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Abstract. The following are some oversimplified verbal definitions regarding sensation and
perception, which however might be not entirely useless, even if only by keeping them some-
where in the back of our heads while scientifically studying perception and sensation within
the field of psychology. A sensation is the observation made when observing something. In
particular, a visual sensation is the observation of light energy when looking at something.
A perception is the appreciation made of a sensation. In particular, a visual perception
is what we see when looking at something: in ”early vision” this refers to what could be
called instinctive perceptions and in ”cognitive vision” this refers to possibly various ways
of thinking about or interpreting the naked perceptions made in early vision.

In [1] [2] [3] [4] essentially perception is defined via the Casorati curvature of sensation,
or, more precisely, ”early” human perceptions are defined as the most rudimentary, the
most intuitive surface curvatures of human sensations, whereby the latter are defined to
be human observations as described in detail by Koendernik and van Doorn basically for
all most natural human observations, and, in particular, very concretely for visual human
observations, in [5] [6] [7]. The main purpose of the present article is to bring a kind
of refinement to Koenderink and van Doorn’s description of human visual observation in
order to take into account the factual anisotropy which hereby occurs, most dramatically
illustrated by the different evaluations of geometrically equal lengths in the horizontal and
vertical directions, respectively, cfr. [8] [9], which ”horizontal-vertical visual effect” for
instance can be observed pretty distinctly in the following 1858 figure of W. Wundt (see
Figure 1).

Figure 1. The horizontal-vertical illusion. The vertical line is perceived
longer than the horizontal line although both lines are geometrically of
equal length.

For most visual perceptions, this amendment to the isotropic phenomenology of human
visual sensations is not of crucial importance from practical points of view, but, still, for
quite a number of visual perceptions it is rather significant to properly take into account
the above anisotropy. In any case, in Section 1, from [5] we will briefly recall some elements
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concerning the nature of visual observation following J. Koenderink and A. van Doorn.
This presentation will not be done in a subtle way. We will take the most naive possible
approach to this matter, referring the reader who is in need for a more serious treatment
to [5] [6] [7]. Next, in Section 2, we will at first recall some basic facts related to visual
anisotropies due to M. Borisavljević [10], and in this context also will consider some studies
of G. Fechner and A. Fick; (in these respects, [11] could be mentioned here as a reference
with many references showing some psychologists’ kinds of ways of relating to the golden
numbers ϕ = (

√
5 − 1)/2 and Φ = (

√
5 + 1)/2). And, then, we will introduce a scientific

description of visual sensation which, at least qualitatively and at present, seems to be most
realistic and natural. This new geometrical model for human visual sensation was inspired
by the results of some experiments from Ons whereby the horizontal-vertical visual effect
plays a role of crucial importance, as is reported on in [15].
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1. ON THE NATURE OF OBSERVATION FOLLOWING

KOENDERINK AND VAN DOORN

The following could well be considered as essentially being concerned with a basic

scientific phenomenology of several of the human sensations in general. Our present

study being exclusively limited to discussing visual sensation and perception, what is

needed further on from the more general work by Koenderink and van Doorn will be

specifically formulated right from the start for visual sensation and perception only.

For images in an (x, y)–plane R2, let the intensity I be considered in a z–direction

R as a scalar field on R2. Typically, the (x, y)–plane R2 is regarded as a Euclidean

plane E2, but, since the z and the (x, y) co–ordinates of the resulting 3D space

R3 = R2×R are obviously incommensurable, the relief which is the graph of the image

intensity I in R3 should geometrically not be treated as a surface in 3–dimensional

Euclidean space E3: rather the z–direction might measure a logarithm of I (cfr. also

the classical studies of Plateau, Fechner, Weber, Stevens,... [8] [9], and, most in

particular for vision, see [7]) and instead of using Euclidean geometry in the study

of this graph–surface in the ambient 3D space R3, priority might rather be given to

the (2 + 1)D– or (in the sense of Strübecker and Sachs isotropic, i.e.) the degenerate

or null–Riemannian geometry determined in the chart (x, y, z) of R3 by the metrical
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fundamental form ds2 = dx2 + dy2. However, for the main point that we want to

make in the present article, this matter is only of secondary importance at this stage;

and so, moreover in the knowledge that this point will have more chances of getting

across much better when thinking of the ambient 3D space R3 = R2×R basically as

a 3D–Euclidean space, hereafter we will yet do so indeed.

For reasons well explained in [5] [6], the evident blurring of the image intensities

I(x, y; s), whereby s is the scale parameter, (related to the level of resolution d by

s = d2), which one needs to take into account in order that scalar fields could be

defined after all, essentially and necessarily, is done through convolution with Gaussian

kernels

G0(x, y; s) =
1

4πs
e
−(x2+y2)

4s , (1)

when considering the (x, y)–plane R2 geometrically as a Euclidean plane E2. In the

context of the scale space setting of observations, accordingly:

I(x, y; s) = I(x, y)⊗G0(x, y; s), (2)

as one finds appropriately discussed in [5] and [6].

2. ON THE HORIZONTAL–VERTICAL VISUAL EFFECT AND ITS IMPACT

ON A SCIENTIFIC DEFINITION OF VISUAL SENSATION

In his 1954 book on ”the golden number”, M. Borisavljević in particular aims

to offer scientific explanations of the universal taste of beauty of ”golden rectangles”

(i.e. of rectangles for which the proportion width : length equals the proportion ϕ : 1),

and from the 1958 English version [10] of the book comes the following quotation:

”The visual field for both eyes represents an oval shape exactly inscribed in a (hori-

zontal) golden rectangle. ... The beautiful is what corresponds to our nature (here to

the nature of our eyes) and this fact explains the beauty of the golden rectangle”. In

agreement with this fact concerning the horizontal–vertical anisotropy of the human

visual field, (and as is very well known, in contrast with the former), our eyes are not
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equally accommodated for seeing horizontally and for seeing vertically, (and, with a

little sense for some imagination, one could well think of some cultural evolutional

origin for this matter). And in the course of time, many interesting quantitative

studies of this phenomenon have been made; besides with respect to the above men-

tioned Figure 1 of Wundt, for instance, we further mention some studies by G. Fechner

and A. Fick relating a.o. to the distances from which visual observations of paintings

and of buildings are made, referring to [10] and [11], respectively, and the references

therein; for more recent work relating to this phenomenon, see e.g. also [12] [13] [14].

In any case, such studies illustrate the varying ways in which our visual system may

deal with visual measures of objects depending on their eventual orientations.

Wilhelm Wundt and Gustav Fechner

To take this fact into account in a geometric, i.e. in a scientific description of

human vision, we next propose the following amendment in this respect to the above

recalled model for visual sensation of Koenderink and van Doorn. Staying in tune with

the earlier made comments of describing hereby ”things” exclusively in a Euclidean

way and remaining consistent with the previous notations, we define a visual sensation

at a scale (ah, av) by

I(x, y; ah, av) = I(x, y)⊗G0(x, y; ah, av), (3)
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whereby now convolutions are made with ”elliptical” Gaussians

G0(x, y; ah, av) =
1

2πahav

e
− 1

2
(( x

ah
)2+( y

av
)2)

, (4)

having essentially 0 < ah < av corresponding to the general experience of the

horizontal–vertical effect, i.e.: ah and av denoting respectively the horizontal and the

vertical axis of the ellipses involved, (versus the former convolutions with ”circular”

Gaussians G0(x, y; s)). At least at this stage, and in accordance with the announced

non–subtle way of presentation, hereby we take the kind of ”direct” approach rather

than, for instance, to consider solving diffusion equations for light intensities I on

Riemann–Finsler (x, y) planes with a metrical indicatrix related to the shape of the

human visual field, etcetera. The directness of this approach seems well justified, at

least in principle and at present, both from the points of view of naturalness and of

effectiveness, respectively with respect to what was stated before and to what will

follow later. So, in summary and fundamentally referring to [5] (in particular pp.

77–81): visual sensation is defined via elliptical Gaussian apertures determined by

axes ah < av.

3. AN ILLUSTRATION: HUMAN VISUAL SENSATIONS AND THEIR

PERCEPTIONS OF ELLIPTICAL GAUSSIAN BLOBS

It is trivially irresistible here and now to concretely illustrate the above in case

that the surfaces z = I(x, y) themselves are Gaussians which are essentially elliptical.

In subsequent papers we intend to treat a variety of other images as well, of course.

So, hereafter we thus consider such Gaussians of which the main axis in each case

makes an angle of 35◦ with the x–axis, but of which the ratio’s of the length of the

main axis versus the length of the minor axis varies: for a given length of the main

axis, the lengths of the smaller axes become bigger and bigger, cfr. Figure 2. In

[15], the illusory orientation tilts of such Gaussian luminance blobs are studied. More

precisely, the participants to an experiment were presented several essentially elliptical

Gaussian stimuli as visual images and they were asked to indicate their perception
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of orientation of the main axis of these blobs. The discrepancies of these experienced

orientations in comparison to the physically ”real” orientations of these Gaussians

were measured and a natural account on how such tilt biases do emerge in human

visual sensation of such stimuli was then provided via anisotropic smoothing. In

Figure 2, the illusory perceptual tilt is put on view to provide the reader a concrete

sense of how anisotropic smoothing can affect the perception of a stimulus with a

smooth luminance gradient, i.e. a blob with a Gaussian luminance descent. The less

steep the descent, the more a convolution with an elliptical Gaussian kernel will affect

the perception of the orientation of the stimuli. Perceptually, in each row of Figure

2, any stimulus seems to be tilted away from the horizontal direction more than the

one on its left, although, physically, the main axes of all these elliptical Gaussians

have the same orientation.

Figure 2. In the upper row and in the lower row, three Gaussian luminance
profiles are directed 35◦ clockwise and counterclockwise from the horizontal
axis. See the main text for an explanation in more detail.

In Figure 3, isotropic (middle column) and anisotropic (right column) smoothing

will be contrasted with each other in case of the elliptical Gaussian blob I(x, y)

depicted as an image in the middle panel of the first row in Figure 2 and shown
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explicitly as a surface in R3 in the upper row, left column of Figure 3. In the middle

and the right column, the surfaces in the upper row represent the same Gaussian

blob, but smoothed isotropically and anisotropically, respectively. We refer to these

surfaces as the sensations I(x, y; s) and I(x, y; ah, av) resulting from a convolution

with an isotropic and anisotropic kernel G0 of the luminance surface I(x, y) depicted

at the left. Equal scales were used for isotropic and anisotropic Gaussian kernels,

however, in order to demonstrate a clear contrast the ratio of the horizontal and the

vertical axis of the anisotropic kernel ah : av was chosen rather drastically as 3 : 1.

Figure 3. No smoothing (left column), isotropic smoothing (middle
column) and anisotropic smoothing (right column). See main text for
an explanation in more detail.
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The second row shows a topographical representation of the same luminance surfaces

and maybe provides a better view on the orientation differences between the two

convolved luminance functions with respect to the initial luminance surface, i.e. the

anisotropic smoothed luminance profile is more tilted to the vertical direction while

the isotropic smoothed luminance profile maintains the same orientation.

In the top half of Figure 3 are presented graphical views on what we intuitively

call a sensation. In our geometrical approach, sensation is defined by smoothing the

luminance surface by elliptical Gaussian kernels. In previous work, cfr. [1] [2] [3] [4],

perception has been defined geometrically via the Casorati curvature of sensation, i.e.

the most intuitive surface curvature of the smoothed luminance surface. In the third

row of Figure 3, the Casorati curvature surfaces of the surfaces of the first row, and

so, also of the sensation surfaces shown in the upper row are depicted, and finally in

the fourth row, the surfaces of the third row are presented topographically.

Besides the reason to consider here elliptical Gaussians for the images I(x, y) which

was indicated at the very beginning of the section, another one is that, qualitatively,

in these examples there is no distinction between the orientations presented by the

anisotropically smoothed surfaces I(x, y)⊗G0(x, y; ah, av) and the orientations of the

surfaces determined by their Casorati curvatures, or, still, for these examples, there

is no difference between the orientations of the corresponding visual sensations and of

their perceptions; (with the aim that eventual readers who are not acquainted with

what actually are perceptions in terms of curvature at the time of their first reading of

the present paper, could maybe focus somewhat better on the novelty of the present

paper itself, i.e. on a scientific definition of visual sensation, rather than to have to

get acquainted with scientific definitions of visual sensation and of perception at the

same time).

In any case, at least in our opinion, all kinds of so–called illusions, the static as

well as the dynamic ones which are pertaining to early vision, do loose the mystery

they may have offered and pretty certainly will continue to offer to those who look

at them in a state of scientific ignorance. The last paragraph in [16] goes as fol-

lows: ”The physical sciences take immense trouble to avoid errors. Here we seek out
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and study errors for understanding how we see and to suggest something of how the

brain works. The weird and wonderful errors of illusions are not trivial. They are

truly phenomenal phenomena, central to art and a major reason for the experimental

methods of science”. These phenomenal phenomena, after all, turn out to be very

natural phenomena indeed, if only one cares to reflect scientifically on sensation and

perception: ”Nature likes to be looked at with geometers’ eyes and brains”.
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