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properties.

he folfowing diagram is commutative:

AQARA ™4 Ax A
- Im
A® A SLON A

2. There exists k-linear map u : k — A such that the following diagrams commute:

ERA N ARQA M AQK

| I |

A = A = A



316

where the maps k@Q A — A and AQk — A are the canonical ones. Such a u is
necessarily unique. The first of these diagrams says that the algebra A is associative

and the second gives the existence of a unit u(1) =14 in A.

Definition 1.2. A coalgebra over k is a pair (C,A), where 4 wodule and
A:C— CQC is ak-linear map called the comultiplication,” s

1. The following diagram commutes:

CeCoC ¥ ¢
id@A T
cCeC

2. There exists a k-linear map € : at the/following diagrams

commute: '
koo ©°
T
C
The first of these diagrams exp e so called coassociative property of the
comultiplication. The mg it and 1s uniquely determined by the
pair (C, A).
Definition riple (A, m,A) is a bialgebra, if (A,m) is an

yebra with counite and A : A — AQ A, e: A—k

a k-linear map S : H — H, called the antipode, such that the following diagrams are

commutative:
HeH <& H 2 HeH
id®S ] Lue L s@id

HeoeH - H & H®H
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2. HOPF ALGEBRA OF WORDS

We consider the free Z-module generated by finite words in a certain alphabet and

mc([sl,...,sk]@)[tl,...,tl]) = [81,...,8k7t1,...,tl],

where sq,..., 8k, t1,...,t; are elements of S. With this multiplication ZW S is the
free associative algebra on S, i.e., the tensor algebra on the free abelian group ZS

generated by S.
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We note that m, is clearly not commutative, for example m.([s1]®[s2]) = [s1, s2] #

me([s2] @ [s1]) = [s2, s1] for s1 # s2 € S.

The dual of this is the "chop” comultiplication, given by

AC([sl,...,sk]):Z[sl,...,sm[sm,. 5k

The next multiplication that is of interest is th which we

denote by mg. This is given by

ms([s1,. ., 8K @ [t1,...,t])

in th® word in the obvios way. For example
,3,2,4,5] +[1,3,4,2,5]

7 (3,1,2,4,5] + [3,1,4,2, 5]
+[3,4,1,2,5] + [3,4,1,5,2]

the permutation ¢ shu

ms([1,2] ® [3,4,5])

Ag([s1,...,8%]) = Z[sil, 85, ] @ C([84, -+, 84]),

summed over all subwords [s;,, ..., s;; of [s1,..., 8] (including the empty subword),
where C([sq,...,si,]) denotes the complementary subword, i.e., the word obtained
by excising the subword [s;,, ..., s;]. For example,

Aq([1,2,3])) =1[0]®[1,2,3]+[1]®[2,3] +[2] ®[1,3] + [3] @ [1, 2]
+[1,2|® 3]+ 1,3 ®[2] +[2,3]| ® [1] + [1,2, 3] ® [0]
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For the third multiplication we assume that S is the set of positive integers (al-
though it could be defined for any non-unital monoid), where the degree of n € S is

n. The multiplication, m,, is the "overlapping shuffle product” defined by

mo([sl,..., ]®t1,.. tl] Zf S1y...

where f inserts a number of Os into [s1, ..., s;] ( as ma
of Os into [t1,...,%] (as many as k), and then ad
the second, etc. The sum is over all such f for

example,

mo([1,2] ® [3,4])

2] +[3,1,6] + [3,5,2]
5,4+ [1,3,6] + [4, 6]
+13,1,6] +[3,5,2]

In general, the préd\g Agrord and a length [ word will have

terms.

dual ultiglication is the "Leibniz” coproduct, given by

Z Z Z 217‘"7 [.]17’-'7jk]

11+J1=81 12+j2=52 i +ik=5k

where, iff each summation, i,, and j, are taken to be elements of SU{0}. In a word,
0 is read as a blank letter. For example if i3 = 0, then [iy, is, 3] is understood as the

word [iy, i3], etc., and if each 4, is 0, then [iy, ..., 4] is the empty word. For example,
A(12,3]) =[0]®[2,3]+[1]®[2,2]+ 2] ®[2,1] + [3] ® [2]

HUe L3+ [Le12+[1,2]@[1, 1]+ [1,3] @ [1]
+2l@ B+ (2,1 @ [2] + [2,2) ® [1] + [2,3] @ [0]
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With these three multiplications and three comultiplications there are, potentially,
nine Hopf algebra structures. However, not all the multiplications and comultiplica-
tions are compatible. For example, m¢c and A, are not compatible. This is most easily
seen by writting the multiplication m, as - using infix notation, s patibility

condition becomes,

For example

It is straightforward to verify that only
algebras, indicated by letters in the followj
to denote these Hopf algebras

Lema 2.1.
H; - H; C H;

antipode m

S) =~ 3 Sy - =
i—1
A(fﬁ):l"@l*‘zyz'@%

=1

. Let assume that for x € H,, n >1

A(a:):x®1+2yi®zi

=1

Then, from the relation satisfied by the counit we have,

((d@e)Alx) =z @e(1)+ > ti®e(z) =21

i=1
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From this we can conclude that in a graded bialgebra ¢(1) = 1 and €(z) = 0 for all
z € H; with i > 1. Now we can substitute our formula for A(z) into the relation for
the antipode.
mo (S ®id)o A(z) =uoe(x)
mo(S®id)(z®1+ Y 1 ®z)=

i=1

m(S(z) ® 1+ZS(y2-) ® 2

=1

orem 2.2. These four Hopf structures are, integrally, distinct - no two are
isomorplfc as Hopf algebras.

Proof. Since m, is not commutative, a Hopf algebra with this product cannot
be isomorphic to a Hopf algebra with m, or m, as product. Similarly, m, is not
polynomial, so a mg Hopf algebra cannot be isomorphic to a m, one. Similarly with
the coproduct - A, is not copolynomial, so a Hopf algebra with this comultiplication

could not be isomorphic to one with A, as comultiplication.
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Duality is, of course, given by reflection in the main diagonal in the table, so in
fact we have only two Hopf algebras up to duality: A and B. The algebra A is what
Hazewinkel [4] refers to as N, the shuffle algebra, whose dual, A*, is the Lie-Hopf

structure where each element of S is primitive (A(z) =1 ® z;
B, denoted M by Hazewinkel, is overlapping shuffie algebr
is Leibniz-Hopf algebra.

3. THE OVERLAPPING S ALG

As an Abelian group, i.e., as a Z-mf@dule B is free as basis all words on

N = {1,2,...} including the empty wor ping shuffle multiplication of

two words w = [ay, ag, . .., a,| and # the sum of all words that can

2,1+ [1,1,2) +4[1,1,1,1]

4. LYNDON WORDS

Let the elements of N*, i.e., the words over IV, be ordered lexicographically, where

any symbol is larger than nothing. Thus [ay, ag,...a,] > [b1,bs, ... by] if and only if
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there is an ¢ such that a; = by,...a;_1 = b;_1, a; > b; (with, necessarily, 1 < i <
min{m,n}), or n > m and a; = by, ..., ay = by,
A strict suffiz of a word [aq, . .. a,] is a word of the form [a;, ... a,] with 1 <7 < n.

(The empty word and one-symbol words have no strict suffix.)

A word is Lyndan if all its strict suffix are larger than th

[1,2,1,1,2], [1,3,1, 3] are not Lyndon. The set of Lyn
Obviously, these definitions make sense for an
for the set of natural numbers.

Now consider N* a semigroup under ion préduct (which is, of

5. THE DITTERS CONJECTURE

The Lyndon words are the right kind of thing for the shuffle algebra over the
rational numbers Q and also for the overlapping shuffle algebra over Q. Indeed, both
these algebras are free polynomial over Q with as generators the words from Lyn.
However, over the integers Lyn most definitely is not a free generating set for the

overlapping shuffle algebra.
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A word w = [a1, ag,...q,] € N* is called elementary if the greatest common
divisor of its symbols is 1, ged{ay, ag,...,a,} = 1. A concatenation power of w (or

star power) is a word of the form

WM =wxkwx-KxW
—_——

m times

The Ditters conjecture dates from and’the publications quoted

proofs, which, however, contain errors.

”Ditters conjecture” (that the

conjecture” (that it was the polyno-

is called symmetrical if for any two finite sequences of indeterminates
7, Xpand Y7, Y5, ..., Y, from X and any sequence of exponents i1, 79, ..., €
N, the coefficients in f(X) of X' X2 ... X' and Y;'Y,?---Y/" are the same.

The quasi-symmetrical formal power series are a generalization introduced by
Gessel [3] in connection with the combinatorics of plane partitions. This time one
takes a totally ordered set of indeterminates, e.g. V' = {V}, V4, ...}, with the ordering

that of the natural numbers, and the condition is that the coefficients of X' X3? - - - X
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and Y'Y;2 .- Y/ are equal for all totally ordered sets of indeterminates X; < X, <
o< X,and Y] < Yy < -+ < Y,. Thus, for example. X X2 + XoX2 + X, X2 is a
quasi-symmetrical polynomial in three variables that is not symmetrical.

Products and sums of quasi-symmetrical polynomials and powezs$ are obviosly

Given a word w = [ay, ag, . . ., ay)

consider the quasi-monomial function

1 the quasi-symmetric function ) X' - X7,

4 1,3,2] +[3,1,2] + [4,2] + [1,5]

YoOXXIXP+ ) XXPX?

0<i<j<k 0<i<k<jy

+ Y XXX+ Y XIX?
0<k<i<j 0<i=k<j

+ > XX

0<i<j=k
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