KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 34 (2010), PAGES 51–60.

BIMINIMAL GENERAL HELIX IN THE HEISENBERG GROUP *Heis*³

ESSIN TURHAN AND TALAT KÖRPINAR

ABSTRACT. In this paper, we study biminimal curves and characterize non-geodesic biminimal general helix in the Heisenberg group $Heis^3$. We show that non-geodesic biminimal general helix are biharmonic curves. Moreover, we obtain the position vectors of biminimal general helix in the Heisenberg group $Heis^3$.

1. INTRODUCTION

Let $f: (M, g) \to (N, h)$ be a smooth function between two Riemannian manifolds. Then f is said to be *harmonic* over compact domain $\Omega \subset M$ if it is a critical point of the energy

$$E(f) = \int_{\Omega} h(df, df) \, dv_g,$$

where dv_g is the volume form of M. From the first variation formula it follows that is harmonic if and only if its tension field $\tau(f) = \text{trace}_q \nabla df$ vanishes.

The bienergy $E_2(f)$ of f over compact domain $\Omega \subset M$ is defined by

(1.1)
$$E_2(f) = \int_{\Omega} h(\tau(f), \tau(f)) dv_g.$$

Using the first variational formula one sees that f is a biharmonic map if and only if its *bitension field* vanishes identically, i.e.,

(1.2)
$$\widetilde{\tau}(f) := -\Delta^f(\tau(f)) - \operatorname{trace}_g R^N(df, \tau(f)) df = 0,$$

Key words and phrases. Heisenberg group, Biminimal curve, General helix. 2010 Mathematics Subject Classification: 58A10, 58E20.

Received: March 19, 2010

Revised: July 30, 2010.

where

(1.3)
$$\Delta^f = -\operatorname{trace}_g(\nabla^f)^2 = -\operatorname{trace}_g\left(\nabla^f \nabla^f - \nabla^f_{\nabla^M}\right)$$

is the Laplacian on sections of the pull-back bundle $f^{-1}(TN)$ and \mathbb{R}^N is the curvature operator of (N, h) defined by

$$R(X,Y)Z = -[\nabla_X, \nabla_Y]Z + \nabla_{[X,Y]}Z.$$

An isometric immersion $f: (M, g) \to (N, h)$ is called a λ -biminimal immersion if it is a critical point of the functional:

$$E_{2,\lambda}(f) = E_2(f) + \lambda E(f) , \lambda \in \mathbb{R}$$

with respect to all normal variations.

The Euler-Lagrange equation for λ -biminimal immersions is

(1.4)
$$\tilde{\tau}(f)^{\perp} = \lambda \tau(f).$$

In particular, f is called a biminimal immersion if it is a critical point of the bienergy functional E_2 with respect to all normal variation with compact support. Here, a normal variation means a variation $\{f_t\}$ through $f = f_0$ such that the variational vector field $V = df_t/dt|_{t=0}$ is normal to M.

The Euler-Lagrange equation of this variational problem is $\tilde{\tau}(f)^{\perp} = 0$. Here $\tilde{\tau}(f)^{\perp}$ is the normal component of $\tilde{\tau}(f)$.

In this paper, we study biminimal curves and we characterize non geodesic biminimal general helix in Heisenberg group $Heis^3$. Moreover, we obtain the position vectors of a biminimal general helix in the Heisenberg group $Heis^3$.

2. Left invariant metric in the Heisenberg group $Heis^3$

Heisenberg group $Heis^3$ can be seen as the space \mathbb{R}^3 endowed with multiplication:

(2.1)
$$(\overline{x}, \overline{y}, \overline{z})(x, y, z) = (\overline{x} + x, \overline{y} + y, \overline{z} + z - \frac{1}{2}\overline{x}y + \frac{1}{2}x\overline{y}).$$

 $Heis^3$ is a three-dimensional, connected, simply connected and 2-step nilpotent Lie group.

The Riemannian metric g given by

(2.2)
$$g = dx^{2} + dy^{2} + (dz + \frac{y}{2}dx - \frac{x}{2}dy)^{2}.$$

The Lie algebra of $Heis^3$ has an orthonormal basis

(2.3)
$$e_1 = \frac{\partial}{\partial x} - \frac{y}{2}\frac{\partial}{\partial z}, \quad e_2 = \frac{\partial}{\partial y} + \frac{x}{2}\frac{\partial}{\partial z}, \quad e_3 = \frac{\partial}{\partial z},$$

for which we have the Lie products

$$[e_1, e_2] = e_3, \ [e_2, e_3] = 0, \ [e_3, e_1] = 0,$$

with

$$g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = 1.$$

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-invariant metric g, defined above is given by:

(2.4)
$$\nabla = \frac{1}{2} \begin{pmatrix} 0 & e_3 & -e_2 \\ -e_3 & 0 & e_1 \\ -e_2 & e_1 & 0 \end{pmatrix},$$

where the (i, j)-element in the table above equals $\nabla_{e_i} e_j$ for our basis

$$\{e_k, k = 1, 2, 3\} = \{e_1, e_2, e_3\}.$$

We adopt the following notation and sign convention for Riemannian curvature operator

$$R(X,Y)Z = -\nabla_X \nabla_Y Z + \nabla_Y \nabla_X Z + \nabla_{[X,Y]} Z,$$

the Riemannian curvature tensor is given by

$$R(X, Y, Z, W) = g(R(X, Y)Z, W),$$

where X, Y, Z, W are smooth vector fields on $Heis^3$.

The components $\{R_{ijkl}\}\$ of R relative to $\{e_1, e_2, e_3\}$ are defined by

$$g\left(R(e_i, e_j)e_k, e_l\right) = R_{ijkl}$$

The non vanishing components of the above tensor fields are

$$R_{121} = -\frac{3}{4}e_2, \quad R_{131} = \frac{1}{4}e_3, \quad R_{122} = \frac{3}{4}e_1,$$
$$R_{232} = \frac{1}{4}e_3, \quad R_{133} = -\frac{1}{4}e_1, \quad R_{233} = -\frac{1}{4}e_2$$

and

(2.5)
$$R_{1212} = -\frac{3}{4}, \quad R_{1313} = R_{2323} = \frac{1}{4}$$

ESSIN TURHAN AND TALAT KÖRPINAR

3. Biminimal curves in the Heisenberg group $Heis^3$

Let $\gamma : I \to Heis^3$ be a differentiable curve parametrized by arc length and let $\{T, N, B\}$ be the orthonormal frame field tangent to $Heis^3$ along γ and defined as follows: by T we denote the unit vector field γ' tangent to γ , by N the unit vector field in the direction of $\nabla_T T$ normal to γ , and we choose B so that $\{T, N, B\}$ is a positive oriented orthonormal basis. Then we have the following Frenet equations

1. 17

(3.1)
$$\nabla_T I = k N,$$
$$\nabla_T N = -kT - \tau B,$$
$$\nabla_T B = \tau N,$$

where $k = |\tau(\gamma)| = |\nabla_T T|$ is the curvature of γ and τ its torsion. Expand T, N, B as

$$T = T_1e_1 + T_2e_2 + T_3e_3,$$

$$N = N_1e_1 + N_2e_2 + N_3e_3,$$

$$B = B_1e_1 + B_2e_2 + B_3e_3,$$

with respect to the basis $\{e_1, e_2, e_3\}$.

We can write the tension field of γ as

$$\tau(\gamma) = \nabla_T T_z$$

and the bitension field of γ as

(3.2)
$$\widetilde{\tau}(\gamma) = \nabla_T^3 T - R(T, \nabla_T T)T.$$

Theorem 3.1. Let $\gamma : I \to Heis^3$ be a differentiable curve parametrized by arc length. Then is a non-geodesic biminimal curve if and only if

(3.3)
$$k'' - k^3 - k\tau^2 = k(\frac{1}{4} - B_3^2),$$

(3.4)
$$2\tau k' + k\tau' = kN_3B_3.$$

Proof. Using (3.1) and (3.2), we obtain

$$\widetilde{\tau}(\gamma) = \nabla_T^3 T - kR(T, N)T = (-3kk')T + (k'' - k^3 - k\tau^2)N + (2\tau k' + k\tau')B - kR(T, N)T.$$

From the vanishing of the normal components

(3.5)
$$k'' - k^3 - k\tau^2 - kR(T, N, T, N) = 0,$$
$$2\tau k' + k\tau' - kR(T, N, T, B) = 0.$$

On the other hand, using (2.5), we have

$$\begin{split} R(T,N,T,N) &= \sum_{i,j,l,p=1}^{3} T_l N_p T_i N_j R_{lpij} \\ &= T_1 N_2 T_1 N_2 R_{1212} + T_1 N_2 T_2 N_1 R_{1221} \\ &+ T_2 N_1 T_2 N_1 R_{2121} + T_2 N_1 T_1 N_2 R_{2112} \\ &+ T_1 N_3 T_1 N_3 R_{1313} + T_1 N_3 T_3 N_1 R_{1331} \\ &+ T_3 N_1 T_3 N_1 R_{3131} + T_3 N_1 T_1 N_3 R_{3113} \\ &+ T_2 N_3 T_2 N_3 R_{2323} + T_2 N_3 T_3 N_2 R_{2332} \\ &+ T_3 N_2 T_3 N_2 R_{3232} + T_3 N_2 T_2 N_3 R_{3223} \\ &- \frac{3}{4} T_1^2 N_2^2 + \frac{3}{4} T_1 N_2 T_2 N_1 - \frac{3}{4} T_2^2 N_1^2 + \frac{3}{4} T_2 N_1 T_1 N_2 \\ &+ \frac{1}{4} T_1^2 N_3^2 - \frac{1}{4} T_1 N_3 T_3 N_1 + \frac{1}{4} T_3^2 N_1^2 - \frac{1}{4} T_3 N_1 T_1 N_3 \\ &+ \frac{1}{4} T_2^2 N_3^2 - \frac{1}{4} T_2 N_3 T_3 N_2 + \frac{1}{4} T_3^2 N_2^2 - \frac{1}{4} T_3 N_2 T_2 N_3 \\ &= -\frac{3}{4} (T_1 N_2 - T_2 N_1)^2 + \frac{1}{4} (T_1 N_3 - T_3 N_1)^2 \\ &+ \frac{1}{4} (T_2 N_3 - T_3 N_2)^2. \end{split}$$

From $B_1^2 + B_2^2 + B_3^2 = 1$ and the fact that $B = T \times N$, we obtain

$$R(T, N, T, N) = \frac{1}{4} - B_3^2.$$

Similarly, we have

$$R(T, N, T, B) = N_3 B_3$$

These, together with (3.5), complete the proof of the theorem.

The equations (3.3) and (3.4) can be deduced from ([1], (3.5)). Note that in [4], biminimal Legendre curves in $Heis^3$ are studied.

4. Biminimal general helix in the Heisenberg group $Heis^3$

Definition 4.1. (see, for example, [8]) Let $\gamma : I \to Heis^3$ be a curve of Heisenberg group $Heis^3$ and $\{T, N, B\}$ be a Frenet frame on $Heis^3$ along γ . If k and τ are positive constant along γ , then γ is called a helix with respect to Frenet frame.

Definition 4.2. (see, for example, [8]) Let $\gamma : I \to Heis^3$ be a curve of Heisenberg group $Heis^3$ and $\{T, N, B\}$ be a Frenet frame on $Heis^3$ along γ . A curve γ such that

$$\frac{k}{\tau} = \text{constant}$$

is called a general helix with respect to Frenet frame.

Theorem 4.1. Let $\gamma : I \to Heis^3$ be a non-geodesic biminimal general helix parametrized by arc length if $N_3B_3 = constant$, then γ is a helix.

Proof. We can use (3.1) to compute the covariant derivatives of the vector fields T, N, B as:

$$\nabla_T T = (T'_1 + T_2 T_3)e_1 + (T'_2 + 2T_1 T_3)e_2 + T'_3 e_3,$$

$$\nabla_T N = (N'_1 + \frac{1}{2}(T_2 N_3 + T_3 N_2))e_1 + (N'_2 - \frac{1}{2}(T_1 N_3 + T_3 N_1))e_2$$

$$+ (N'_3 + \frac{1}{2}(T_1 N_2 - T_2 N_1))e_3,$$

$$\nabla_T B = (B'_1 + \frac{1}{2}(T_2 B_3 + T_3 B_2))e_1 + (B'_2 - \frac{1}{2}(T_1 B_3 + T_3 B_1))e_2$$

$$+ (N'_3 + \frac{1}{2}(T_1 N_2 - T_2 N_1))e_3.$$

It follows that the first components of these vectors are given by

(4.2)

$$\langle \nabla_T T, e_3 \rangle = T'_3,$$

 $\langle \nabla_T N, e_3 \rangle = N'_3 + \frac{1}{2}(T_1 N_2 - T_2 N_1),$
 $\langle \nabla_T B, e_3 \rangle = B'_3 + \frac{1}{2}(T_1 B_2 - T_2 B_1).$

On the other hand, using Frenet formulas (3.1), we have,

(4.3)

$$\langle \nabla_T T, e_3 \rangle = kN_3,$$

$$\langle \nabla_T N, e_3 \rangle = -kT_3 - \tau B_3,$$

$$\langle \nabla_T B, e_3 \rangle = \tau N_3.$$

These, together with (4.2) and (4.3), give

(4.4)

$$T'_{3} = kN_{3},$$

$$N'_{3} + \frac{1}{2}B_{3} = -kT_{3} - \tau B_{3},$$

$$B'_{3} + \frac{1}{2}N_{3} = \tau N_{3}.$$

From (4.4), we have

(4.5)
$$B'_3 = (\tau - \frac{1}{2})N_3$$

Suppose that γ is a be a non-geodesic biminimal general helix with respect to the Frenet frame $\{T, N, B\}$. Then,

(4.6)
$$\frac{k}{\tau} = c.$$

Using (4.6), we have

(4.7)
$$k'\tau = \tau'k.$$

We substitute (4.7) in (3.4), we obtain

(4.8)
$$k' = \frac{1}{3}N_3B_3, \quad \tau' = \frac{c}{3}N_3B_3.$$

From N_3B_3 =constant it follows that

(4.9)
$$k'' = 0.$$

We substitute (4.9) in (3.3), we obtain

(4.10)
$$k^2 + \tau^2 = B_3^2 - \frac{1}{4}.$$

Next we replace $\tau = k/c$ in (4.10)

(4.11)
$$k^2 = \frac{1}{1 + \frac{1}{c^2}} (B_3^2 - \frac{1}{4})$$

If (4.11) derived and taking into account (4.5) and (4.8), becomes

(4.12)
$$k = \frac{3(\tau - \frac{1}{2})}{1 + \frac{1}{c^2}}.$$

Substituting (4.6) in (4.12), we have

$$(4.13) k = \text{constant.}$$

From (4.6), we obtain

$$\tau = \text{constant},$$

which implies γ circular helix.

57

Theorem 4.2. Let $\gamma : I \to Heis^3$ be a non-geodesic biminimal general helix parametrized by arc length and $N_3B_3 = constant$. Then the position vector of the curve $\gamma(s)$

$$\gamma(s) = \left(s + C_1 k \sin\left(s\sqrt{B_3^2 - \frac{1}{4}}\right) - C_2 k \cos\left(s\sqrt{B_3^2 - \frac{1}{4}}\right) - \frac{ks}{B_3^2 - \frac{1}{4}}\right) T(s) + \left(c_1 \cos\left(s\sqrt{B_3^2 - \frac{1}{4}}\right) + c_2 \sin\left(s\sqrt{B_3^2 - \frac{1}{4}}\right) - \frac{k}{B_3^2 - \frac{1}{4}}\right) N(s) + \left(C_1 \tau \sin\left(s\sqrt{B_3^2 - \frac{1}{4}}\right) - C_2 \tau \cos\left(s\sqrt{B_3^2 - \frac{1}{4}}\right) - \frac{k\tau s}{B_3^2 - \frac{1}{4}}\right) B(s),$$

where $c_1, c_2 \in \mathbb{R}$, $C_1 = \frac{c_1}{\sqrt{B_3^2 - \frac{1}{4}}}$ and $C_2 = \frac{c_2}{\sqrt{B_3^2 - \frac{1}{4}}}$.

Proof. If $\gamma(s)$ is a non-geodesic biharmonic curve. Then we can write its position vector as follows:

(4.14)
$$\gamma(s) = \xi(s) T(s) + \eta(s) N(s) + \rho(s) B(s)$$

for some differentiable functions ξ, η and ρ of $s \in I \subset \mathbb{R}$. These functions are called component functions (or simply components) of the position vector.

Differentiating (4.14) with respect to s and by using the corresponding Frenet equation (3.1), we find

(4.15)
$$\begin{aligned} \xi'(s) - \eta(s) k = 1, \\ \eta'(s) + \xi(s) k + \rho(s) \tau = 0, \\ \rho'(s) - \eta(s) \tau = 0. \end{aligned}$$

From (4.15) we get the following differential equation:

(4.16)
$$\eta''(s) + (k^2 + \tau^2)\eta(s) + k = 0.$$

By using (3.3) we find

(4.17)
$$\eta''(s) + (\frac{1}{4} - B_3^2)\eta(s) + k = 0$$

The solution of (4.17) is

(4.18)
$$\eta(s) = c_1 \cos\left(s\sqrt{B_3^2 - \frac{1}{4}}\right) + c_2 \sin\left(s\sqrt{B_3^2 - \frac{1}{4}}\right) - \frac{k}{B_3^2 - \frac{1}{4}},$$

where $c_1, c_2 \in \mathbb{R}$.

From $\xi'(s) = \eta(s)k + 1$ and using (4.18) we find the solution of this equation as follows:

(4.19)
$$\xi(s) = s + \frac{c_1 k}{\sqrt{B_3^2 - \frac{1}{4}}} \sin\left(s\sqrt{B_3^2 - \frac{1}{4}}\right) - \frac{c_2 k}{\sqrt{B_3^2 - \frac{1}{4}}} \cos\left(s\sqrt{B_3^2 - \frac{1}{4}}\right) - \frac{ks}{B_3^2 - \frac{1}{4}}.$$

By using (4.18) we find the solution of $\rho'(s) = \eta(s)\tau$ as follows:

(4.20)
$$\rho(s) = \frac{c_1 \tau}{\sqrt{B_3^2 - \frac{1}{4}}} \sin\left(s\sqrt{B_3^2 - \frac{1}{4}}\right) - \frac{c_2 \tau}{\sqrt{B_3^2 - \frac{1}{4}}} \cos\left(s\sqrt{B_3^2 - \frac{1}{4}}\right) - \frac{k\tau s}{B_3^2 - \frac{1}{4}}$$

Substituting (4.18), (4.19) and (4.20) in (4.14) complete the proof of the theorem. \Box

Corollary 4.1. If γ is non-geodesic biminimal general helix and $N_3B_3 = constant$, γ is a biharmonic curve.

Acknowledgement. The authors would like to thank the referees for their helpful comments.

References

- J. T. Cho, J. Inoguchi, J-E. Lee, Biharmonic curves in 3-dimensional Sasakian space forms, Ann. Mat. Pura Appl. (4) 186 (2007), 685–701.
- [2] J. Inoguchi, Biharmonic curves in Minkowski 3-space, Int. J. Math. Math. Sci. 21 (2003), 1365–1368.
- [3] J. Inoguchi, *Biminimal submanifolds in contact 3-manifolds*, Balkan Journal of Geometry and Its Applications 12 (1) (2007), 56–67.
- [4] E. Loubeau and S. Montaldo, *Biminimal immersions*, Proc. Edinburgh Math. Soc. 51 (2008), 421–437.
- [5] E. Loubeau and Y. L. Ou, Biharmonic maps and morphisms from conformal mappings, Tohoku Math. J. (2) 62 (1) (2010), 55–73.
- [6] J. Milnor, Curvatures of Left-Invariant Metrics on Lie Groups, Advances in Mathematics 21 (1976), 293–329.
- [7] S. Montaldo and C. Oniciuc, A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006), 1–22.
- [8] B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.

FIRAT UNIVERSITY, DEPARTMENT OF MATHEMATICS, 23119, ELAZIĞ, TURKEY *E-mail address*: essin.turhan@gmail.com *E-mail address*: talatkorpinar@gmail.com

60