BIMINIMAL GENERAL HELIX IN THE HEISENBERG GROUP Heis^{3}

ESSIN TURHAN AND TALAT KÖRPINAR

Abstract

In this paper, we study biminimal curves and characterize non-geodesic biminimal general helix in the Heisenberg group Heis^{3}. We show that non-geodesic biminimal general helix are biharmonic curves. Morover, we obtain the position vectors of biminimal general helix in the Heisenberg group Heis ${ }^{3}$.

1. Introduction

Let $f:(M, g) \rightarrow(N, h)$ be a smooth function between two Riemannian manifolds. Then f is said to be harmonic over compact domain $\Omega \subset M$ if it is a critical point of the energy

$$
E(f)=\int_{\Omega} h(d f, d f) d v_{g}
$$

where $d v_{g}$ is the volume form of M. From the first variation formula it follows that is harmonic if and only if its tension field $\tau(f)=\operatorname{trace}_{g} \nabla d f$ vanishes.

The bienergy $E_{2}(f)$ of f over compact domain $\Omega \subset M$ is defined by

$$
\begin{equation*}
E_{2}(f)=\int_{\Omega} h(\tau(f), \tau(f)) d v_{g} . \tag{1.1}
\end{equation*}
$$

Using the first variational formula one sees that f is a biharmonic map if and only if its bitension field vanishes identically, i.e.,

$$
\begin{equation*}
\widetilde{\tau}(f):=-\triangle^{f}(\tau(f))-\operatorname{trace}_{g} R^{N}(d f, \tau(f)) d f=0 \tag{1.2}
\end{equation*}
$$

[^0]where
\[

$$
\begin{equation*}
\triangle^{f}=-\operatorname{trace}_{g}\left(\nabla^{f}\right)^{2}=-\operatorname{trace}_{g}\left(\nabla^{f} \nabla^{f}-\nabla_{\nabla^{M}}^{f}\right) \tag{1.3}
\end{equation*}
$$

\]

is the Laplacian on sections of the pull-back bundle $f^{-1}(T N)$ and R^{N} is the curvature operator of (N, h) defined by

$$
R(X, Y) Z=-\left[\nabla_{X}, \nabla_{Y}\right] Z+\nabla_{[X, Y]} Z .
$$

An isometric immersion $f:(M, g) \rightarrow(N, h)$ is called a λ-biminimal immersion if it is a critical point of the functional:

$$
E_{2, \lambda}(f)=E_{2}(f)+\lambda E(f), \lambda \in \mathbb{R}
$$

with respect to all normal variations.
The Euler-Lagrange equation for λ-biminimal immersions is

$$
\begin{equation*}
\widetilde{\tau}(f)^{\perp}=\lambda \tau(f) \tag{1.4}
\end{equation*}
$$

In particular, f is called a biminimal immersion if it is a critical point of the bienergy functional E_{2} with respect to all normal variation with compact support. Here, a normal variation means a variation $\left\{f_{t}\right\}$ through $f=f_{0}$ such that the variational vector field $V=d f_{t} /\left.d t\right|_{t=0}$ is normal to M.

The Euler-Lagrange equation of this variational problem is $\widetilde{\tau}(f)^{\perp}=0$. Here $\widetilde{\tau}(f)^{\perp}$ is the normal component of $\widetilde{\tau}(f)$.

In this paper, we study biminimal curves and we characterize non geodesic biminimal general helix in Heisenberg group Heis ${ }^{3}$. Morover, we obtain the position vectors of a biminimal general helix in the Heisenberg group Heis ${ }^{3}$.

2. Left invariant metric in the Heisenberg group Heis ${ }^{3}$

Heisenberg group Heis ${ }^{3}$ can be seen as the space \mathbb{R}^{3} endowed with multiplication:

$$
\begin{equation*}
(\bar{x}, \bar{y}, \bar{z})(x, y, z)=\left(\bar{x}+x, \bar{y}+y, \bar{z}+z-\frac{1}{2} \bar{x} y+\frac{1}{2} x \bar{y}\right) . \tag{2.1}
\end{equation*}
$$

Heis^{3} is a three-dimensional, connected, simply connected and 2-step nilpotent Lie group.

The Riemannian metric g given by

$$
\begin{equation*}
g=d x^{2}+d y^{2}+\left(d z+\frac{y}{2} d x-\frac{x}{2} d y\right)^{2} . \tag{2.2}
\end{equation*}
$$

The Lie algebra of Heis^{3} has an orthonormal basis

$$
\begin{equation*}
e_{1}=\frac{\partial}{\partial x}-\frac{y}{2} \frac{\partial}{\partial z}, \quad e_{2}=\frac{\partial}{\partial y}+\frac{x}{2} \frac{\partial}{\partial z}, \quad e_{3}=\frac{\partial}{\partial z} \tag{2.3}
\end{equation*}
$$

for which we have the Lie products

$$
\left[e_{1}, e_{2}\right]=e_{3}, \quad\left[e_{2}, e_{3}\right]=0, \quad\left[e_{3}, e_{1}\right]=0,
$$

with

$$
g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1
$$

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-invariant metric g, defined above is given by:

$$
\nabla=\frac{1}{2}\left(\begin{array}{ccc}
0 & e_{3} & -e_{2} \tag{2.4}\\
-e_{3} & 0 & e_{1} \\
-e_{2} & e_{1} & 0
\end{array}\right)
$$

where the (i, j)-element in the table above equals $\nabla_{e_{i}} e_{j}$ for our basis

$$
\left\{e_{k}, k=1,2,3\right\}=\left\{e_{1}, e_{2}, e_{3}\right\} .
$$

We adopt the following notation and sign convention for Riemannian curvature operator

$$
R(X, Y) Z=-\nabla_{X} \nabla_{Y} Z+\nabla_{Y} \nabla_{X} Z+\nabla_{[X, Y]} Z,
$$

the Riemannian curvature tensor is given by

$$
R(X, Y, Z, W)=g(R(X, Y) Z, W)
$$

where X, Y, Z, W are smooth vector fields on Heis^{3}.
The components $\left\{R_{i j k l}\right\}$ of R relative to $\left\{e_{1}, e_{2}, e_{3}\right\}$ are defined by

$$
g\left(R\left(e_{i}, e_{j}\right) e_{k}, e_{l}\right)=R_{i j k l}
$$

The non vanishing components of the above tensor fields are

$$
\begin{gathered}
R_{121}=-\frac{3}{4} e_{2}, \quad R_{131}=\frac{1}{4} e_{3}, \quad R_{122}=\frac{3}{4} e_{1}, \\
R_{232}=\frac{1}{4} e_{3}, \quad R_{133}=-\frac{1}{4} e_{1}, \quad R_{233}=-\frac{1}{4} e_{2},
\end{gathered}
$$

and

$$
\begin{equation*}
R_{1212}=-\frac{3}{4}, \quad R_{1313}=R_{2323}=\frac{1}{4} \tag{2.5}
\end{equation*}
$$

3. Biminimal curves in the Heisenberg group Heis^{3}

Let $\gamma: I \rightarrow$ Heis 3 be a differentiable curve parametrized by arc length and let $\{T, N, B\}$ be the orthonormal frame field tangent to Heis ${ }^{3}$ along γ and defined as follows: by T we denote the unit vector field γ^{\prime} tangent to γ, by N the unit vector field in the direction of $\nabla_{T} T$ normal to γ, and we choose B so that $\{T, N, B\}$ is a positive oriented orthonormal basis. Then we have the following Frenet equations

$$
\begin{aligned}
\nabla_{T} T & =k N \\
\nabla_{T} N & =-k T-\tau B \\
\nabla_{T} B & =\tau N
\end{aligned}
$$

where $k=|\tau(\gamma)|=\left|\nabla_{T} T\right|$ is the curvature of γ and τ its torsion. Expand T, N, B as

$$
\begin{aligned}
T & =T_{1} e_{1}+T_{2} e_{2}+T_{3} e_{3}, \\
N & =N_{1} e_{1}+N_{2} e_{2}+N_{3} e_{3}, \\
B & =B_{1} e_{1}+B_{2} e_{2}+B_{3} e_{3},
\end{aligned}
$$

with respect to the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$.
We can write the tension field of γ as

$$
\tau(\gamma)=\nabla_{T} T
$$

and the bitension field of γ as

$$
\begin{equation*}
\widetilde{\tau}(\gamma)=\nabla_{T}^{3} T-R\left(T, \nabla_{T} T\right) T \tag{3.2}
\end{equation*}
$$

Theorem 3.1. Let $\gamma: I \rightarrow$ Heis 3 be a differentiable curve parametrized by arc length. Then is a non-geodesic biminimal curve if and only if

$$
\begin{align*}
k^{\prime \prime}-k^{3}-k \tau^{2} & =k\left(\frac{1}{4}-B_{3}^{2}\right), \tag{3.3}\\
2 \tau k^{\prime}+k \tau^{\prime} & =k N_{3} B_{3} . \tag{3.4}
\end{align*}
$$

Proof. Using (3.1) and (3.2), we obtain

$$
\begin{aligned}
\widetilde{\tau}(\gamma) & =\nabla_{T}^{3} T-k R(T, N) T \\
& =\left(-3 k k^{\prime}\right) T+\left(k^{\prime \prime}-k^{3}-k \tau^{2}\right) N+\left(2 \tau k^{\prime}+k \tau^{\prime}\right) B-k R(T, N) T
\end{aligned}
$$

From the vanishing of the normal components

$$
\begin{align*}
k^{\prime \prime}-k^{3}-k \tau^{2}-k R(T, N, T, N) & =0 \\
2 \tau k^{\prime}+k \tau^{\prime}-k R(T, N, T, B) & =0 \tag{3.5}
\end{align*}
$$

On the other hand, using (2.5), we have

$$
\begin{aligned}
R(T, N, T, N) & =\sum_{i, j, l, p=1}^{3} T_{l} N_{p} T_{i} N_{j} R_{l p i j} \\
& =T_{1} N_{2} T_{1} N_{2} R_{1212}+T_{1} N_{2} T_{2} N_{1} R_{1221} \\
& +T_{2} N_{1} T_{2} N_{1} R_{2121}+T_{2} N_{1} T_{1} N_{2} R_{2112} \\
& +T_{1} N_{3} T_{1} N_{3} R_{1313}+T_{1} N_{3} T_{3} N_{1} R_{1331} \\
& +T_{3} N_{1} T_{3} N_{1} R_{3131}+T_{3} N_{1} T_{1} N_{3} R_{3113} \\
& +T_{2} N_{3} T_{2} N_{3} R_{2323}+T_{2} N_{3} T_{3} N_{2} R_{2332} \\
& +T_{3} N_{2} T_{3} N_{2} R_{3232}+T_{3} N_{2} T_{2} N_{3} R_{3223} \\
& -\frac{3}{4} T_{1}^{2} N_{2}^{2}+\frac{3}{4} T_{1} N_{2} T_{2} N_{1}-\frac{3}{4} T_{2}^{2} N_{1}^{2}+\frac{3}{4} T_{2} N_{1} T_{1} N_{2} \\
& +\frac{1}{4} T_{1}^{2} N_{3}^{2}-\frac{1}{4} T_{1} N_{3} T_{3} N_{1}+\frac{1}{4} T_{3}^{2} N_{1}^{2}-\frac{1}{4} T_{3} N_{1} T_{1} N_{3} \\
& +\frac{1}{4} T_{2}^{2} N_{3}^{2}-\frac{1}{4} T_{2} N_{3} T_{3} N_{2}+\frac{1}{4} T_{3}^{2} N_{2}^{2}-\frac{1}{4} T_{3} N_{2} T_{2} N_{3} \\
& =-\frac{3}{4}\left(T_{1} N_{2}-T_{2} N_{1}\right)^{2}+\frac{1}{4}\left(T_{1} N_{3}-T_{3} N_{1}\right)^{2} \\
& +\frac{1}{4}\left(T_{2} N_{3}-T_{3} N_{2}\right)^{2} .
\end{aligned}
$$

From $B_{1}^{2}+B_{2}^{2}+B_{3}^{2}=1$ and the fact that $B=T \times N$, we obtain

$$
R(T, N, T, N)=\frac{1}{4}-B_{3}^{2}
$$

Similarly, we have

$$
R(T, N, T, B)=N_{3} B_{3} .
$$

These, together with (3.5), complete the proof of the theorem.
The equations (3.3) and (3.4) can be deduced from ([1], (3.5)). Note that in [4], biminimal Legendre curves in Heis ${ }^{3}$ are studied.

4. Biminimal general helix in the Heisenberg group Heis ${ }^{3}$

Definition 4.1. (see, for example, [8]) Let $\gamma: I \rightarrow$ Heis 3 be a curve of Heisenberg group Heis ${ }^{3}$ and $\{T, N, B\}$ be a Frenet frame on Heis ${ }^{3}$ along γ. If k and τ are positive constant along γ, then γ is called a helix with respect to Frenet frame.

Definition 4.2. (see, for example, [8]) Let $\gamma: I \rightarrow$ Heis 3 be a curve of Heisenberg group Heis ${ }^{3}$ and $\{T, N, B\}$ be a Frenet frame on Heis 3 along γ. A curve γ such that

$$
\frac{k}{\tau}=\text { constant }
$$

is called a general helix with respect to Frenet frame.
Theorem 4.1. Let $\gamma: I \rightarrow$ Heis 3 be a non-geodesic biminimal general helix parametrized by arc length if $N_{3} B_{3}=$ constant, then γ is a helix.

Proof. We can use (3.1) to compute the covariant derivatives of the vector fields T, N, B as:

$$
\begin{align*}
\nabla_{T} T= & \left(T_{1}^{\prime}+T_{2} T_{3}\right) e_{1}+\left(T_{2}^{\prime}+2 T_{1} T_{3}\right) e_{2}+T_{3}^{\prime} e_{3}, \\
\nabla_{T} N= & \left(N_{1}^{\prime}+\frac{1}{2}\left(T_{2} N_{3}+T_{3} N_{2}\right)\right) e_{1}+\left(N_{2}^{\prime}-\frac{1}{2}\left(T_{1} N_{3}+T_{3} N_{1}\right)\right) e_{2} \\
& +\left(N_{3}^{\prime}+\frac{1}{2}\left(T_{1} N_{2}-T_{2} N_{1}\right)\right) e_{3}, \tag{4.1}\\
\nabla_{T} B= & \left(B_{1}^{\prime}+\frac{1}{2}\left(T_{2} B_{3}+T_{3} B_{2}\right)\right) e_{1}+\left(B_{2}^{\prime}-\frac{1}{2}\left(T_{1} B_{3}+T_{3} B_{1}\right)\right) e_{2} \\
& +\left(N_{3}^{\prime}+\frac{1}{2}\left(T_{1} N_{2}-T_{2} N_{1}\right)\right) e_{3} .
\end{align*}
$$

It follows that the first components of these vectors are given by

$$
\begin{align*}
& <\nabla_{T} T, e_{3}>=T_{3}^{\prime} \\
& <\nabla_{T} N, e_{3}>=N_{3}^{\prime}+\frac{1}{2}\left(T_{1} N_{2}-T_{2} N_{1}\right) \tag{4.2}\\
& <\nabla_{T} B, e_{3}>=B_{3}^{\prime}+\frac{1}{2}\left(T_{1} B_{2}-T_{2} B_{1}\right)
\end{align*}
$$

On the other hand, using Frenet formulas (3.1), we have,

$$
\begin{align*}
& <\nabla_{T} T, e_{3}>=k N_{3}, \\
& <\nabla_{T} N, e_{3}>=-k T_{3}-\tau B_{3}, \tag{4.3}\\
& <\nabla_{T} B, e_{3}>=\tau N_{3} .
\end{align*}
$$

These, together with (4.2) and (4.3), give

$$
\begin{align*}
T_{3}^{\prime} & =k N_{3}, \\
N_{3}^{\prime}+\frac{1}{2} B_{3} & =-k T_{3}-\tau B_{3}, \tag{4.4}\\
B_{3}^{\prime}+\frac{1}{2} N_{3} & =\tau N_{3} .
\end{align*}
$$

From (4.4), we have

$$
\begin{equation*}
B_{3}^{\prime}=\left(\tau-\frac{1}{2}\right) N_{3} \tag{4.5}
\end{equation*}
$$

Suppose that γ is a be a non-geodesic biminimal general helix with respect to the Frenet frame $\{T, N, B\}$. Then,

$$
\begin{equation*}
\frac{k}{\tau}=c \tag{4.6}
\end{equation*}
$$

Using (4.6), we have

$$
\begin{equation*}
k^{\prime} \tau=\tau^{\prime} k . \tag{4.7}
\end{equation*}
$$

We substitute (4.7) in (3.4), we obtain

$$
\begin{equation*}
k^{\prime}=\frac{1}{3} N_{3} B_{3}, \quad \tau^{\prime}=\frac{c}{3} N_{3} B_{3} . \tag{4.8}
\end{equation*}
$$

From $N_{3} B_{3}=$ constant it follows that

$$
\begin{equation*}
k^{\prime \prime}=0 . \tag{4.9}
\end{equation*}
$$

We substitute (4.9) in (3.3), we obtain

$$
\begin{equation*}
k^{2}+\tau^{2}=B_{3}^{2}-\frac{1}{4} \tag{4.10}
\end{equation*}
$$

Next we replace $\tau=k / c$ in (4.10)

$$
\begin{equation*}
k^{2}=\frac{1}{1+\frac{1}{c^{2}}}\left(B_{3}^{2}-\frac{1}{4}\right) . \tag{4.11}
\end{equation*}
$$

If (4.11) derived and taking into account (4.5) and (4.8), becomes

$$
\begin{equation*}
k=\frac{3\left(\tau-\frac{1}{2}\right)}{1+\frac{1}{c^{2}}} . \tag{4.12}
\end{equation*}
$$

Substituting (4.6) in (4.12), we have

$$
\begin{equation*}
k=\text { constant. } \tag{4.13}
\end{equation*}
$$

From (4.6), we obtain

$$
\tau=\text { constant }
$$

which implies γ circular helix.

Theorem 4.2. Let $\gamma: I \rightarrow$ Heis 3 be a non-geodesic biminimal general helix parametrized by arc length and $N_{3} B_{3}=$ constant. Then the position vector of the curve $\gamma(s)$

$$
\begin{aligned}
\gamma(s)= & \left(s+C_{1} k \sin \left(s \sqrt{B_{3}^{2}-\frac{1}{4}}\right)-C_{2} k \cos \left(s \sqrt{B_{3}^{2}-\frac{1}{4}}\right)-\frac{k s}{B_{3}^{2}-\frac{1}{4}}\right) T(s) \\
& +\left(c_{1} \cos \left(s \sqrt{B_{3}^{2}-\frac{1}{4}}\right)+c_{2} \sin \left(s \sqrt{B_{3}^{2}-\frac{1}{4}}\right)-\frac{k}{B_{3}^{2-\frac{1}{4}}}\right) N(s) \\
& +\left(C_{1} \tau \sin \left(s \sqrt{B_{3}^{2}-\frac{1}{4}}\right)-C_{2} \tau \cos \left(s \sqrt{B_{3}^{2}-\frac{1}{4}}\right)-\frac{k \tau s}{B_{3}^{2}-\frac{1}{4}}\right) B(s),
\end{aligned}
$$

where $c_{1}, c_{2} \in \mathbb{R}, C_{1}=\frac{c_{1}}{\sqrt{B_{3}^{2}-\frac{1}{4}}}$ and $C_{2}=\frac{c_{2}}{\sqrt{B_{3}^{2}-\frac{1}{4}}}$.
Proof. If $\gamma(s)$ is a non-geodesic biharmonic curve. Then we can write its position vector as follows:

$$
\begin{equation*}
\gamma(s)=\xi(s) T(s)+\eta(s) N(s)+\rho(s) B(s) \tag{4.14}
\end{equation*}
$$

for some differentiable functions ξ, η and ρ of $s \in I \subset \mathbb{R}$. These functions are called component functions (or simply components) of the position vector.

Differentiating (4.14) with respect to s and by using the corresponding Frenet equation (3.1), we find

$$
\begin{align*}
\xi^{\prime}(s)-\eta(s) k & =1, \\
\eta^{\prime}(s)+\xi(s) k+\rho(s) \tau & =0, \tag{4.15}\\
\rho^{\prime}(s)-\eta(s) \tau & =0 .
\end{align*}
$$

From (4.15) we get the following differential equation:

$$
\begin{equation*}
\eta^{\prime \prime}(s)+\left(k^{2}+\tau^{2}\right) \eta(s)+k=0 . \tag{4.16}
\end{equation*}
$$

By using (3.3) we find

$$
\begin{equation*}
\eta^{\prime \prime}(s)+\left(\frac{1}{4}-B_{3}^{2}\right) \eta(s)+k=0 . \tag{4.17}
\end{equation*}
$$

The solution of (4.17) is

$$
\begin{equation*}
\eta(s)=c_{1} \cos \left(s \sqrt{B_{3}^{2}-\frac{1}{4}}\right)+c_{2} \sin \left(s \sqrt{B_{3}^{2}-\frac{1}{4}}\right)-\frac{k}{B_{3}^{2}-\frac{1}{4}}, \tag{4.18}
\end{equation*}
$$

where $c_{1}, c_{2} \in \mathbb{R}$.

From $\xi^{\prime}(s)=\eta(s) k+1$ and using (4.18) we find the solution of this equation as follows:

$$
\begin{align*}
\xi(s)= & s+\frac{c_{1} k}{\sqrt{B_{3}^{2}-\frac{1}{4}}} \sin \left(s \sqrt{B_{3}^{2}-\frac{1}{4}}\right) \tag{4.19}\\
& -\frac{c_{2} k}{\sqrt{B_{3}^{2}-\frac{1}{4}}} \cos \left(s \sqrt{B_{3}^{2}-\frac{1}{4}}\right)-\frac{k s}{B_{3}^{2}-\frac{1}{4}}
\end{align*}
$$

By using (4.18) we find the solution of $\rho^{\prime}(s)=\eta(s) \tau$ as follows:

$$
\begin{align*}
\rho(s)= & \frac{c_{1} \tau}{\sqrt{B_{3}^{2}-\frac{1}{4}}} \sin \left(s \sqrt{B_{3}^{2}-\frac{1}{4}}\right) \tag{4.20}\\
& -\frac{c_{2} \tau}{\sqrt{B_{3}^{2}-\frac{1}{4}}} \cos \left(s \sqrt{B_{3}^{2}-\frac{1}{4}}\right)-\frac{k \tau s}{B_{3}^{2}-\frac{1}{4}}
\end{align*}
$$

Substituting (4.18), (4.19) and (4.20) in (4.14) complete the proof of the theorem.

Corollary 4.1. If γ is non-geodesic biminimal general helix and $N_{3} B_{3}=$ constant, γ is a biharmonic curve.

Acknowledgement. The authors would like to thank the referees for their helpful comments.

References

[1] J. T. Cho, J. Inoguchi, J-E. Lee, Biharmonic curves in 3-dimensional Sasakian space forms, Ann. Mat. Pura Appl. (4) 186 (2007), 685-701.
[2] J. Inoguchi, Biharmonic curves in Minkowski 3-space, Int. J. Math. Math. Sci. 21 (2003), 1365-1368.
[3] J. Inoguchi, Biminimal submanifolds in contact 3-manifolds, Balkan Journal of Geometry and Its Applications 12 (1) (2007), 56-67.
[4] E. Loubeau and S. Montaldo, Biminimal immersions, Proc. Edinburgh Math. Soc. 51 (2008), 421-437.
[5] E. Loubeau and Y. L. Ou, Biharmonic maps and morphisms from conformal mappings, Tohoku Math. J. (2) 62 (1) (2010), 55-73.
[6] J. Milnor, Curvatures of Left-Invariant Metrics on Lie Groups, Advances in Mathematics 21 (1976), 293-329.
[7] S. Montaldo and C. Oniciuc, A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006), 1-22.
[8] B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.

Firat University, Department of Mathematics, 23119, Elaziğ, TURKEY
E-mail address: essin.turhan@gmail.com
E-mail address: talatkorpinar@gmail.com

[^0]: Key words and phrases. Heisenberg group, Biminimal curve, General helix. 2010 Mathematics Subject Classification: 58A10, 58E20.
 Received: March 19, 2010
 Revised: July 30, 2010.

