ON A CONVERSE OF KY FAN INEQUALITY

Slavko Simić
Mathematical Institute SANU, Kneza Mihaila 36, 11000 Belgrade, Serbia
(e-mail: ssimic@turing.mi.sanu.ac.rs)

(Received December 14, 2009)

Abstract

In this short note a converse and an improvement of the famous Ky Fan inequality is given.

2010 Mathematics Subject Classification: 26D15.
Key words: Ky Fan inequality, Global bounds, Converses.

1. INTRODUCTION

Throughout the paper we denote by $\mathbf{x}=\left\{x_{i}\right\}$ a finite sequence of positive numbers and with $\mathbf{w}=\left\{w_{i}\right\}, \sum w_{i}=1$ a sequence of positive weights associated with \mathbf{x}.

Denote also by

$$
A(\mathbf{w}, \mathbf{x}):=\sum w_{i} x_{i} ; G(\mathbf{w}, \mathbf{x}):=\prod x_{i}^{w_{i}},
$$

the generalized arithmetic and geometric means of numbers x_{i}, respectively.
The well-known arithmetic-geometric inequality states that, for arbitrary \mathbf{x}, \mathbf{w},

$$
\begin{equation*}
A(\mathbf{w}, \mathbf{x})=\sum w_{i} x_{i} \geq \prod x_{i}^{w_{i}}=G(\mathbf{w}, \mathbf{x}) . \tag{1}
\end{equation*}
$$

The most celebrated counterpart of A-G inequality is the inequality of Ky Fan which says that

$$
\begin{equation*}
\frac{\sum w_{i} x_{i}}{\sum w_{i}\left(1-x_{i}\right)} \geq \frac{\Pi x_{i}^{w_{i}}}{\Pi\left(1-x_{i}\right)^{w_{i}}} \tag{2}
\end{equation*}
$$

whenever $x_{i} \in(0,1 / 2]$.
Since its publication in 1961 [2, p.5], Fan's result has evoked a great interest and a plenty of different proofs as well as noteworthy extensions and refinements are given (cf. [1], [3]).

Although it is not at all obvious, the Ky Fan inequality is stronger than A-G inequality. Indeed, for an arbitrary finite sequence $\left\{x_{i}\right\}$ of positive numbers, consider the sequence $\left\{x_{i} / t\right\}$ with $t \geq 2 \max x_{i}$. Since $x_{i} / t \in(0,1 / 2]$, applying (2) we get

$$
\frac{\sum w_{i} x_{i}}{\sum w_{i}\left(1-x_{i} / t\right)} \geq \frac{\Pi x_{i}^{w_{i}}}{\Pi\left(1-x_{i} / t\right)^{w_{i}}} .
$$

Letting $t \rightarrow \infty$ we obtain (1). Therefore, the A-G inequality is a consequence of Ky Fan inequality.

The aim of this paper is to give a global converse of the inequality (2), that is, a converse which does not depend on \mathbf{w} or \mathbf{x} but only on an interval I where x_{i} belong.

An upper global bound for Jensen's inequality was given by Dragomir in [4].
Theorem A If f is a differentiable convex mapping on $I:=[a, b]$, then we have

$$
\sum w_{i} f\left(x_{i}\right)-f\left(\sum w_{i} x_{i}\right) \leq \frac{1}{4}(b-a)\left(f^{\prime}(b)-f^{\prime}(a)\right):=T_{f}(a, b)
$$

In [5] we obtain an upper global bound without differentiability restriction on f.
Theorem B For any \mathbf{w} and $\mathbf{x} \in[a, b]$, we have

$$
(0 \leq) \sum w_{i} f\left(x_{i}\right)-f\left(\sum w_{i} x_{i}\right) \leq f(a)+f(b)-2 f\left(\frac{a+b}{2}\right):=S_{f}(a, b)
$$

for any f that is convex over $I:=[a, b]$.
Although the bounds T and S are not comparable in general, for a plenty of cases the bound $S_{f}(a, b)$ is better than $T_{f}(a, b)$. For instance, for a convex function f given
by

$$
f(x)=-x^{s}, s \in(0,1) ; \quad f(x)=x^{s}, s \in(-\infty, 0) \cup(1,+\infty) ; I \subset R^{+},
$$

we have that

$$
S_{f}(a, b) \leq T_{f}(a, b),
$$

for each $s \in(-\infty, 0) \cup(0,1) \cup(1,2] \cup[3,+\infty)$.

2. RESULTS

The form of a converse of Ky Fan inequality is given in the sequel.
Theorem 1. If $0<a \leq x_{i} \leq b \leq 1 / 2$, then

$$
\begin{equation*}
\frac{G(\mathbf{w}, \mathbf{x})}{G(\mathbf{w}, \mathbf{1}-\mathbf{x})} \leq \frac{A(\mathbf{w}, \mathbf{x})}{A(\mathbf{w}, \mathbf{1}-\mathbf{x})} \leq \frac{G(\mathbf{w}, \mathbf{x})}{G(\mathbf{w}, \mathbf{1}-\mathbf{x})} S(a, b), \tag{3}
\end{equation*}
$$

where $S(a, b)=\frac{(1-a)(1-b)(a+b)^{2}}{a b(2-a-b)^{2}}$.
Applying Theorem A another converse could be established, that is,

$$
\frac{G(\mathbf{w}, \mathbf{x})}{G(\mathbf{w}, \mathbf{1}-\mathbf{x})} \leq \frac{A(\mathbf{w}, \mathbf{x})}{A(\mathbf{w}, \mathbf{1}-\mathbf{x})} \leq \frac{G(\mathbf{w}, \mathbf{x})}{G(\mathbf{w}, \mathbf{1}-\mathbf{x})} T(a, b),
$$

with $T(a, b)=\exp \left[\frac{(b-a)^{2}(1-a-b)}{4 a b(1-a)(1-b)}\right]$.
But we shall show in the sequel that for each $[a, b] \subset(0,1 / 2]$ the estimation $S(a, b)$ is better than $T(a, b)$.

In the case of uniform weights we give the following improvement of Ky Fan inequality (note that $S(a, b)>1$ unless $a=b$).

Theorem 2. Let $\mu:=\min _{1 \leq i \leq n} x_{i}, \nu:=\max _{1 \leq i \leq n} x_{i} ; 0<\mu \leq \nu \leq 1 / 2$. Then

$$
\begin{equation*}
\frac{\sum_{1}^{n} x_{i}}{\sum_{1}^{n}\left(1-x_{i}\right)} \geq\left[\frac{\prod_{1}^{n} x_{i}}{\prod_{1}^{n}\left(1-x_{i}\right)} S(\mu, \nu)\right]^{1 / n} \tag{4}
\end{equation*}
$$

and this estimation is sharp.

Combining this assertion with the previous one, we obtain the following refinement of Ky Fan inequality in the case of uniform weights.

Theorem 3. Let $\mu, \nu, S(\cdot, \cdot)$ be defined as above. We have

$$
\begin{equation*}
\left[\frac{\prod_{1}^{n} x_{i}}{\prod_{1}^{n}\left(1-x_{i}\right)} S(\mu, \nu)\right]^{1 / n} \leq \frac{\sum_{1}^{n} x_{i}}{\sum_{1}^{n}\left(1-x_{i}\right)} \leq\left[\frac{\prod_{1}^{n} x_{i}}{\prod_{1}^{n}\left(1-x_{i}\right)}\right]^{1 / n} S(\mu, \nu) \tag{5}
\end{equation*}
$$

3. PROOFS

Proof of Theorem 1

Considering the function $f(x)=\log \frac{1-x}{x}, f^{\prime \prime}(x)=\frac{1-2 x}{x^{2}(1-x)^{2}}$, we conclude that it is convex on $(0,1 / 2]$. Therefore, applying Theorem B in this case, we get

$$
0 \leq \sum w_{i} \log \frac{1-x_{i}}{x_{i}}-\log \frac{1-\sum w_{i} x_{i}}{\sum w_{i} x_{i}} \leq \log \frac{1-a}{a}+\log \frac{1-b}{b}-2 \log \frac{1-\frac{a+b}{2}}{\frac{a+b}{2}},
$$

that is,

$$
0 \leq \log \frac{\sum w_{i} x_{i}}{\sum w_{i}\left(1-x_{i}\right)}-\log \frac{\Pi x_{i}^{w_{i}}}{\Pi\left(1-x_{i}\right)^{w_{i}}} \leq \log S(a, b)
$$

and the result follows.
Proof that $S(a, b) \leq T(a, b)$
Applying elementary inequalities $1+t \leq \exp t,(u+v)^{2} \geq 4 u v$, we get

$$
\begin{aligned}
S(a, b) & =1+\frac{(1-a-b)(b-a)^{2}}{a b(2-a-b)^{2}} \leq \exp \left[\frac{(1-a-b)(b-a)^{2}}{a b(2-a-b)^{2}}\right] \\
& \leq \exp \left[\frac{(1-a-b)(b-a)^{2}}{4 a b(1-a)(1-b)}\right]=T(a, b) .
\end{aligned}
$$

Proof of Theorem 2

This is a direct consequence of [5, Theorem C] which says
If $\mu:=\min _{1 \leq i \leq n} x_{i}, \nu:=\max _{1 \leq i \leq n} x_{i}$ and f is convex on the interval $[\mu, \nu]$, then

$$
\frac{1}{n}\left(\sum_{1}^{n} f\left(x_{i}\right)\right)-f\left(\frac{1}{n}\left(\sum_{1}^{n} x_{i}\right)\right) \geq \frac{1}{n}\left(f(\mu)+f(\nu)-2 f\left(\frac{\mu+\nu}{2}\right)\right)
$$

applied on the function $f(x)=\log \frac{1-x}{x}$.

References

[1] Alzer, H., Refinements of Ky Fan's inequality, Proc. Amer. Math. Soc. 117/2 (1993), 159-165.
[2] Beckenbach, E. F, and Bellman, R., Inequalities, Springer, Berlin, 1961.
[3] Bullen, P. S., Mitrinovic, D. S. and Vasic, P. M., Means and their inequalities, Reidel, Dordrecht, 1988.
[4] Dragomir, S. S., A converse result for Jensen's discrete inequality via Grüss inequality and applications in Information Theory, Analele Univ. Oradea. Fasc. Math., 7 (1999-2000), 178-189.
[5] Simic, S., Jensen's inequality and new entropy bounds, Appl. Math. Lett. (2009), 1262-1265.

