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ON THE EXISTENCE OF (196,91,42) HADAMARD

DIFFERENCE SETS

ADEGOKE S. A. OSIFODUNRIN

Abstract. We use group representations and factorization in the cyclotomic rings
to show that (196, 91, 42) Hadamard difference sets exist only in group (C7×C7)oC4

with Gap location number [196, 8]. We also show that (980, 89, 8) difference sets
may only exist in four groups of order 980.

1. Introduction

Suppose that G is a multiplicative group of order v and D is a subset of G consisting

k elements with 1 < k < v − 1. If every non-identity element of G can be recovered

λ times by the multi-set {d1d
−1
2 : d1, d2 ∈ D, d1 6= d2}, then D is called a non-

trivial (v, k, λ) difference set. The natural number n := k − λ is usually called

the order of the difference set. If G is abelian (resp. non abelian or cyclic), then

D is known as abelian (resp. non abelian or cyclic) difference set. Difference sets

were introduced in the study of projective planes in cyclic groups by Singer [16]

and since that time, there has been tremendous progress in the study of difference

sets in abelian groups. Our interest in this paper is the class of difference sets with

parameters (4u2, 2u2 − u, u2 − u), where u is any natural number. These difference

sets are known as Menon-Hadamard difference sets and they exist in abelian groups

of the form (C3)
2s × Ca

4 × (C2)
2b. McFarland [14] ruled out the existence of abelian

(4p2, 2p2 − p, p2 − p) difference sets for primes p > 3 and Smith [17] constructed
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an infinite family of non-abelian difference sets with parameters (4t2, 2t2 − t, t2 − t),

where t = 2q · 35 · 5 · 10s, q, r, s ≥ 0 and r > 0 ⇒ q > 0. Part of Iiams’s [6] work on

difference sets with parameters (4p2, 2p2− p, p2− p) produced Theorem 2.4, in which

he listed groups that could possibly admit difference sets with these parameters while

AbuGhneim [1] showed that two of such groups cannot admit these difference sets.

Other authors have also investigated difference sets with parameters (980, 89, 8) and

(196, 91, 42). For instance, Lander [10] proved there are no (980, 89, 8) difference

sets in C980 while using Turyn’s test [18], there are no (196, 91, 42) difference sets in

C196. Also, Kopilovich [9] showed that groups (C2)
2 × C5 × (C7)

2, (C2)
2 × C5 × C49,

C4×C5×(C7)
2, (C2)

2×C49, (C2)
2×(C7)

2, and C4×(C7)
2 do not admit the respective

difference sets. This paper is therefore, an extension of the efforts of the above authors

and we state the main results.

Theorem 1.1. There is no Hadamard (196, 91, 42)-difference set in any group G of

order 196 with a normal subgroup N such that G/N ∼= K, where K is a group of

order 28, C98 or D49.

Corollary 1.1. There is Hadamard (196, 91, 42)-difference set in group G = (C7)
2o

C4 = 〈x, y, z : x7 = y7 = z4 = 1, xy = yx, zyz−1 = x, zxz−1 = y−1〉, with Gap library

location number [196, 8].

Theorem 1.2. There is no (980, 89, 8)-difference set in any group G of order 980

with a normal subgroup N such that G/N ∼= C14 or D7.

Section two gives a brief background information required for this work while sec-

tions three and four establish our main results.

2. Preliminaries

Let G be any group of order v, it is more convenient to view elements of a difference

set D as a member of a group ring K[G], where K is a commutative ring with

identity and G is a finite group. Without loss of generality, we take K = Z and view

difference set D = {d1, d2, . . . , dk} as a member of the group ring Z[G]. In Z[G], D =

d1+d2+. . .+dk and the set of inverses of elements of D is D(−1) = d−1
1 +d−1

2 +. . .+d−1
k .

Thus, D satisfies the group ring equation

(2.1) DD(−1) = n · 1G + λG and DG = kG,
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where 1G is the identity element of G. If g is a non identity element of G, then the

left and right translates of D denoted by gD and Dg respectively are also difference

sets. Furthermore, if α is an automorphism of G, then Dα := {α(d) : d ∈ D} is

also a difference set. For each g ∈ G, if we take the left translates of D as blocks,

then the resulting structure is called the development of D, Dev(D) and G is the

automorphism group of Dev(D). In fact, ([10], Theorem 4.2),

Theorem 2.1. Suppose that D is a (v, k, λ) difference set in a group G. Then the

Dev(D) is a (v, k, λ) symmetric design and G acts as a regular automorphism group

of this design.

A C-representation of G is a homomorphism, χ : G → GL(d,C), where GL(d,C)

is the group of invertible d× d matrices over C. The positive integer d is the degree

of χ. A linear representation (character) is a representation of degree one. We denote

the set of all linear representations of G by G∗. In fact, G∗ is an abelian group under

multiplication and if G′ is the derived group of G, then G∗ is isomorphic to G/G′.

Furthermore, the positive integer m is the exponent of the group G if gm = 1 for all

g ∈ G and m is the smallest number with such property. If ζm := e2πi
m is a primitive

m-th root of unity, then Km := Q(ζm) is the cyclotomic extension of the set of

rational numbers, Q. Without loss of generality, we may replace C with the field Km

also known as the splitting field of G. This field is a Galois extension of degree φ(m),

(φ is the Euler function) and a basis for Km over Q is S = {1, ζm, ζ2
m, . . . , ζφ(m)−1

m }.
S is also the integral basis for Z[ζm]. If G is an abelian group then the element

(2.2) eχi
=

χi(1)

|G|
∑

g∈G

χi(g)g−1 =
1

|G|
∑

g∈G

χi(g)g

is the central primitive idempotents in C[G], where χi is an irreducible character of

G. The set {eχi
: χi ∈ G∗} is a basis for Km[G].

If G is an abelian group, then every element A ∈ Km[G] can be expressed uniquely

by its image under the character χ ∈ G∗. That is, A =
∑

χ∈G∗ χ(A)eχ and conse-

quently, χ(A)eχ = Aeχ. It then follows that if A ∈ Km[G], then A = A
∑

χ∈G∗ eχ =
∑

χ∈G∗ Aeχ =
∑

χ∈G∗ χ(A)eχ. This brings us to an instrument, called an alias that

is an interface between the values of group rings and combinatorial analysis. Aliases

are members of group ring. Aliases allow us to transfer information from Km[G] to

the group algebra Q[G] and then to Z[G]. Suppose that G is an abelian group and

Ω = {χ1, χ2, . . . , χh} is a set of characters of G. The element β ∈ Z[G] is known as
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Ω-alias if for A ∈ Z[G] and all χi ∈ Ω, χi(A) = χi(β). Suppose that g ∈ G, φ is

a representation of G and σ is a Galois automorphism of Km fixing Q. Then σ(φ)

is also a representation. In this case, σ and σ(φ) are algebraically conjugates. In

particular, two linear representations of G are algebraically conjugates if they have

the same kernel. Algebraically conjugacy is an equivalence relation.

With this information, we describe the rational idempotents of G as follows: If Km

is the Galois field over Q, then central rational idempotents in Q[G] are obtained

by summing over the equivalence classes Xi on the eχ’s under the action of the Galois

group of Km over Q. That is, [eχi
] =

∑
eχj∈Xi

eχj
, i = 1, . . . , s. For example, if G is a

cyclic group of the form Cpm = 〈x : xpm
= 1〉 (p is prime) whose characters are of the

form χi = ζ i, i = 0, . . . , m− 1, then the rational idempotents are

(2.3) [eχ0 ] =
1

pm
〈x〉,

and 0 ≤ j ≤ m− 1

(2.4) [eχ
pj

] =
1

pj+1

(
p〈xpm−j〉 − 〈xpm−j−1〉

)
.

The following is the basic formula employed in the search of difference set [7].

Theorem 2.2. Let G be an abelian group and Km be a field. Suppose that G∗/ ∼ is

the set of equivalence classes of characters with {χo, χ1, . . . , χs} a system of distinct

representatives for the equivalence classes.

Then for A ∈ K[G], we have

(2.5) A =
s∑

i=o

αi[eχi
],

where αi is any χi-alias for A.

Equation (2.5) is known as the rational idempotent decomposition of A.

Given that G is a group of order v and D is a (v, k, λ) difference set in G. Suppose

that N is a normal subgroup of G. Then ψ : G −→ G/N is a homomorphism. We

can also extend ψ, by linearity, to the corresponding group rings. The difference set

image in G/N (also known as the contraction of D with respect to the kernel N) is the

multi-set D/N = ψ(D) = {dN : d ∈ D}. If T ∗ = {1, t1, . . . , th} is a left transversal of

N in G, then we write ψ(D) =
∑

tj∈G djtjN , where the integer dj = |D∩tjN | is called

the intersection number of ψ(D) with respect to N . In this work, we shall always

use the notation D̂ for ψ(D), the difference set image in a homomorphic image of G
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and denote the number of times di equals i by mi ≥ 0. Group m′ is the abbreviation

for groups of order m′. The following lemma states the properties of D̂.

Lemma 2.1. Let D be a difference set in a group G and N be a normal subgroup of

G. Suppose that ψ : G −→ G/N is a natural epimorphism. Then

(a) D̂D̂(−1) = n · 1G/N + |N |λ(G/N)

(b)
∑

d2
i = n + |N |λ

(c) χ(D̂)χ(D̂) = n · 1G/N , where χ is a non trivial representation of G/N.

The following lemma gives information about the character value of χ(D̂).

Lemma 2.2. Suppose that G is group of order v with normal subgroup N such that

G/N is abelian. If D̂ ∈ Z[G/N ] and χ ∈ (G/N)∗, then

|χ(D̂)| =




k, if χ is a principal character of G/N√
k − λ, otherwise.

Dillon [3] proved the following results which will be used to obtain difference set

images in dihedral group of a certain order if the difference images in the cyclic group

of same order are known.

Theorem 2.3 (Dillon Dihedral Trick). Let H be an abelian group and let G be the

generalized dihedral extension of H. That is, G = 〈Q,H : Q2 = 1, QhQ = h−1, ∀h ∈
H〉. If G contains a difference set, then so does every abelian group which contains

H as a subgroup of index 2.

Corollary 2.1. If the cyclic group Z2m does not contain a (nontrivial) difference set,

then neither does the dihedral group of order 2m.

The method we intend to use in this paper is known as representation theoretic

method made popular by Leibler ([13]). Smith and others also used this method in

search of difference sets [17]. This approach entails getting information about the

difference set D in G by first obtaining a comprehensive lists ΩG/N , of difference set

image distribution scheme in factor groups of G. The reason for doing this is to enable

us to garner information about D as we gradually increase the size of the factor group.

If at a point the distribution list ΩG/N is empty, then this signifies non-existence. In

obtaining this list, ΩG/N , we use lemmas 2.1, 2.2 and the difference set equation (2.5).

In the study of difference sets in groups of order 196, we look at the difference set
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images in the factor groups of order 7, 14, 28, 49 and 98. We shall use the following

result to show that some of the images of difference set in groups of order 14 cannot

be lifted to those of group 28.

Lemma 2.3 (The Variance Technique). Suppose that G is a group and D is a (v, k, λ)

difference set in G. Suppose that N is a normal subgroup of G and ψ : G −→ G/N

is a homomorphism. Let D̂ be the difference set image in G/N and T ∗ is a left

transversal of N in G such that {di} is a sequence of intersection numbers and {mi},
where mi the number of times di equals i. Then

|N |∑

i=0

mi = |G/N |,(2.6)

|N |∑

i=0

imi = k,(2.7)

|N |∑

i=0

i(i− 1)mi = λ(|N | − 1).(2.8)

The determination of difference set images in cyclic factor groups requires aliases.

The aliases require the knowledge of how the ideal generated by χ(D̂) factors in the

cyclotomic ring Z[ζm′ ], ζm′ is the m′th root of unity and m′ is the exponent of G/N .

For the purpose of this paper, if χ is not a principal character then |χ(D̂)| = m,

where m = 32, 7 and we require how the ideals generated by 3 or 7 factors in Z[ζ ′m],

m′ = 7, 14, 28. We need the following results:

Suppose p is any prime and m′ is an integer such that gcd (p,m′) = 1. Suppose that

d is the order of p in the multiplicative group Z∗m′ of the modular number ring Zm′ .

Then the number of prime ideal factors of the principal ideal (p) in the cyclotomic

integer ring Z[ζm′ ] is φ(m′)
d

, where φ is the Euler φ-function, i.e. φ(m′) = |Z∗m′| [11].

Using this information, the ideal generated by 3 is prime in Z[ζm′ ], m′ = 7, 14 while

the ideal generated by 7 ramifies in Z[ζm′ ], m′ = 7, 14, 28.

According to Turyn [18], an integer n is said to be semi-primitive modulo m′ if for

every prime factor p of n, there is an integer i such that pi ≡ −1 mod m′. In this

case, −1 belongs to the multiplicative group generated by p. Furthermore, n is self

conjugate modulo m′ if every prime divisor of n is semi primitive modulo m′
p, m′

p is the

largest divisor of m′ relatively prime to p. This means that every prime ideals over n

in Z[ζm′ ] are fixed by complex conjugation. For instance, 33 ≡ −1 (mod 28). In this

paper, we shall use the phase m factors trivially in Z[ζm′ ] if the ideal generated by m
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is prime (or ramifies) in Z[ζm′ ] or m is self conjugate modulo m′. In this situation, if

G/N is a group with exponent m′, D̂ is the difference set image of order n = m2 in

G/N and χ is a non trivial representation of G/N , then χ(D̂) = mζ i
m′ .

Finally, we look at subgroup properties of a group that can aid the construction

of difference set image. For the convenience of the reader, we reproduce the idea

of Gjoneski, Osifodunrin and Smith [5] with some additions. Suppose that H is a

group of order 2h with a central involution z. We take T = {ti : i = 1, . . . , h} to be

the transversal of 〈z〉 in H so that every element in H is viewed as tiz
j, 0 ≤ i ≤ h,

j = 0, 1. Denote the set of all integral combinations,
∑h

i=1 aiti of elements of T , ai ∈ Z
by Z[T ]. The subgroup 〈z〉 has two irreducible representations: z 7→ 1 or z 7→ −1.

Let ϕ0 be the representation induced on H by the trivial representation z 7→ 1 and

ϕ1 be the representation induced on H by the non trivial representation z 7→ −1.

Using the Frobenius reciprocity theorem [12], every irreducible representation of H is

a constituent of ϕ0 or ϕ1. Thus, we may write any element X of the group ring Z[H]

in the form

(2.9) X = X

(
1 + z

2

)
+ X

(
1− z

2

)
.

Let A be the group ring element created by replacing every occurrence of z in X by

1. Also, let B be the group ring element created by replacing every occurrence of z

in H by −1. Then

(2.10) X = A

(〈z〉
2

)
+ B

(
2− 〈z〉

2

)
,

where A =
∑h

i=1 aiti and B =
∑h

j=1 bjtj, ai, bj ∈ Z. As X ∈ Z[H], A and B are

both in Z[T ] and A ≡ B mod 2. We may equate A with the homomorphic image of

X in G/〈z〉. Consequently, if X is a difference set, then the coefficients of ti in the

expression for A will be intersection number of X in the coset 〈z〉. In particular, if

K is a subgroup of H such that

(2.11) H ∼= K × 〈z〉,
then we may assume that A and B are in the group ring Z[K] and BB(−1) = (k−λ)·1.

The search for the homomorphic image A in K gives considerable information about

the element B. We describe B in terms of A as follows: If the structure of a group

H is like (2.11), then the characters of the group are induced by those of K and 〈z〉.
Let ϕ0,0 be the characters of H induced by both trivial characters of K and 〈z〉; ϕ1,s,
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induced by non-trivial characters of K and 〈z〉; ϕ1,0, induced by trivial character of

K and non-trivial character of 〈z〉 while ϕ0,s, is the character induced by non-trivial

characters of K and trivial character of 〈z〉. Suppose that A is a difference set image

in K. Then by Lemma 2.2,

(2.12) ϕ0,0(A) = k, |ϕ0,s(A)| = √
n, |ϕ1,0(B)| = √

n, |ϕ1,s(B)| = √
n.

The identity element of Z[K] is K and since A is a rational idempotent, it is of the

form Y
|K| , Y ∈ Z[K]. We subtract k +

√
n or k − √

n multiples of K
|K| from both

sides of ϕ0,0(A) = k to get |ϕ0,0(A− (k+
√

n
|K| )K)| = √

n or |ϕ0,0(A− (k−√n
|K| )K)| = √

n.

Set α = k+
√

n
|K| or α = k−√n

|K| and B = A − αK, k is the size of difference set. The

entries of A are non-negative integers and if |K| divides k +
√

n or k − √
n, then

BB(−1) = (k − λ) · 1 and

(2.13) D̂ = A

(〈z〉
2

)
+ gB

(
2− 〈z〉

2

)
,

g ∈ H. (2.13) can be used to determine the existence or otherwise of difference set

image in H. However, this approach fails to yield a definite result if |K| - (k +
√

n)

and |K| - (k −√n). To buttress the point being made here, consider the parameter

set (70, 24, 8) in the group C70
∼= C35×C2. Take K = C35. This shows that |K| = 35

and 35 does not divide (24 + 4) or (24− 4). It is known that the group C70 does not

admit this difference set ([10], Table 6-1). On the other hand, consider (320, 88, 24)

difference set in the group H = (C2)
6 × C5. Take K = (C2)

5 × C5 and |K| = 160.

Also 160 does not divide (88 + 8) or (88 − 8). Davis and Jedwab [2] constructed

(320, 88, 24) difference set in H. The following theorem summarizes part of Iiam’s [6]

work on non-existence of difference sets with parameters (4p2, 2p2 − p, p2 − p).

Theorem 2.4. If p ≥ 5 is a prime and G is a group of order 4p2 containing a

(4p2, 2p2 − p, p2 − p) difference set, then one of the following holds:

(a) G has an irreducible complex representation of degree 4. In particular, G is

isomorphic to one of G4, G13, G14, G15 or G16.

(b) G ∼= G11 and p ≡ 1 (mod 4), where

G4
∼= 〈x, z|xp2

= z4 = 1, zxz−1 = xf〉
∼= 〈x|xp2

= 1〉o 〈z|z4 = 1〉;
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G11
∼= 〈x, y, z|xp = yp = z4 = 1, xy = yx, zyz−1 = y−1, zxz−1 = x〉
∼= 〈x, y|xp = yp = 1, xy = yx〉o 〈z|z4 = 1〉;

G13
∼= 〈x, y, z|xp = yp = z4 = 1, xy = yx, zyz−1 = x, zxz−1 = y−1〉
∼= 〈x, y|xp = yp = 1, xy = yx〉o 〈z|z4 = 1〉;

G14
∼= 〈x, y, z|xp = yp = z4 = 1, xy = yx, zyz−1 = yf , zxz−1 = x〉
∼= 〈x, y|xp = yp = 1, xy = yx〉o 〈z|z4 = 1〉;

G15
∼= 〈x, y, z|xp = yp = z4 = 1, xy = yx, zyz−1 = yf , zxz−1 = x−1〉
∼= 〈x, y|xp = yp = 1, xy = yx〉o 〈z|z4 = 1〉;

G16
∼= 〈x, y, z|xp = yp = z4 = 1, xy = yx, zyz−1 = yf , zxz−1 = xf〉
∼= 〈x, y|xp = yp = 1, xy = yx〉o 〈z|z4 = 1〉;

with f 2 ≡ −1 (mod p2).

AbuGhneim [1] proved in his dissertation that G11 and G14 do not admit a difference

set. This conclusion is based on the fact if G is a group of order 4p2 and N a normal

subgroup of G such that G/N ∼= C4p, C2p × C2 or D2p, then G does not admit

(4p2, 2p2 − p, p2 − p) difference sets. In our case, p = 7 and we will extend this result

by showing that the fourth group of order 4p do not admit this difference set.

3. There are no group 28 images in G, |G| = 196

We compute the possible intersection numbers of D̂ with the cosets of normal

subgroups N for which G/N is either isomorphic to a 2-group or a group of order 14.

Thereafter, we show that the fourth group of order 28 does not admit (196, 91, 42)

difference sets. In this section, G is a group of order 196.

3.1. THE 2-GROUP IMAGES

We generate difference set image in factor groups of G whose orders are powers of

2.

3.1.1. The C2 Image. Suppose that N is a normal subgroup of G such that

G/N ∼= C2 = l < x : x2 = 1〉. Let the image of difference set in C2 be D̂ = d0 + d1x.
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Then by Lemma 2.1, (d0 + d1x)2 = 49 + 4116C2. Expand both sides, simplify and

equate corresponding coefficients of the powers of x to get

d2
0 + d2

1 = 4165 and 2d0d1 = 4116.

The above equations imply d0−d1 = ±7 and d0+d1 = ±91. We translate if necessary

to obtain d0 − d1 = 7 and d0 + d1 = 91. Thus, up to translation, the difference set

image in C2 is 7 + 42〈x〉.
3.1.2 The C4 Image. Suppose that there is a normal subgroup N such that G/N ∼=
C4 = 〈x : x4 = 1〉. We perceive the difference set image in C4 as D̂ =

∑
j=0 djx

j, j =

0, 1, 2, 3. The characters of C4 are of the form χj(x) = ij, j = 0, 1, 2, 3, i := exp(2πj
4

).

Thus, the rational idempotents are

[eχ0 ] =
1

4
〈x〉; [eχ1 ] =

1

4
(2〈x2〉 − 〈x〉); [eχ2 ] =

1

2
(2− 〈x2〉).

As χj(D̂)(χj(D̂)) = 72, j 6= 0 and the fact that the ideal generated by 7 does not

factor in the cyclotomic ring Z[i], we have χ0(D̂) = 91, χ1(D̂) = ±7, χ2(D̂) = ±7is.

Consequently, the aliases are αχ0 = 91, αχ1 = ±7 and αχ2 = ±7xs. Therefore, the

difference set equation is

D̂ = αχ0 [eχ0 ] + αχ1 [eχ1 ] + αχ2 [eχ2 ].

However a solution exists if and only if

(3.1) D̂ =
91

4
〈x〉+

7

4
〈x2〉(1− x) + xs 7

2
(1− x2), s = 0, 2.

We translate, if necessary, to obtain the unique C4 image as 7 + 21〈x〉.

3.2. THE GROUP 14 IMAGES

3.2.1. The C7 images. Suppose G has a normal subgroup N such that G/N ∼=
C7 = 〈x : x7 = 1〉. Suppose also that the difference set image D̂ =

∑6
i=0 dix

i exists in

C7. This image could also be viewed as a 1× 7 matrix with the columns indexed by

the powers of x. The characters of C7 are of the form χi(x) = ζ i, i = 0, . . . , 6. Using

(2.3) and (2.4), the two rational idempotents are:

[eχ0 ] =

(〈x〉
7

)
and [eχ1 ] =

(
7− 〈x〉

7

)
.

Thus, the difference set image is

(3.2) D̂ =
∑

j=0,1

αeχi
[eχi

],
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where αeχi
is an alias. As the ideal generated by 7 does not factor in the cyclotomic

field Z[ζ] and the fact that αeχ0
= 91, (3.2) becomes

D̂ = 91[eχ0 ]± 7xi[eχ1 ], i = 0, . . . , 6.

We translate if necessary, to get A1 = 7 + 12〈x〉 and A2 = −7 + 14〈x〉. Next, we look

at the factor group of order 14.

3.2.2. The C14 images. We assume that there is also a normal subgroup N such

that G/N is isomorphic to a group of order 14.

First take G/N = C14
∼= C7 × C2 = 〈x, y : x7 = y2 = 1 = [x, y]〉. Suppose that the

difference set image in C14 is D̂ =
∑6

s=0

∑1
t=0 ds,tx

syt, viewed as a 2 × 7 matrix with

the columns indexed by the powers of x and rows by powers of y. Since G/N is of

the form (2.11), we can use (2.13), with |K| = 7, n = 49, k = 91 and Bj = Aj− 12K,

where Aj is a difference set image in C7. Thus, the difference set equation is

(3.3) D̂ = Ai

(1 + y

2

)
+ xmylBj

(1− y

2

)
,

m = 0, . . . , 6, l = 0, 1; i, j = 1, 2. In this case, A1

(
1+y
2

)
= 1

2

(
(7+12〈x〉)+(7+12〈x〉)y

)
,

A2

(
1+y
2

)
= 1

2

(
(−7 + 14〈x〉) + (−7 + 14〈x〉)y

)
, B1

(
1−y
2

)
= 1

2

(
7 − 7y

)
, B2

(
1−y
2

)
=

1
2

(
(−7 + 2〈x〉) + (7− 2〈x〉)y. Notice that each of the matrices Ai

(
1+y
2

)
and Bj

(
1+y
2

)

has only one column of fractions and consequently, the value of m must be 0. Up to

translation, the difference set images in C14 are F1 = (7+6〈x〉)+(6〈x〉)y, F2 = (−7+

7〈x〉) + (7〈x〉)y, F3 = (7 + 5〈x〉) + (7〈x〉)y and F4 = (−7 + 8〈x〉) + (6〈x〉)y. Secondly,

take G/N = D7 = 〈x, y : x7 = y2 = 1 = yxy = x−1〉 and D̂ =
∑6

s=0

∑1
t=0 ds,tx

syt,

the difference set image in G/N . We use Dillon dihedral trick with the difference set

images in C14. As the presentation of this group is similar to that of C14, we just

apply the representation:

χ : x 7→
(

ζ 0
0 ζ−1

)
, y 7→

(
0 1
1 0

)
,

where ζ is the seventh root of unity, to each image set in C14 and verify χ(Fi)χ(Fi) =

49I2. Since this condition is satisfied for each i, then Fi, i = 1, 2, 3, 4 is also image set

in D7.

3.3. THERE ARE NO GROUP 28 IMAGES

Suppose that there is a normal subgroup N of G such that G/N is isomorphic to a

group of order 28. The work of AbuGhneim [1] showed G does not admit difference
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sets if G/N ∼= C28, D14 and C14 × C2. Thus, we look at the generalized Quaternion

group of order 28, with GAP location number [28, 1].

3.3.1. There are no C7 o C4 images. Consider G/N ∼= C7 o C4 = 〈x, y : x7 =

y4 = 1, yxy−1 = x6〉. The derived of G/N is isomorphic to 〈x〉 and the center of

G/N is C(G/N) ∼= 〈y2〉. Suppose that the difference set image in G/N is D̂ =
∑6

s=0

∑3
t=0 ds,tx

syt, viewed as a 4× 7 matrix with the columns indexed by the powers

of x and rows by powers of y. Since (G/N)/〈y2〉 ∼= D7 and using the information about

the difference set image in D7, the map y2 7→ 1 generates the system of equations

ds0 + ds2 = fs0, ds1 + ds3 = fs1 s = 0, . . . , 6(3.4)

where 2×7 matrix (fst) is a difference set image set in D7. Furthermore, (G/N)/〈x〉 ∼=
C4 and the map x 7→ 1 yields more linear equations

6∑

s=0

ds0 = c0,
6∑

s=0

ds1 = c2,
6∑

s=0

ds2 = c2,
6∑

s=0

ds3 = c3,(3.5)

where the 1 × 4 matrix (ct), is the unique difference set image in C4. We have used

all the lifted representations of G/N from normal subgroups. The group G/N has

three other equivalent degree two representations. One of them is

χ : x 7→
(

ζ 0
0 ζ−1

)
, y 7→

(
0 i
i 0

)
,

where ζ and i are the seventh and fourth roots of unity respectively. By applying

this representation to D̂, we get χ(D̂) =

(
a bi
b̄i ā

)
, where a =

∑6
s=0(ds0 − ds2)ζ

s,

b =
∑6

s=0(ds1 − ds3)ζ
s and a, b ∈ Z[ζ]. Furthermore,

χ(D̂)χ(D̂) =

(
aā + bb̄ 0

0 aā + bb̄

)
.

As we require χ(D̂)χ(D̂) = 49I2, where I2 is a 2× 2 matrix, it follows that

(3.6) aā + bb̄ = 49.

Our next step is to eliminate those difference set images in D7 that cannot be extended

to difference set images in H using the variance technique. We observe that since

the coset bound is |N | = 7, every intersection number ds,t satisfies 0 ≤ ds,t ≤ 7. The

distribution of the difference set images in D7 are: 613131, 01713, 5677121 and 116786.

The distribution 613131 means that the intersection number 6 appears thirteen times
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and the intersection number 13 appears once. The coset bound of 7 ensures that we

look at the following five cases:

Case 1: The distribution 613131, 13 split as (7, 6) and 6 split as (6, 0), (5, 1), (4, 2) or

(3, 3);

Case 2: The distribution 5677121, 12 split as (7, 5), 7 split as (7, 0), (6, 1), (5, 2) or

(4, 3) and 5 split as (5, 0), (4, 1) or (3, 2);

Case 3: The distribution 5677121, 12 split as (6, 6), 7 split as (7, 0), (6, 1), (5, 2) or

(4, 3) and 5 split as (5, 0), (4, 1) or (3, 2);

Case 4: The distribution 01713, 7 split as (7, 0), (6, 1), (5, 2) or (4, 3) while 0 split as

(0, 0);

Case 5: The distribution 116786, 8 split as (8, 0), (7, 1), (6, 2), (5, 3) or (4, 4), 6 split

as (6, 0), (5, 1), (4, 2) or (3, 3) and 1 can only split as (1, 0).

We claim that cases 3 and 4 are not feasible.

The distribution 01713 cannot be lifted to solution in G/N :

Let 0 ≤ αi ≤ 13, i = 0, 1, 2, 3 be the number of intersection number 7 that split as

(7, 0), (6, 1), (5, 2) or (4, 3) respectively. Using the symbols of variance technique

(Lemma 2.3), m0 = α0 +2, m1 = α2, m2 = α2, m3 = α3, m4 = α3, m5 = α2, m6 = α1

and m7 = α0. The variance technique equations (2.6) - (2.8) are:

3∑

i=0

αi = 13,(3.7)

21α0 + 15α1 + 11α2 + 9α3 = 126.(3.8)

In this case, (2.7) is redundant. From (3.7), the sum of four positive integers is

odd. This implies that either one or three of the numbers are odd. Suppose that one

of these numbers is odd. Then the remaining three numbers are even. Using this

information in (3.8) with odd coefficients, we see that an odd number is on the left

hand side of this equation while the right hand side is even. This is a contradiction.

Also, if three of the numbers on the left hand side of (3.7) are odd and only one

is even, then we reach the same conclusion. Thus, there is no feasible solution. A

similar argument shows that the distribution 5677121 cannot be lifted to solution in

G/N .

Next, we show that cases 1, 2 and 5 do not yield viable solutions. To achieve this,

we garner information about the algebraic numbers a and b. But first, we rewrite
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(3.4) as

ds2 = fs0 − ds0, ds3 = fs1 − ds1 s = 0, . . . , 6(3.9)

and substitute in a and b to get

A := 2
6∑

s=0

ds0ζ
s −

6∑

s=0

fs0ζ
s, B := 2

6∑

s=0

ds1ζ
s −

6∑

s=0

fs1ζ
s

and A, B ∈ Z[ζ]. Since fs0 and fs1, s = 0, . . . , 6 are known, it turns out that for

cases 1 and 2, A = 2
∑6

s=0 ds0ζ
s − 7 and B = 2

∑6
s=0 ds1ζ

s − 7. While for case 5,

A = 2
∑6

s=0 ds0ζ
s + 7 and B = 2

∑6
s=0 ds1ζ

s + 7. Thus, (3.6) becomes

1

7

(
A1Ā1 + B1B̄1

)
=

1

2

(
A1 + Ā1

)
for cases 1 and 2(3.10)

1

7

(
A1Ā1 + B1B̄1

)
= −1

2

(
A1 + Ā1

)
for case 5(3.11)

with A1 =
∑6

s=0 ds0ζ
s and B1 =

∑6
s=0 ds1ζ

s. The right hand sides of equations (3.10)

and (3.11) imply that

• d00 is any integer between 0 and 7,

• ds0 + d7−s,0 ≡ 0 mod 2, s = 1, . . . , 6,

• ds0 and d7−s,0 are either both even integers or both odd integers,

• the sum
∑6

s=1 ds0 is even.

With the above stipulations, we revisit each of the remaining three cases.

Case 1: The distribution 613131

Without loss of generality we choose d00 = 7 and consequently, d02 = 6. The sum
∑6

s=1 ds0 is even and consequently, d00+
∑6

s=1 ds0 is an odd integer. Also, (3.5) becomes

6∑

s=0

ds0 = 21,
6∑

s=0

ds1 = 28,
6∑

s=0

ds2 = 21,
6∑

s=0

ds3 = 21.(3.12)

Also, (3.4) yields the following thirteen equations

ds0 + ds2 = 6 s = 1, . . . , 6; ds1 + ds3 = 6 s = 0, . . . , 6(3.13)

The solutions to (3.6) are in quadratic subring of Z[ζ] whose integral basis are {1, ζ2+

ζ5, ζ3 + ζ4}. Consequently, (3.6) yields three more equations

(3.14)
6∑

s=0

a2
s +

6∑

s=0

b2
s −

6∑

s=0

asas+1 −
6∑

s=0

bsbs+1 = 49,

(3.15)
6∑

s=0

as+2as +
6∑

s=0

bs+2bs −
6∑

s=0

asas+1 −
6∑

s=0

bsbs+1 = 0,
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(3.16)
6∑

s=0

as+3as +
6∑

s=0

bs+3bs −
6∑

s=0

asas+1 −
6∑

s=0

bsbs+1 = 0.

The subscripts of (3.14), (3.15), (3.16) are congruent to 0 modulo 7, as = ds0 − ds2

and bs = ds1 − ds3, s = 0, . . . , 6. Using (3.12) - (3.16), a computer search for feasible

values of dst, t = 0, 1, 2, 3 returns no results. For cases 2 and 5, we adjust (3.12) and

(3.4) as appropriate and repeat the search. Thus, the generalized Quaternion group

of order 28 does not admit (196, 91, 42) difference sets.

3.4. THERE ARE NO C98 AND D49 IMAGES

We now look at two factor groups of G of order 98.

3.4.1. The C49 image. Suppose G has a normal subgroup N such that G/N ∼=
C49 = 〈x : x49 = 1〉. Let D̂ =

∑48
i=0 dix

i be the difference set image in this factor

group. We view this group ring element as a 1× 49 matrix with columns indexed by

powers of x. The characters of this group are χ(x) = ζ i, i = 0, . . . , 48, ζ is the forty

ninth root of unity. Using the (2.3) and (2.4), the rational idempotents of C49 are

[eχ0 ] =
1

49
〈x〉, [eχ7 ] =

1

49
(7〈x7〉 − 〈x〉) and [eχ1 ] =

1

7
(7− 〈x7〉).

Thus, the difference set equation is

(3.17) D̂ = αχ0 [eχ0 ] + αχ7 [eχ7 ] + αχ1 [eχ1 ]

with αχ0 ∈ Z, αχ1 , αχ7 ∈ Z[ζ]. The linear combination of the rational idempotents

having 〈x7〉 in their kernel can be written as Ai

7
〈x7〉, where Ai is a difference set image

in C7. Thus, (3.17) becomes

(3.18) D̂ =
Ai

7
〈x7〉 ± 7xk[eχ1 ],

with A1

7
〈x7〉 = 1

7

(
12〈x〉+ 7〈x7〉

)
and A2

7
〈x7〉 =

(
2〈x〉 − 〈x7〉

)
. Notice that the entries

of matrix 49
(
7[eχ1 ]

)
≡ 0 (mod 49), 49(A1

7
〈x7〉) 6≡ 0 (mod 49) and 49(A2

7
〈x7〉) ≡ 0

(mod 49). As intersection numbers are integers, (3.18) becomes D̂ = Ai

7
〈x7〉±7xk[eχ1 ].

Up to translation, the solutions difference images in C49 are A3 = 7 + 2〈x〉 − 2〈x7〉
and A4 = 7x + 2〈x〉 − 〈x7〉 − x〈x7〉.
3.4.2. No C98 image. Suppose that G/N ∼= C98. Observe that C98

∼= C49 ×
C2 = 〈x, y : x7 = y2 = 1 = [x, y]〉. This group is of the form (2.11). We can use

(2.13), with |K| = 49, n = 49, k = 91 and Bj = Aj − 2K, where Aj, j = 3, 4 is

a difference set image in C49. It is easy to see that the only solutions to (2.13) are
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A5 =
(
7+〈x〉−2〈x7〉

)
+〈x〉y and A6 =

(
7x+〈x〉−〈x7〉−x〈x7〉

)
+〈x〉y. However, A5

consists of integers 6 and −1. The number 6 exceeds coset bound of 2 while −1 is not

permissible. Also, A6 contains number 7, which exceeds coset bound of 2. Thus, there

are no viable solutions and there is no difference set image in C98 and consequently,

by Dillon Dihedral trick, D49 does not admit this difference set. We generalize this

results as follows: If C2p2 = 〈x, y : xp = y2 = 1 = [x, y]〉 is a homomorphic image of

G, a group of order 4p2 then the following hold:

• the coset bound for the intersection numbers of the difference set image D̂ in

C2p2 is 2

• Bj = Aj − 2K in (2.13), where Aj, j = 1, 2 is the difference set image in Cp2

• the difference set images in Cp2 are A1 = p + 2〈x〉 − 2〈xp〉 and A2 = px +

2〈x〉 − 〈xp〉 − x〈xp〉
• as C2p2

∼= Cp2 × C2, the solutions to (2.13) are

(1)
(
p + 〈x〉 − 2〈xp〉

)
+ 〈x〉y, which consists of a number, p− 1, which exceeds

coset bound and (p− 1)-negative 1 (not admissible)

(2)
(
px + 〈x〉 − 〈x9〉 − x〈xp〉

)
+ 〈x〉y, which consists of a number p, which

exceeds coset bound.

• consequently, there is no difference set image in C2p2 and Dp2 .

The above results eliminate all groups of order 196 except (C7 × C7) o C4 with gap

location number [196, 8]. This is the only group, according to Theorem 2.4 admitting

(196, 91, 42) difference sets.

4. On the Existence of (980, 89, 8) Difference Sets

In this section, G is a group of order 980 and N an appropriate normal subgroup

of G.

4.1. THE C7 IMAGES

Suppose that G/N ∼= C7 = 〈x : x7 = 1〉. Using the same approach as in the case

(196, 91, 42), the unique difference set image in C7 is A = −9 + 14〈x〉.

4.2. THERE ARE NO C14 AND D7 IMAGE

We assume that difference set image exist in G/N ∼= C14 = 〈x, y : x7 = y2 = 1 =

[x, y]〉 and we use the same approach as in the Section 2. Choose |K| = 7, n = 81,
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k = 89 and B = A− 14K in (2.13). Thus, the difference set image is D̂ = A
(

1+y
2

)
+

Bxiyj
(

1−y
2

)
, i = 0, . . . , 6; j = 0, 1. In this case, A

(
1+y
2

)
= (−9

2
+7〈x〉)+(−9

2
+7〈x〉)y

and B
(

1−y
2

)
= −9

2
+ 9

2
y. The fractions in matrix A

(
1+y
2

)
forced i = 0 and up to

translation, D̂ =
(
(−9 + 7〈x〉) + 7〈x〉)y

)
. However, the intersection numbers are

non-negative. Hence C14 does not admit difference set image and consequently, D7

does not (by Dillon trick). These results imply that out of the 34 groups of order

980, only the groups with gap location numbers [980, j], j = 18, 22, 23 could possibly

admit this difference sets. Interestingly, all these three surviving groups of order 980

have (C7 × C7) o C4 with gap location number [196, 8] as factor group. This is the

same group of order 196 that admits (196, 91, 42) difference set. The vital question

is: Does this group also admit (980, 89, 8) difference sets?
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