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Abstract. Pairs of systems, which consist of a system of sequents and a natural deduction
system for some parts of intuitionistic logic, will be considered. For some of these pairs
of systems the well-known property that cut-free sequent derivations correspond to normal
derivations in natural deduction will be improved. In derivations of the systems of sequents
a special kind of cuts, maximum cuts, will be defined. It will be shown that sequent
derivations with cuts which are not maximum cuts correspond to normal derivations in
natural deduction.
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1. INTRODUCTION

In [6] Gentzen introduced the system of sequents and the natural deduction system

for intuitionistic logic (the systems LJ and NJ ) and classical logic (the systems LK

and NK ). In the systems of sequents cut-free derivations, i.e. derivations without

cuts, are the most important derivations. The most important natural deduction
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derivations are normal derivations, i.e. derivations without maximum segments. The

main theorem of the systems of sequents is the cut-elimination theorem, and in the

natural deduction systems the normalization theorem is the central one.

The problems of the connection between derivations of the systems of sequents and

natural deduction systems, and the problems of the connection between reductions

which constitute cut-elimination and normalization procedures are well known (see

the Introductions of [4] and [14]). To solve these problems different pairs of systems

of sequents and natural deduction systems, which are modifications of Gentzen’s

systems, were defined in [1], [8], [9], [10] and [14]. In almost all of these papers

the connections between cut-free derivations and normal derivations were studied.

From the results of these papers it can seem that ”cut-free derivations and normal

derivations are the same”. However, the connection is the following:

the image of a cut-free derivation is a normal derivation,

(*) but

if a normal derivation is the image of a sequent derivation,

then that sequent derivation can have some cuts which can be eliminated.

From this non-symmetrical picture we can conclude that sequent derivations which

correspond to normal derivations can have some cuts. In [2] and [4] Zucker’s systems

for intuitionistic predicate logic from [14], the system of sequents S and the natural

deduction system N , were considered. In derivations of the system S a special kind

of cuts, maximum cuts, was defined. Roughly speaking, maximum cuts are cuts

whose left cut formula is connected with the principal formula of a right rule (i.e. an

introduction rule of a connective or a quantifier) and its right cut formula is connected

with the principal formula of a left rule (i.e. an elimination rule of the connective or

the quantifier). It was shown the following:

the image of a derivation without maximum cuts is a normal derivation,

(**) and

if a normal derivation is the image of a sequent derivation,

then that sequent derivation does not have maximum cuts.
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In [5] the systems which introduced in [1], the system of sequents SE and the

natural deduction system NE , were considered. The system SE is very similar to

Zucker’s system S from [14]. Namely, Zucker’s system S is the system δE from [1]

whose formulae have only lower indices and the system SE is that system δE whose

formulae have only upper indices. The system NE is a modification of Gentzen’s

system NJ from [6] (i.e. Prawitz’s system from [11]) and Zucker’s system N from

[14]. (The system NE is similar to the systems from [9] and [13].) The most im-

portant characteristic of the system NE is that elimination rules for all connectives

and quantifiers are of the same form as the elimination rules of ∨ and ∃ in Gentzen’s

system NJ. In [5] the definition of maximum cuts in derivations of the system SE
was presented (which is in fact the definition of maximum cuts in derivations of the

system S). The following part of the connection of the kind (**) above was proved:

the image of a sequent derivation without maximum cuts from the system SE is a

normal derivation in the system NE .

In this paper the second part of that connection will be presented: if a normal

derivation of the system NE is the image of a sequent derivation from the system

SE , then that sequent derivation does not have maximum cuts.

In Section 2 we will briefly present connections between cut-free derivations and

normal derivations from the system of sequents and natural deduction system (i.e.

the connections of the kind (*)) from [3], [10] and [14]. In Section 3 the definition of

maximum cuts in derivations of the system S from [4] will be repeated. In the first

part of Section 4 the connection between derivations without maximum cuts of the

system S and normal derivations of the system N from [4] (i.e. the connection of the

kind (**)) will be presented. Finally, in the second part of Section 4 the system SE
and the system NE from [5] will be considered and the property of the kind (**) will

be shown for their derivations.
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2. CUT-FREE DERIVATIONS AND NORMAL DERIVATIONS

In [14] Zucker defined a system of sequents, the system S, and a natural deduction

system, the system N , which cover full intuitionistic predicate logic. The systems S
and N are very similar to Gentzen’s systems LJ and NJ, respectively. We present

only Zucker’s system S. (His system N is a standard natural deduction system, i.e.

Gentzen’s system NJ with explicit contraction (see Section 2.3 in [14] for details).)

The system of sequents S

A sequent of the system S has the form Γ→ A, where Γ is a finite set of indexed

formulae and A is one unindexed formula. We only repeat the following about indices

of formulae from [14] (for all other definitions see [14]): a finite non-empty sequence

of natural numbers will be called a symbol, and will be denoted by σ, τ ,...; a finite

non-empty set of symbols will be called an index, and will be denoted by α, β,... An

index consisting of one symbol σ, {σ}, will be denoted just by σ. For any number

i, the index {i} (containing the single symbol i of length 1) will be called an unary

index, and will be denoted just by i. There are two operations on indices: the union

of two indices α and β, α ∪ β, is again an index and it is simply a set-theoretical

union; and the product of α and β is α× β =df {σ ∗ τ : σ ∈ α, τ ∈ β}, where ∗ is the

concatenation of sequences.

Postulates for the system S.

Initial sequents
logical initial sequents (i.e. i-sequents): Ai → A.
⊥-initial sequents (i.e. ⊥-sequents): ⊥i→ P , where P is any atomic formula different

from ⊥.

Inference rules
structural rules

(contraction)
Aα, Aβ,Γ→ C

Aα∪β,Γ→ C

(cut)
Γ→ A Aα,∆→ C

Γ×α,∆→ C
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operational rules (i.e. rules for connecives)

left rules right rules

(⊃L)
Γ→ A Bβ,∆→ C

Γ×β, A ⊃ Bβ,∆→ C
(⊃R)

(Aα),Γ→ B

Γ→ A ⊃ B

(∧L1)
Aα,Γ→ C

A ∧Bα,Γ→ C
(∧L2)

Bα,Γ→ C

A ∧Bα,Γ→ C
(∧R)

Γ→ A ∆→ B

Γ,∆→ A ∧B

(∨L)
(Aα),Γ→ C (Bβ),∆→ C

A ∨Bi,Γ,∆→ C
(∨R1)

Γ→ A

Γ→ A ∨B
(∨R2)

Γ→ B

Γ→ A ∨B

(∀L)
Ftα,Γ→ C

∀xFxα,Γ→ C
(∀R)

Γ→ Fa

Γ→ ∀xFx

(∃L)
(Faα),Γ→ C

∃xFxi,Γ→ C
(∃R)

Γ→ Ft

Γ→ ∃xFx

The unary indices i from the initial sequents and the lower sequents in the left rules

(∨L) and (∃L) are called initial indices (as Zucker’s unary indices, see 2.2.1. in [14]),

and they have to satisfy the restrictions on indices : in any derivation, all initial indices

have to be distinct. In the rules (∀R) and (∃L) the variable a has to satisfy the well-

known restrictions on variables (see 2.3.8.(b) in [14]). The notation (Cc),Θ → D,

which is used in the rules (⊃R), (∨L) and (∃L), is interpreted as Cc,Θ→ D, if c 6= ∅,
and Θ→ D, if c = ∅ (and hence not strictly an index, by our definition, see 2.2.8.(b)

in [14]). So, (Cc),Θ → D denotes either the sequent Cc,Θ → D or the sequent

Θ → D. The new formula explicitly shown in the lower sequent of an operational

rule is the principal formula, and its subformulae from the upper sequents are the

side formulae of that rule. The formula Aα∪β is the principal formula, and Aα and

Aβ are the side formulae of the contraction. The formulae A and Aα from the upper

sequents of the cut are the cut formulae. In any rule, formulae which are not side,

principal or cut formulae, are passive formulae of that rule.

D,F ,D′,D0... will denote derivations in the system S.
D

Γ→ A
will denote a

derivation D with the end sequent Γ → A. All formulae making up sequents in a

derivation D of the system S will be called d-formulae of the derivation D.
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2.1. Cut-free derivations of S− and normal derivations of N−

In [14] Zucker defined the map ϕ from the set of derivations of the system S to

the set of derivations of the system N . In the system S derivations without cuts,

i.e. cut-free derivations, were considered. In the system N maximum segments of

derivations were Prawitz’s maximum segments of natural deduction derivations (see

[11] p. 49). Normal derivations of N were defined in an usual way, as derivations

without maximum segments. In [14] the cut-elimination procedure in the system S
and the normalization procedure in the system N consist of standard, i. e. Gentzen’s

([6]) and Prawitz’s ([11]) reductions, respectively. For these reductions Zucker solved

the problem of the connection between reductions of the cut-elimination procedure

in the system S− and reductions of the normalization procedure in the system N−,

where the systems S− and N− are the parts of the systems S and N which cover

(∧,⊃, ∀,⊥)-fragment of intuitionistic logic. So, Zucker made the following connection

between cut-free derivations of the system S− and normal derivations of the system

N− (see Theorem 3 and Theorem 4 from Section 5 in [14]):

Theorem 1. If D is a cut-free derivation from the system S−, then the derivation

ϕD is a normal derivation in the system N−.

Theorem 2. Let D be a derivation from the system S−. If the derivation ϕD
is a normal derivation in the system N−, then there is a cut-free derivation D0 such

that the derivations D and D0 are connected by some reductions of the system S−.

2.2. Normal derivations of HλL and normal derivations of Hλ

In [10] Pottinger defined the system of sequents HλL and the natural deduction

system Hλ for intuitionistic propositional logic. He also defined the map N from

the set of derivations of the system HλL to the set of derivations of the system Hλ.

The systems HλL and Hλ are some kinds of λ-calculi. In the system HλL derivations

without cuts are called normal derivations. In derivations of the system Hλ maximum

segments of derivations are Prawitz’s maximum segments, and normal derivations are
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derivations without maximum segments. The set of reductions of the cut-elimination

procedure in the system of sequents HλL contains some not standard reductions, i.e.

Zucker’s less natural reductions (see the part 7.8.2(b) in [14]). Pottinger connected

the reductions of that cut-elimination procedure in system the HλL with Prawitz’s

reductions of the normalization procedure in the system Hλ. Moreover, he made the

following connection (see Theorem 6.2 and Theorem 6.5 from Section 6 in [10]):

Theorem 3. If D is a normal derivation from the system HλL, then the derivation

N (D) is a normal derivation in the system Hλ.

Theorem 4. Let D be a derivation from the system HλL. If the derivation N (D)

is a normal derivation in the system Hλ, then there is a normal derivation D′ from

the system HλL such that N (D) = N (D′).

2.3. Cut-free derivations of S and normal derivations of N

In [3] Zucker’s system S with its cut-free derivations and Zucker’s system N with

its normal derivations were considered. The map which connects derivations from S
and N is also Zucker’s map ϕ from [14]. In [3] a connection between reductions of the

cut-elimination procedure in the full system S and reductions of the normalization

procedure in the full system N was made. By using that connection Zucker’s results

for derivations of the systems S− andN− were extended for derivations of the systems

S and N . Namely, in [3] there is the following connection between cut-free derivations

of the system S and normal derivations of the system N (see Theorem 4 and Theorem

5 from Section 4 in [3]):

Theorem 5. If D is a cut-free derivation from the system S, then the derivation

ϕD is a normal derivation in the system N .

Theorem 6. Let D be a derivation from the system S. If the derivation ϕD is a

normal derivation in the system N , then there is a cut-free derivation D0 such that

the derivations D and D0 are connected by some reductions of the system S.
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3. MAXIMUM CUTS

In this section we will present the notions and results from [4] and Section 3 of

[2]. We will consider Zucker’s system S (which defined in our Section 2), and we will

repeat the definition of maximum cuts in derivations of the system S.

First we give an example of a maximum cut. In the derivation E from Example

1 below, the last cut, the cut c4, is a maximum cut. Roughly speaking, its left cut

formula B⊃A is connected with the rule ⊃R (i.e. the introduction of ⊃), and its

right cut formula B⊃Ailj is connected with the rule ⊃L (i.e the elimination of ⊃).

Example 1 The derivation E : (the formula A is C∨D)

Bh→B Cg→C

Bhg , B⊃Cg→C

Bhg , B⊃Cg→C∨D Af→A

Bhgf , B⊃Cgf→A
c1

B⊃Cgf→B⊃A
⊃R

B⊃An→B⊃A

(B⊃C)∨Fk,B⊃An→B⊃A

B⊃Ai→B⊃A B⊃Al→B⊃A

B⊃Ail→B⊃A
c2

Bm→B Aj→A

Bmj , B⊃Aj→A
⊃L

Bmj ,B⊃Aj→A∨E

B⊃Ailj , Bmj→A∨E
c3

(B⊃C)∨Fkilj ,B⊃Anilj , Bmj→A∨E
c4

To define maximum cuts of a derivation D we need to introduce several notions by

which a precise connection between d-formulae in a derivation can be made. Some of

these notions will be well-known notions from systems of sequents (see Note 3 below).

First we consider a formula A. One of its subformulae, a subformula C, will be

called a d-subformula C of A, when the form of C and the place of its appearance

in the formula A will be important. For example, the formula A ≡ (C⊃D) ∨ C has

two different d-subformulae C. We note that the relation ”... is a d-subformula of

...” is reflexive and transitive. A d-subformula of a formula A will be called a proper

d-subformula when it is not the formula A itself. We also note that in a derivation,

two d-formulae of the same form have the same d-subformulae which constitute them.

(In the definition of a d-branch below we will use the following denotation: the indices

of d-formulae will denote their place in a sequence of d-formulae where these formulae

can or cannot be indexed formulae.)
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Let D be a derivation, and A be a d-formula from D. One d-branch of the d-

formula A in the derivation D will be a sequence of d-formulae F1, ..., Fn, n ≥ 1,

where F1 is that d-formula A, and for each i, i ≥ 1 if Fi is

(i) either a passive formula in the lower sequent of a rule, or the principal formula of

a contraction, then Fi+1 is the corresponding passive formula from one of the upper

sequents of that rule or one of the side formulae from the upper sequent of that

contraction, respectively;

(ii) a principal formula in the lower sequent of an operational rule, then Fi+1 is one

of the side formulae (if they exist) from the upper sequents of the rule (which need

not be on the same side of → as Fi);

(iii) a d-formula from an initial sequent, or the principal formula of a rule which does

not have a side formula, then i = n.

Note 1. Our notion of a d-branch is very similar to the notion of the path in a

derivation from natural deduction (see [11] p. 52).

In a derivation D the d-branch b of a d-formula A which is not a part of d-branches

of any other d-formula from D will be called a long d-branch of that d-formula A.

Note 2. If in a derivation D the d-branch b is a long d-branch of a d-formula A,

then the d-formula A is either a cut formula or a formula from the end sequent of the

derivation D.

In a derivation D for a d-branch b of a d-formula A we define a branch of the

d-formula A in D as the sequence of consecutive d-formulae from b (equal to A) who-

se first formula is the first formula of b, the d-formula A, and its last formula is a

d-formula from b such that the next d-formula from b (if it exists) is different from A.

Note 3. All branches of a d-formula in a derivation form Gentzen’s cluster (see

[7] p. 267) of that d-formula in the derivation.

In Example 1 the left cut formula of the cut c4 has the d-branch bl1 (which is its

branch): B⊃A (the left cut formula of the cut c4 itself), B⊃A (from B⊃An →
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B⊃A); and the branch bl2: B⊃A (the left cut formula of the cut c4 itself), B⊃A
(the principal formula of ⊃R). On the other hand, the right cut formula of the cut

c4 has the d-branch br (which is its branch): B⊃Ailj, B⊃Ail, B⊃Ai. The branch

bl2 connects the left cut formula of the cut c4 with the rule ⊃R, but the d-branch br

does not connect the right cut formula of the cut c4 with the rule ⊃L. To make that

connection we need to define the notion of the o-tree of a d-formula. In Example 1

the sequences of the bold emphasized formulae are the o-trees of the left and right cut

formula of the cut c4. The o-tree trr : t1t2t3t4t5 of the d-formula B⊃Ailj consists of

the following parts: t1 is br; t2 is the inverted (i.e. written in the inverse order) long

d-branch of the left cut formula B⊃A of the cut c2, which is that d-formula itself; t3

is the d-branch of the right cut formula B⊃Al of the cut c2, which is that d-formula

itself; t4 is the inverted long d-branch of the d-formula B⊃A from B⊃Ail → B⊃A
which consists of that d-formula and B⊃A from B⊃Al → B⊃A; t5 is the right cut

formula B⊃Aj of the cut c3. On the other hand, the left cut formula of the cut c4 has

two o-trees: trl1 and trl2. The o-tree trl1 is tl11 t
l1
2 , where tl11 is bl1 and tl12 is the inverted

long d-branch of the d-formula B⊃Anilj:B⊃An, B⊃An, B⊃Anilj. The o-tree trl2

is the branch bl2. Roughly speaking, in a derivation one o-tree of a d-formula C will

consist of d-branches and inverted long d-branches of some d-formulae, alternately.

The first part of an o-tree of a d-formula C will be a branch of that d-formula C.

The next parts (if they exist), which make that o-tree, will be the d-branches of cut

formulae and inverted long d-branches of cut formulae, alternately. The last part

of that o-tree can be: the branch of the d-formula C which ends with the principal

formula of an operational rule (see trl2 above); a cut formula (see trr above); the

inverted long d-branch of a d-formula from the end sequent of the derivation (see trl1

above); or a d-formula from an initial sequent.

Now we define the notion of an o-tree of a d-formula.

First, for a d-branch b : F1...Fn of a d-formula A and its d-subformula C we define

the following notions: (i) the sequence of d-formulae b−1 : Fn...F1; (ii) the d-branch b

is a part of C when Fn is a proper d-subformula of C; (iii) C is a part of the d-branch

b when C is a d-subformula of Fn.
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Let A be a d-formula from a derivation D. An o-tree of the d-formula A in the

derivation D (a D-tree of A) will be a sequence t1...tn (n ≥ 1), where t1 is a branch of

the d-formula A in D, and ti, i > 1, are some sequences of d-formulae from D which

are made in the following way.

− If the last d-formula of t1 is a principal formula of an operational rule, then n = 1.

− If the last d-formula of t1 belongs to an initial sequent, then n>1 and for each k,

k≥1:

If the last d-formula of t2k−1 is

(i) one d-formula of an i-sequent and Cm is other d-formula of that i-sequent, then

t2k is b−1, where b : C1...Cm is a long d-branch which ends in Cm;

(ii) a d-formula from a ⊥-sequent, then t2k is the other d-formula from that ⊥-sequent

and n is 2k.

If the last d-formula of t2k is

(i) a d-formula from the end sequent of D, then n is 2k;

(ii) the d-formula C1, which is a cut formula of a cut whose other cut formula is C

(C1 and C have the same form), then t2k+1 can be

(a) only the d-formula C, when there is a d-branch of C which is a part of A

and n = 2k + 1;

(b) a d-branch of C which ends in an initial sequent and whose part is A (if it

exists);

(c) one empty sequence, i.e. n = 2k, and t2k has to be changed, it becomes

only its first d-formula, otherwise.

In a derivation D an o-tree tr : t1...tn of a d-formula A is solid if n is an even

number, otherwise the o-tree tr is not solid.

In Example 1 for the o-trees trr, trl1 and trl2 we have the following. The o-tree trr is

a not solid o-tree of the right cut formula of the cut c4, the d-formula B⊃Ailj; the

o-tree trl1 is a solid o-tree of the left cut formula of the cut c4, the d-formula B⊃A,

and the o-tree trl2 is a not solid o-tree of that d-formula.
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Lemma 1. Let A be a d-formula in a derivation D and tr :t1...tn be an o-tree of

that d-formula A.

(1) n is an even number iff the last d-formula of tr belongs to the end sequent of the

derivation D or an initial sequent.

(2) n is an odd number iff the last d-formula of tr is either a principal formula of an

operational rule or a cut formula whose one d-branch contains the principal formula

A of an operational rule.

Proof. See the proof of Lemma 1 from Section 3 in [2]. 2

All possible o-trees of a d-formula A in a derivation D form the origin of the

d-formula A in the derivation D. A d-formula A has the safe origin in a derivation

D if all its o-trees are solid; otherwise that d-formula A has no safe origin in that

derivation.

Lemma 2. A d-formula A has the safe origin in a derivation D iff the last d-

formula of each o-tree of A in the derivation D belongs to either the end sequent of

the derivation D or an initial sequent.

Proof. See the proof of Lemma 2 from Section 3 in [2]. 2

Now we can define the notion of a maximum cut of a derivation.

Let

D1

Γ→ A

D2

Aα,∆→ D

Γ×α,∆→ D
cut be a subderivation of a derivation D. The cut, which

is the last rule of that subderivation, will be called a maximum cut (m-cut) of the

derivation D if neither the d-formula A from Γ → A nor the d-formula Aα from

Aα,∆ → D has safe origin in the derivation D. Otherwise, that cut will be called a

no-maximum cut of the derivation D.

In Example 1 the cuts c2, c3 and c4 are maximum cuts and the cut c1 is a no-

maximum cut of the derivation E .
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4. DERIVATIONS WITHOUT MAXIMUM CUTS AND

NORMAL DERIVATIONS

4.1. The systems S and N

In [4] Zucker’s systems S and N and his map ϕ, which connects derivations of

these systems, were considered. The definition of maximum cuts of derivations in the

system S (which is repeated in our Section 3 above) was presented. In the system

N Prawitz’s definition of maximum segments was used, and normal derivations were

defined in an usual way, as derivations without maximum segments. It was shown

the following connection between derivations without maximum cuts of the system S
and normal derivations of the system N (see Theorem 1 and Theorem 2 from Section

4.3 in [4]):

Theorem 7. If a derivation D is a derivation without maximum cuts in the

system S, then the derivation ϕD is a normal derivation in the system N .

Theorem 8. Let D be a derivation in the system S. If the derivation ϕD is a

normal derivation in the system N , then D is a derivation without maximum cuts in

the system S.

4.2. The systems SE and NE

In [1] a new solution of the problems of connections between reductions of cut-

elimination and normalization procedure was presented. The system of sequents SE ,

which is the system δE with upper indices from [1] (see Section 2.1 from [1] for details),

and a new natural deduction system, the system NE , were considered.

We present only the system NE from [1]. (The system SE is the system S from

our Section 2 with upper indices i.e. the system δE with only upper indices from [1].)
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The natural deduction system NE
Postulates in the system NE (see Section 2.3 from [1] for details).

Trivial derivation of A from A itself, A or Ai, where i is any unary index.

Substitution. From
∆
π1
A

and
Γ, Aa
π2
C

we define a derivation Γ,

∆×a
π1

(Aa)
π2
C.

.

Contraction: From
Γ, Aa, Ab

π
C

we make
Γ, Aa∗, Ab∗

π
C

, where ∗ means that Aa and Ab are

contracted.

Logical inference rules
introduction rules elimination rules

[Aa]
π
B

A ⊃ B (⊃IE)

π1
A ⊃ B

π2
A

[Bb]
π3
C

C
(⊃EE)

A B
A ∧B (∧IE)

π1
A ∧B

[Aa]
π2
C

C
(∧EE1)

π1
A ∧B

[Bb]
π2
C

C
(∧EE2)

A
A ∨B (∨IE1) B

A ∨B (∨IE2)
π1

A ∨B

[Aa]
π2
C

[Bb]
π3
C

C
(∨EE)

Fa
∀xFx (∀IE)

π1
∀xFx

[F ta]
π2
C

C
(∀EE)

F t
∃xFx (∃IE)

π1
∃xFx

[Fac]
π2
C

C
(∃EE)

⊥−rule:
⊥
P

(⊥)
, P is an atomic formula different from ⊥.

In the rules (∀IE) and (∃EE) the variable a has to satisfy the well-known restrictions

on variables. In each of the rules (⊃IE), (⊃EE), (∧EE1), (∧EE2), (∨EE), (∀EE) and

(∃EE) in the brackets [ ] there is the assumption class which is discharged by that

rule.

Introduction rules of the system NE are introduction rules of Gentzen’s natural

deduction system NJ. However, in the system NE elimination rules of all connectives

and quantifiers are of the same form as the elimination rules of ∨ and ∃ in the system

NJ. Maximum segments of derivations in the system NE are Prawitz’s maximum

segments (see [11] p. 49) and some new maximum segments which are made by the
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elimination rules of ∧, ⊃ and ∀ (for details see Section 5.3 in [1]). Normal derivations

in the system NE are defined in an usual way, as derivations without maximum

segments. In [1] it was shown that the normalization procedure in the system NE has

the reductions corresponding to standard reductions of the cut-elimination procedure

in the system SE .

In [5] connections between derivations without maximum cuts from the system SE
and normal derivations from the system NE were considered. To connect derivations

from SE and NE the map ψ from [1] was used. Maximum cuts in derivations from

the system SE were defined in the same way as maximum cuts in derivations from

the system S in Section 3 above. In [5] the following property (i. e. the first part of

the property (**) from our Introduction) was proved (see Theorem 3.1 in [5]):

Theorem 9. If D is a derivation without maximum cuts in the system SE, then

the derivation ψD is a normal derivation in the system NE.

By using our Lemma 2 from Section 3, Lemma 3.7 from [5], our Theorem 9 and

Theorem 2 from Section IV§2 in [11] the second part of the property (**) (from our

Introduction) for the systems NE and SE , i.e. the following theorem, can be proved.

Theorem 10. Let D be a derivation in the system SE. If the derivation ψD is a

normal derivation in the system NE, then D is a derivation without maximum cuts

in the system SE.
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