1. The following diagram is commutative:

A⊗ A⊗ A
m⊗id
−→ A⊗ A

m↓ ↓m

A⊗ A
m
−→ A

2. There exists k-linear map u : k → A such that the following diagrams commute:

k
⊗

A u⊗id
−→

A
⊗

A id⊗u
←−

A
⊗

k


y



ym



y

A = A = A
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where the maps k
⊗

A → A and A
⊗

k → A are the canonical ones. Such a u is

necessarily unique. The first of these diagrams says that the algebra A is associative

and the second gives the existence of a unit u(1) = 1A in A.

Definition 1.2. A coalgebra over k is a pair (C,∆), where C is a k-module and

∆ : C → C
⊗

C is a k-linear map called the comultiplication, such that:

1. The following diagram commutes:

C ⊗ C ⊗ C
∆⊗id
←− C ⊗ C

id⊗∆↑ ↑∆

C ⊗ C
∆
←− C

2. There exists a k-linear map ε : C → k, such that the following diagrams

commute:
k ⊗ C

ε⊗id
←− C ⊗ C

id⊗ε
−→ C ⊗ k

↑ ↑∆ ↑
C = C = C

The first of these diagrams expresses the so called coassociative property of the

comultiplication. The map ε is called the counit and is uniquely determined by the

pair (C,∆).

Definition 1.3. We say that a triple (A,m,∆) is a bialgebra, if (A,m) is an

algebra with unit u, (A,∆) is a coalgebra with counit ε and ∆ : A→ A
⊗

A, ε : A→ k

are algebra maps.

In other words, algebra and coalgebra structures must be compatible. The com-

patibility is ensured by requiring either of the following equivalent conditions.

1. ∆ and ε must be algebra morphisms.

2. m and u must be coalgebra morphisms.

Definition 1.4. We say that a bialgebra (H,m,∆) is a Hopf algebra if there exists

a k-linear map S : H → H, called the antipode, such that the following diagrams are

commutative:
H ⊗H

∆
←− H

∆
−→ H ⊗H

id⊗S↓ ↓uε ↓S⊗id

H ⊗H
m
−→ H

m
←− H ⊗H
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2. HOPF ALGEBRA OF WORDS

We consider the free Z-module generated by finite words in a certain alphabet and

three multiplications on such modules and their dual comultiplications and we find

which of these operations can be combined to obtain Hopf structures.

Given a set S, thought of as a collection of letters, we can form the free monoid

WS consisting of finite words in S, the monoidal operation being composition. Here

it is assumed that a word has positive length and word will be denoted by w =

[a1, · · · , an], ai ∈ S; we let WS denote the unital monoid obtained by adjoining to

WS a unique ”empty word” of length 0 (which will give the unit and counit in the

algebras and coalgebras we consider). Then we can take the free abelian groups ZWS

and ZWS generated by these monoids, the elements of these groups being Z-linear

combinations of words. Of course, ZWS = ZWS ⊕ Z.

We will restrict ourselves to the graded setting, so we assume that S is given

a grading where every element has positive degree and only finitely many elements

have the same degree. The degree of a word is defined to be the sum of the degrees

of the letters that form it and so ZWS becomes graded and of finite type, i.e., the

degree n part, ZWSn, of ZWS, has finite rank. We can then form the graded dual

(ZWS)∗ = ⊕n(ZWSn)
∗, and when we speak of duality we will always mean this

graded duality. Each ZWSn has an obvious basis, consisting of the words of degree

n, and we give (ZWSn)
∗ the dual basis, collating all of these to provide a basis for

(ZWS)∗. Of course, the elements of this dual basis are indexed by words, giving a

Z-linear isomorphism between ZWS and (ZWS)∗.

The first multiplication we consider is ”concatenation”, which we denote by mc.

The concatenation product is determined by

mc([s1, . . . , sk]⊗ [t1, . . . , tl]) = [s1, . . . , sk, t1, . . . , tl],

where s1, . . . , sk, t1, . . . , tl are elements of S. With this multiplication ZWS is the

free associative algebra on S, i.e., the tensor algebra on the free abelian group ZS

generated by S.
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We note thatmc is clearly not commutative, for examplemc([s1]⊗[s2]) = [s1, s2] 6=

mc([s2]⊗ [s1]) = [s2, s1] for s1 6= s2 ∈ S.

The dual of this is the ”chop” comultiplication, given by

∆c([s1, . . . , sk]) =
k∑

i=0

[s1, . . . , si]⊗ [si+1, . . . , sk]

The next multiplication that is of interest is the ”shuffle product”, which we

denote by mS. This is given by

ms([s1, . . . , sk]⊗ [t1, . . . , tl]) =
∑

σ

σ([s1, . . . , sk, t1, . . . , tl]),

summed over all permutations σ, of k + l symbols, which satisfy

σ(1) < σ(2) < . . . σ(k), σ(k + 1) < σ(k + 2) < . . . < σ(l),

the permutation σ shuffling the letters in the word in the obvios way. For example
ms([1, 2]⊗ [3, 4, 5]) = [1, 2, 3, 4, 5] + [1, 3, 2, 4, 5] + [1, 3, 4, 2, 5]

+[1, 3, 4, 5, 2] + [3, 1, 2, 4, 5] + [3, 1, 4, 2, 5]

+[3, 1, 4, 5, 2] + [3, 4, 1, 2, 5] + [3, 4, 1, 5, 2]

+[3, 4, 5, 1, 2]

There will be
(
k+l
k

)
such permutations. This is commutative; but over Z it is not

free commutative (i.e., ZWS with this product is not a polynomial algebra).

The dual comultiplication, ∆s, seems to have no established name, so we call it

the ”excision” coproduct since it is given by

∆s([s1, . . . , sk]) =
∑

[si1 , . . . , sij ]⊗ C([si1 , . . . , sij ]),

summed over all subwords [si1 , . . . , sij ] of [s1, . . . , sk] (including the empty subword),

where C([si1 , . . . , sij ]) denotes the complementary subword, i.e., the word obtained

by excising the subword [si1 , . . . , sij ]. For example,

∆s([1, 2, 3]) = [0]⊗ [1, 2, 3] + [1]⊗ [2, 3] + [2]⊗ [1, 3] + [3]⊗ [1, 2]

+[1, 2]⊗ [3] + [1, 3]⊗ [2] + [2, 3]⊗ [1] + [1, 2, 3]⊗ [0]
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For the third multiplication we assume that S is the set of positive integers (al-

though it could be defined for any non-unital monoid), where the degree of n ∈ S is

n. The multiplication, mo, is the ”overlapping shuffle product” defined by

mo([s1, . . . , sk]⊗ [t1, . . . , tl]) =
∑

f

f([s1, . . . , sk, t1, . . . tl])

where f inserts a number of 0s into [s1, . . . , sk] ( as many as l), and inserts a number

of 0s into [t1, . . . , tl] (as many as k), and then adds the first letters together, then

the second, etc. The sum is over all such f for which the result contains no 0s. For

example,

mo([1, 2]⊗ [3, 4]) = [1, 2, 3, 4] + [1, 3, 2, 4] + [3, 1, 2, 4] + [1, 3, 4, 2]

+[3, 1, 4, 2] + [3, 4, 1, 2] + [1, 5, 4] + [1, 3, 6]

+[4, 6] + [4, 2, 4] + [4, 4, 2] + [3, 1, 6] + [3, 5, 2]

= mS([1, 2]⊗ [3, 4]) + [1, 5, 4] + [1, 3, 6] + [4, 6]

+[4, 2, 4] + [4, 4, 2] + [3, 1, 6] + [3, 5, 2]

In general, the product of a length k word and a length l word will have

min(k,l)
∑

j=0

(
k + l − j

k − j, l − j, j

)

terms.

The dual comultiplication is the ”Leibniz” coproduct, given by

∆o([s1, . . . , sk]) =
∑

i1+j1=s1

∑

i2+j2=s2

. . .
∑

ik+jk=sk

[i1, . . . , ik]⊗ [j1, . . . , jk]

where, in each summation, in and jn are taken to be elements of S ∪ {0}. In a word,

0 is read as a blank letter. For example if i2 = 0, then [i1, i2, i3] is understood as the

word [i1, i3], etc., and if each in is 0, then [i1, . . . , ik] is the empty word. For example,
∆o([2, 3]) = [0]⊗ [2, 3] + [1]⊗ [2, 2] + [2]⊗ [2, 1] + [3]⊗ [2]

+[1]⊗ [1, 3] + [1, 1]⊗ [1, 2] + [1, 2]⊗ [1, 1] + [1, 3]⊗ [1]

+[2]⊗ [3] + [2, 1]⊗ [2] + [2, 2]⊗ [1] + [2, 3]⊗ [0]
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With these three multiplications and three comultiplications there are, potentially,

nine Hopf algebra structures. However, not all the multiplications and comultiplica-

tions are compatible. For example, mC and ∆c are not compatible. This is most easily

seen by writting the multiplication mc as · using infix notation, so the compatibility

condition becomes,

∆c([a1] · [a2]) = ∆c([a1]) ·∆c([a2])

For example

∆c([1] · [2]) 6= ∆c([1]) ·∆c([2])

It is straightforward to verify that only four of these combinations give Hopf

algebras, indicated by letters in the following table, the letters being used henceforth

to denote these Hopf algebras

mC mS mO

∆c − A B

∆s A∗ − −
∆o B∗ − −

The antipode is detrmined by the bialgebra structure.

Lema 2.1. Let H be a graded bialgebra. That is, H =
⊕

n≥0Hn, H0 = k,

Hi · Hj ⊆ Hi+j, ∆(Hn) ⊆
⊕

i+j=nHi ⊗ Hj. Then H is a Hopf algebra and the

antipode may be recursively defined by S(1) = 1, and for x ∈ Hn, n ≥ 1,

S(x) = −
m∑

i=1

S(yi) · zi,

where

∆(x) = x⊗ 1 +
m∑

i=1

yi ⊗ zi

and deg(yi) < n

Proof. Let assume that for x ∈ Hn, n ≥ 1

∆(x) = x⊗ 1 +
m∑

i=1

yi ⊗ zi

Then, from the relation satisfied by the counit we have,

(id⊗ ε)∆(x) = x⊗ ε(1) +
m∑

i=1

yi ⊗ ε(zi) = x⊗ 1
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From this we can conclude that in a graded bialgebra ε(1) = 1 and ε(z) = 0 for all

z ∈ Hi with i ≥ 1. Now we can substitute our formula for ∆(x) into the relation for

the antipode.

m ◦ (S ⊗ id) ◦∆(x) = u ◦ ε(x)

m ◦ (S ⊗ id)(x⊗ 1 +
m∑

i=1

yi ⊗ zi) = 0

m(S(x)⊗ 1 +
m∑

i=1

S(yi)⊗ zi) = 0

S(x) +
m∑

i=1

S(yi)zi = 0

S(x) = −
m∑

i=1

S(yi)zi.

In the Hopf algebras A and A∗, the antipode is given by

[s1, · · · , sk] 7→ (−1)k[sk, · · · , s1].

In B, the antipode is given by

[s1, · · · , sk] 7→ (−1)n
∑

[t1, · · · , tn],

the summation being over all words [t1, · · · , tn] that admit [sk, · · · , s1] as a refinement.

For example, [2, 3, 1] 7→ −[1, 3, 2] + [4, 2] + [1, 5]− [6]. Dually, in B∗, the antipode is

given by

[s1, · · · , sk] 7→
∑

(−1)n[t1, · · · , tn],

where now the summation is over all refinements [t1, · · · , tn] of [sk, · · · , s1].

Theorem 2.2. These four Hopf structures are, integrally, distinct - no two are

isomorphic as Hopf algebras.

Proof. Since mc is not commutative, a Hopf algebra with this product cannot

be isomorphic to a Hopf algebra with ms or mo as product. Similarly, ms is not

polynomial, so a ms Hopf algebra cannot be isomorphic to a mo one. Similarly with

the coproduct - ∆s is not copolynomial, so a Hopf algebra with this comultiplication

could not be isomorphic to one with ∆o as comultiplication.
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Duality is, of course, given by reflection in the main diagonal in the table, so in

fact we have only two Hopf algebras up to duality: A and B. The algebra A is what

Hazewinkel [4] refers to as N , the shuffle algebra, whose dual, A∗, is the Lie-Hopf

algebra, i.e., the free associative algebra (or tensor algebra) on S with the Hopf algebra

structure where each element of S is primitive (∆(x) = 1⊗ x + x⊗ 1). The algebra

B, denotedM by Hazewinkel, is overlapping shuffle algebra, and the dual algebra B∗

is Leibniz-Hopf algebra.

3. THE OVERLAPPING SHUFFLE ALGEBRA

As an Abelian group, i.e., as a Z-module B is free with as basis all words on

N = {1, 2, . . .} including the empty word. The overlapping shuffle multiplication of

two words w = [a1, a2, . . . , an] and v = [b1, b2, . . . , bm] is the sum of all words that can

be obtained as it is already said before. For example,

[a, b] ·osh [c, d] = [a+ c, b+ d] + [a+ c, b, d] + [a+ c, d, b] + [a, b+ c, d]

+[c, a+ d, b] + [a, c, b+ d] + [c, a, b+ d] + [a, b, c, d]

+[a, c, b, d] + [a, c, d, b] + [c, a, b, d] + [c, a, d, b] + [c, d, a, b],

[1] ·osh [1, 1, 1] = [2, 1, 1] + [1, 2, 1] + [1, 1, 2] + 4[1, 1, 1, 1]

A good way of thinking about this multiplication is the so-called rifle shuffle from

card-playing. Imagine the two words as two stacks of cards. Perform a rifle shuffle

where it can happen that two cards, one from the left stack and one from the right

one, stick together; then their values are to be added.

With this multiplication the Abelian group B obviosly becomes an associative

commutative algebra over Z with unit element (the empty word), i.e., an associative

and commutative ring with unit element.

4. LYNDON WORDS

Let the elements of N ∗, i.e., the words over N , be ordered lexicographically, where

any symbol is larger than nothing. Thus [a1, a2, . . . an] > [b1, b2, . . . bm] if and only if
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there is an i such that a1 = b1, . . . ai−1 = bi−1, ai > bi (with, necessarily, 1 ≤ i ≤

min{m,n}), or n > m and a1 = b1, . . . , am = bm.

A strict suffix of a word [a1, . . . an] is a word of the form [ai, . . . an] with 1 < i ≤ n.

(The empty word and one-symbol words have no strict suffix.)

A word is Lyndan if all its strict suffix are larger than the word itself. For ex-

ample, the words [1, 1, 3], [1, 2, 1, 3], [2, 2, 3, 2, 4] are all Lyndon and the words [2, 1],

[1, 2, 1, 1, 2], [1, 3, 1, 3] are not Lyndon. The set of Lyndon words is denoted by Lyn.

Obviously, these definitions make sense for any totally ordered set and not just

for the set of natural numbers.

Now consider N∗ a semigroup under the concatenation product (which is, of

course, very different from the overlapping shuffle product on B).

Theorem 4.1.(Chen-Fox-Lyndon factorization) Every word w in N ∗ factors uniquely

into a decreasing concatenation product of Lyndon words:

w = v1 ? v2 ? · · · vk, vi ∈ Lyn, v1 ≥ v2 ≥ · · · ≥ vk.

For example,

[2, 3, 1, 3, 1, 4, 1, 3, 1, 1] = [2, 3] ? [1, 3, 1, 4] ? [1, 3] ? [1] ? [1]

One efficient algorithm for finding the Chen-Fox-Lyndon factorization of word is the

block decomposition algorithm[4].

5. THE DITTERS CONJECTURE

The Lyndon words are the right kind of thing for the shuffle algebra over the

rational numbers Q and also for the overlapping shuffle algebra over Q. Indeed, both

these algebras are free polynomial over Q with as generators the words from Lyn.

However, over the integers Lyn most definitely is not a free generating set for the

overlapping shuffle algebra.
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A word w = [a1, a2, . . . an] ∈ N
∗ is called elementary if the greatest common

divisor of its symbols is 1, gcd{a1, a2, . . . , an} = 1. A concatenation power of w (or

star power) is a word of the form

w?m = w ? w ? · · · ? w
︸ ︷︷ ︸

m times

Let ESL denote the set of words which are star powers of elementary Lyndon

words. For instance, the words [1, 1, 1, 1] and [1, 2, 1, 2] are in ESL (but are not Lyn-

don), and the words [4], [2, 4] are not in ESL but are in Lyn. The Ditters conjecture

now states that the elements of ESL form a free (communicating) generating set for

the overlapping shuffle algebra B over the integers.

The Ditters conjecture dates from around 1972. and the publications quoted

proofs, which, however, contain errors.

Hazewinkel introduced the distinction between the ”Ditters conjecture” (that the

algebra was polynomial) and the ”strong Ditters conjecture” (that it was the polyno-

mial algebra on the ESL words) and give a complete proof of the Ditters conjecture.

However, the latest result is that the strong Ditters conjecture is wrong.

6. QUASI-SYMMETRICAL FUNCTIONS

Let X be a finite subset of an infinite set (of variables) and consider the ring of

polynomials R[X] and the ring of power series R[[X]] over a commutative ring R

with unit element in the commuting variables from X. A polynomial or power series

f(X) ∈ R[[X]] is called symmetrical if for any two finite sequences of indeterminates

X1, X2, . . . , Xn and Y1, Y2, . . . , Yn from X and any sequence of exponents i1, i2, . . . in ∈

N, the coefficients in f(X) of X i1
1 X

i2
2 · · ·X

in
n and Y

i1
1 Y i2

2 · · ·Y
in
n are the same.

The quasi-symmetrical formal power series are a generalization introduced by

Gessel [3] in connection with the combinatorics of plane partitions. This time one

takes a totally ordered set of indeterminates, e.g. V = {V1, V2, . . .}, with the ordering

that of the natural numbers, and the condition is that the coefficients ofX i1
1 X

i2
2 · · ·X

in
n
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and Y i1
1 Y i2

2 · · ·Y
in
n are equal for all totally ordered sets of indeterminates X1 < X2 <

· · · < Xn and Y1 < Y2 < · · · < Yn. Thus, for example. X1X
2
2 + X2X

2
3 + X1X

2
3 is a

quasi-symmetrical polynomial in three variables that is not symmetrical.

Products and sums of quasi-symmetrical polynomials and power series are obviosly

again quasi-symmetrical, and thus one has, for example, the ringof quasi-symmetrical

power series QsymZ
(X) in countably many commuting variables over the integers and

its subring QsymZ
(X) of quasi-symmetrical polynomials in finite or countably many

indeterminates, which are the quasi-symmetrical power series of bounded degree.

Given a word w = [a1, a2, . . . , an] overN, also called a composition in this context,

consider the quasi-monomial function

Mw =
∑

Y1<Y2<···Yn

Y a1

1 Y a2

2 · · ·Y
an

n

defined by w. These form a basis over the integers of QsymZ
(X).

Proposition 6.1. The assignment w →Mw defines a homogeneous isomorphism

of the overlapping shuffle algebra B with QsymZ
(X).

The proof is immediate.

If [s1, s2, . . . , sk] is identified with the quasi-symmetric function
∑

Xs1
i1
· · ·Xsk

ik
,

then mo gives the product of two such functions considered as power series in the

variables Xi.For example,

mo([1, 2]⊗ [3]) = [1, 2, 3] + [1, 3, 2] + [3, 1, 2] + [4, 2] + [1, 5]

∑

0≤i<j

XiX
2
j ·
∑

0≤k

X3
k =

∑

0≤i<j<k

XiX
2
jX

3
k +

∑

0≤i<k<j

XiX
3
kX

2
j

+
∑

0≤k<i<j

X3
kXiX

2
j +

∑

0≤i=k<j

X4
iX

2
j

+
∑

0≤i<j=k

XiX
5
j
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