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RADIAL DIGRAPHS

KUMARAPPAN KATHIRESAN AND R. SUMATHI

Abstract. The Radial graph of a graph G, denoted by R(G), has the same vertex
set as G with an edge joining vertices u and v if d(u, v) is equal to the radius of G.
This definition is extended to a digraph D where the arc (u, v) is included in R(D)
if d(u, v) is the radius of D. A digraph D is called a Radial digraph if R(H) = D
for some digraph H. In this paper, we shown that if D is a radial digraph of type 2
then D is the radial digraph of itself or the radial digraph of its complement. This
generalizes a known characterization for radial graphs and provides an improved
proof. Also, we characterize self complementary self radial digraphs.

1. Introduction

A directed graph or digraph D consists of a finite nonempty set V (D) of objects

called vertices and a set E(D) of ordered pairs of vertices called arcs. If (u, v) is an

arc, it is said that u is adjacent to v and also that v is adjacent from u. The outdegree

od v of a vertex v of a digraph D is the number of vertices of D that are adjacent

from v. The indegree id v of a vertex v of a digraph D is the number of vertices of

D that are adjacent to v. The set of vertices which are adjacent from [to] a given

vertex v is denoted by N+
D (v) [N−

D (v)]. A Digraph D is symmetric if whenever uv is

an arc, vu is also an arc. As in Chartrand and Oellermann [7], we use D∗ to denote

the symmetric digraph whose underlying graph is D. Thus, D∗ is the digraph that is

obtained from D by replacing each edge of D by a symmetric pair of arcs. For other

graph theoretic notations and terminology, we follow [3] and [5].

For a pair u, v of vertices in a strong digraph D the distance d(u, v) is the length

of a shortest directed u − v path. We can extend this definition to all digraphs D
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by defining d(u, v) = ∞ if there is no directed u − v path in D. The eccentricity

of a vertex u, denoted by e(u), is the maximum distance from u to any vertex in

D. The radius of D, rad(D), is the minimum eccentricity of the vertices in D;

the diameter, diam(D), is the maximium eccentricity of the vertices in D. For a

digraph D, the Radial digraph R(D) of D is the digraph with V (R(D)) = V (D)

and E(R(D)) = {(u, v)/u, v ∈ V (D) and dD(u, v) = rad(D)}. A digraph D is called

a Radial digraph if R(H) = D for some digraph H. If there exist a digraph H with

finite radius and infinite diameter, such that R(H) = D, then the digraph D is said

to be a Radial digraph of type 1. Otherwise, D is said to be a Radial digraph of

type 2. For the purpose of this paper, a graph is a symmetric digraph; that is, a

digraph D such that (u, v) ∈ E(D) implies (v, u) ∈ E(D). Our first result gives a

useful property of radial digraphs. The proof is straightforward, so we omit it.

Lemma 1.1. If D is a symmetric digraph, then R(D) is also symmetric.

The converse of Lemma 1.1 need not be true. Figure 1 shows an asymmetric strong

digraph D of order p = 4 with rad(D) = 2 and diam(D) = 3 and the corresponding

symmetric radial digraph R(D).
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Figure 1.

The convention of representing the symmetric pair of arcs (u, v) and (v, u) by

the single edge uv induces a one-to-one correspondence φ from the set of symmet-

ric digraphs to the set of graphs. For example in Figure 1, we have φ(R(D)) =

K2
⋃

K2. Therefore, by Lemma 1.1, it is natural to define, for a graph G, the

Radial graph R(G) of G as the graph with V (R(G)) = V (G) and E(R(G)) =

{uv/u, v ∈ V (G) and dG(u, v) = rad(G)}.
The concept of antipodal graph was initially introduced by [13]. The antipodal

graph of a graph G, denoted by A(G), is the graph on the same vertices as of G, two

vertices being adjacent if the distance between them is equal to the diameter of G.

A graph is said to be antipodal if it is the antipodal graph A(H) of some graph H.
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Aravamudhan and Rajendran [1] and [2] gave the characterization of antipodal graphs.

After that, Johns [8] gave a simple proof for the characterization of antipodal graphs.

Motivated by the above concepts, Kathiresan and Marimuthu [9], [10], [11] and [12]

introduced a new type of graph called Radial graphs and the following properties of

radial graphs have been verified.

Proposition 1.1. [12] If rad(G) > 1, then R(G) ⊆ G.

Theorem 1.1. [12] Let G be a graph of order n. Then R(G) = G if and only if

rad(G) = 1.

Let Si(G) be the subset of the vertex set of G consisting of vertices with eccentricity

i.

Lemma 1.2. [12] Let G be a graph of order n. Then R(G) = G if and only if

S2(G) = V (G) or G is disconnected in which each component is complete.

Theorem 1.2. [12] A graph G is a radial graph if and only if it is the radial graph

of itself or the radial graph of its complement.

2. A Characterization of Radial Graphs

using Radial Digraphs

We begin with some properties of Radial digraphs.

Lemma 2.1. If rad(D) > 1, then R(D) ⊆ D.

Proof. By the definition of R(D) and D, we have V (R(D)) = V (D) = V (D). If (u, v)

is an arc of R(D), then dD(u, v) = rad(D) > 1 in D and hence uv /∈ E(D). Therefore,

uv ∈ E(D). Thus, E(R(D)) ⊆ E(D). Hence R(D) ⊆ D. ¤

As a special case, we have Proposition 1.1.

Theorem 2.1. Let D be a digraph of order p. Then R(D) = D if and only if

rad(D) = 1.

Proof. Let D be a digraph of order p. Suppose rad(D) = 1. Then, by the definition

of radial digraph, R(D) = D.

Conversely, assume that R(D) = D. Suppose rad(D) 6= 1. Then, by Lemma 2.1

we have R(D) ⊆ D, a contradiction. Hence, rad(D) = 1. ¤
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If D is a symmetric digraph of radius 1, then φ(D) is a graph of radius 1. This

implies Theorem 1.1.

We now present a result that will be useful in our characterization of radial digraphs.

Let Si(D) be the subset of the vertex set of D consisting of vertices with eccentricity

i.

Theorem 2.2. Let D be a digraph of order p. Then R(D) = D if and only if any

one of the following holds.

(a) S2(D) = V (D),

(b) D is not strongly connected such that for any v ∈ V (D), od v < p− 1 and for

every pair u, v of vertices of D, the distance dD(u, v) = 1 or dD(u, v) = ∞.

Proof. If S2(D) = V (D), then (u, v) ∈ E(R(D)) if and only if (u, v) /∈ E(D). Also,

there are no vertices u and v in D such that dD(u, v) > 2. Hence, R(D) = D. Now,

suppose that b holds. If dD(u, v) = ∞ for every pair u, v of vertices, then D = K∗
p

for some positive integer p and R(D) = R(K∗
p) = K∗

p = D. Since for any v ∈ V (D),

od v < p − 1, rad(D) 6= 1. Hence rad(D) = ∞. In this case, if (u, v) ∈ E(D), then

(u, v) /∈ E(R(D)). If (u, v) /∈ E(D), then dD(u, v) = ∞ and so (u, v) ∈ E(R(D)).

Hence, R(D) = D.

Conversely, assume that R(D) = D.

Case 1. Suppose that the radius is finite. Assume rad(D) 6= 2. If rad(D) = 1, then

by Theorem 2.1, R(D) = D, which is a contradiction to R(D) = D. Thus, we assume

that 2 < rad(D) < ∞. Let u and v be vertices of D such that dD(u, v) = 2. Note

that (u, v) /∈ E(D) and (u, v) /∈ E(R(D)); so R(D) 6= D, which is a contradiction.

Case 2. Assume that the radius is infinite. Then there exist vertices u and v such

that 1 < dD(u, v) < ∞. Then (u, v) /∈ E(D) and (u, v) /∈ E(R(D)) and again

R(D) 6= D, which is a contradiction. Hence, rad(D) = 2.

There are two possibilities rad(D) = diam(D) = 2 and rad(D) = 2, diam(D) > 2.

It is well known that rad(D) ≤ diam(D). Suppose that rad(D) < diam(D). Let x

and y be vertices in D such that dD(x, y) = diam(D). Now (x, y) /∈ E(D) implies

(x, y) ∈ E(D). But (x, y) /∈ E(R(D)), a contradiction to R(D) = D. Hence, the only

possibility is rad(D) = diam(D) = 2. ¤

If D is a self centered symmetric digraph of radius 2, then φ(D) is a self centered

graph of radius 2. On the otherhand, if D is symmetric but not strongly connected
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such that for any v ∈ V (D), od v < p− 1 and for every pair u and v of vertices of D,

the distance dD(u, v) = 1 or dD(u, v) = ∞, then φ(D) is a disconnected graph where

each component is complete. This implies Lemma 1.2.

We now give a characterization of radial graphs using radial digraphs of type 2.

Theorem 2.3. If D is a radial digraph of type 2, then D is the radial digraph of itself

or the radial digraph of its complement.

Proof. Suppose that D is a radial digraph of type 2 and let H be a digraph such that

R(H) = D. We consider three cases based on H.

Case 1. Suppose that rad(H) = 1. Then by Theorem 2.1, R(H) = H.

Case 2. Suppose that 1 < rad(H) < ∞. Then the diameter of H may be finite or

infinite. Since D is a radial digraph of type 2, diameter of H is finite. Then H is

strongly connected and for every pair u, v of vertices of H, the distance dH(u, v) < ∞.

Define H ′ as the digraph formed from H by adding the arc (u, v) to E(H) if dH(u, v) 6=
rad(H). Note that dH′(u, v) = 1 when dH(u, v) 6= rad(H) and dH′(u, v) = 2 when

dH(u, v) = rad(H). Hence for every vertex v in H ′, there exist a vertex which are

at distance rad(H). Thus, D = R(H) = R(H ′). Since rad(H ′) = diam(H ′) = 2,

by Theorem 2.2 we have R(H ′) = H ′. Therefore, D = H ′ and D = H ′ which gives

D = R(D) as desired.

Case 3. Suppose that rad(H) = ∞. Define H ′ as the digraph formed from H by

adding the arc (u, v) to E(H) if dH(u, v) 6= rad(H). Now, if dH(u, v) < ∞, then

dH′(u, v) = 1 and if dH(u, v) = ∞, then dH′(u, v) = ∞. Thus, D = R(H) = R(H ′).

Since for every pair u, v of vertices of H ′, the distance dH′(u, v) = 1 or dH′(u, v) = ∞,

by Theorem 2.2 we have R(H ′) = H ′. Therefore, D = H ′ and D = H ′ which gives

D = R(D) as desired. ¤

If D is a symmetric radial digraph of type 2, then φ(D) is a radial graph. Also by

Theorem 2.3, G is the radial graph of itself or the radial graph of its complement.

This implies the characterization of radial graphs in Theorem 1.2 follows immediately.

Figure 2 shows that D is a digraph on four vertices whose radius is one and diameter

is infinite such that R(D) = D, but D is not a radial digraph of type 2.
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Figure 3 shows that D is a radial digraph since there exist only one digraph H on

four vertices whose radius is two and diameter is infinite. Also, H is neither D nor

D and hence D is a radial digraph of type 1. Since there is no relationship between

radial digraphs of type 1 and graphs, we have not considered such digraphs in this

paper. So, we propose the following problem.

Problem: Characterize Radial digraphs of type 1.
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Figure 3.

In view of the Theorem 2.3, it is natural to ask whether there exist a digraph which

are not radial digraph of type 2. The next theorem answers this question.

Theorem 2.4. A disconnected digraph D is a radial digraph of type 2 if and only if

each vertex in D has outdegree at least one.

Proof. Let D be a radial digraph of type 2. Then there exist a graph H such that

R(H) = D where H is either D or D. Since D is disconnected, R(D) and D are

connected. Hence R(D) 6= D. Assume that the components of D contains a vertex

(say u) whose outdegree is zero. Then by definition of R(D), there is an arc from u to

every other vertex in D. Hence rad(R(D)) = 1 and so R(D) 6= D. Also rad(D) = 1,

by Theorem 2.1 we have R(D) = D. Hence R(D) 6= D. Hence each vertex in D has

outdegree at least one.

For the converse, suppose each vertex in D has outdegree at least one. Since for

every vertex (say u) in D there is an arc from u to at least one vertex in the same

component, dD(u, v) = 1 if u ∈ Di, v ∈ Dj, i 6= j and dD(u, v) = 2 if u, v ∈ Di.
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Hence, eD(u) = 2, for all u ∈ V (D) and so R(D) is disconnected which is equal to D.

Hence, D is a radial digraph. ¤

If each vertex in symmetric digraph D has outdegree at least one, then φ(D) is a

graph which has no K1 component. Therefore, we have the following result.

Theorem 2.5. A disconnected graph G is a radial graph if and only if G has no K1

component.

3. Self-Radial Digraphs and Graphs

In the previous section, we proved, for a digraph D of order p, that the radial

digraph R(D) is identical to D if and only if rad(D) = 1. Similarly, for a graph G of

order p, the radial graph R(G) is identical to G if and only if rad(G) = 1. A more

interesting question can also be asked. When is R(D) isomorphic to D or when is

R(G) isomorphic to G? If R(D) ∼= D, then we will call D a self radial digraph and if

R(G) ∼= G, we will call G a self radial graph.

For a class of self radial digraphs D that are strongly connected, given a positive

integer p ≥ 3, the directed cycle C
′
p where V (C

′
p) = {v1, v2, . . . , vp} and E(C

′
p) =

{(vi, vi+1)/1 ≤ i ≤ p− 1}⋃ {(vp, v1)} is self radial.
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The self radial digraph D in Figure 4 is an example of minimum order that is

weakly connected but not unilaterally connected.

Proposition 3.1. There exist a family of self radial digraphs which are unilaterally

connected but not strongly connected.

Proof. For a digraph D′ on p ≥ 4 vertices, where V (D′) = {v1, v2, . . . , vp} and

E(D′) = {(vi, vi+1)/1 ≤ i ≤ p− 2}⋃ {(vp−1, v1)}⋃ {(v1, vp)}. Then e(v1) = p − 2,

e(v2) = p− 1, e(vi) = p− 2, 3 ≤ i ≤ p− 1 and e(vp) = ∞. Thus, rad(D′) = p− 2 and

diam(D′) = ∞. We define a mapping f between D′ and R(D′) as follows: f(v1) = 3,
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f(v2) = 2, f(v3) = 1, f(vp) = p and f(vi) = p + 3− i, 4 ≤ i ≤ p− 1. The mapping f

is an isomorphism between D′ and R(D′) and so D′ is self radial. ¤

Proposition 3.2. If D is a disconnected digraph, then D is not self radial.

Proof. Let u and v be vertices of D. If u and v are in different components of D, then

dD(u, v) = ∞ = rad(D). Thus, (u, v) ∈ E(R(D)) and dR(D)(u, v) = 1. If u and v are

in the same component of D, then there exists a vertex w in the second component

of D. Now, dD(u,w) = dD(w, v) = ∞, so (u,w) ∈ E(R(D)) and (w, v) ∈ E(R(D))

and dR(D)(u, v) ≤ 2. Therefore, R(D) is strongly connected and rad(R(D)) ≤ 2. ¤

Proposition 3.3. A self centered digraph of radius 2 is self radial if and only if D

is self complementary.

Proof. Let D be a self centered digraph of radius 2. Then R(D) = D. Since D is self

radial, R(D) ∼= D. Hence, D ∼= D.

Conversely, let D be self complementary. Since D is a self centered digraph of

radius 2, R(D) = D. Hence, R(D) ∼= D and so D is self radial. ¤

Theorem 3.1. A self complementary digraph D is self radial if and only if D is self

centered digraph of radius 2.

Proof. Since D is self complementary and self radial, R(D) ∼= D. Suppose D is a self

centered digraph with rad(D) ≥ 3. Then D is a self centered digraph of radius 2.

Hence, rad(R(D)) 6= rad(D), which is a contradiction. Hence, D is a self centered

digraph of radius 2.

Conversely, if D is a self centered digraph of radius 2, then by Theorem 2.2 we have

R(D) = D. Since D is self complementary, R(D) ∼= D. Hence, D is self radial. ¤

Theorem 3.2. If D is a self radial digraph with R(D) 6= D, then p ≤ q(D) ≤
p(p− 1)/2.

Proof. If D is disconnected, then by Proposition 3.2 we have D is not self radial. The

minimum number of arcs in a connected digraph is p − 1. Then D can contain no

directed cycles and hence D is not strongly connected. If D is unilaterally connected,

then D can contain a directed walk that passes through each vertex of D. This can

only be done with p− 1 arcs if D itself is a directed path P ′ : v1, v2, . . . , vp. However

in R(P ′), there is only one arc from v1 to vp and so R(P ′) is disconnected. Hence D
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is not self radial. Finally, if D is a weakly connected but not unilaterally connected,

then the radius may be finite or infinite. If the radius of D is finite and e(v) = rad(D),

then there exist a vertex u ∈ N+
D (v) and there is no path from u to v and so e(u) = ∞.

If we take any vertex v′ ∈ D, the directed distance from u to v′ (v′ to u) is either less

than the radius of D or infinity, then in R(D), u must be an isolated vertex. Since

D is connected and R(D) contains an isolated vertex, D is not self radial. Suppose

the radius of D is infinite, then there exist two vertices u and v in D such that no

u− v directed path and no v − u directed path exist in D. Therefore, both the arcs

(u, v) and (v, u) are in R(D). Since D contains no directed cycles and R(D) contains

a directed 2-cycles, D is not self radial. Hence, q(D) ≥ p.

For the upperbound, since R(D) 6= D, R(D) ⊂ D. Now, D ∼= R(D) ⊂ D implies

that q(D) ≤ q(D). Hence, q(D) ≤ 1
2
q(K∗

p) = p(p− 1)/2. ¤
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The bounds in Theorem 3.2 are sharp. The lower bound is sharp for the class of

directed cycles and Figure 5 is an example of minimum order self complementary self

centered digraph of radius 2 which satisfies the sharpness of the upperbound.
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