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ON SECOND–STAGE SPECTRUM AND ENERGY

OF A GRAPH

SINGARAJ K. AYYASWAMY 1, SELVARAJ BALACHANDRAN 2

AND IVAN GUTMAN 3

Abstract. Let G be a simple graph. The derived graph of G, denoted by G†, is
the graph having the same vertex set as G, in which two vertices are adjacent if
and only if their distance in G is two. We establish several spectral properties of
G†, including its energy.

1. Introduction

Let G be a graph with vertex set V(G) = {v1, v2, . . . , vn}. The distance between

the vertices vi and vj, vi, vj ∈ V(G), is equal to the length (= number of edges) of a

shortest path starting at vi and ending at vj (or vice versa) [2].

In inorganic chemistry [12], there is a concept called second electron affinity. It is

the energy supplied to an X−(g) ion to form an X2−(g) ion i. e., to form a second–

stage ion from the original ion. This concept motivated us to define the second–stage

matrix A2(G) of a graph G, which is the symmetric n× n matrix whose (i, j)-entry

is unity if the vertices vi and vj are at distance two, and zero otherwise. As A2(G)

is a symmetric (0, 1)-matrix, with zero diagonal, it may be viewed as the adjacency

matrix of some graph G†, that in [1] was named derived graph of G.
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Examples.

Let Kn, Pn, Sn, and Cn be, respectively, the n-vertex complete graph, path, star,

and cycle, and let Ka,b be the complete bipartite graph on a + b vertices. Let G

denote the complement of the graph G. Then (Kn)† ∼= Kn, (Pn)† ∼= Pbn/2c ∪ Pdn/2e,

(Sn)† ∼= Kn−1 ∪K1, (Ka,b)
† ∼= Ka ∪Kb, and

(Cn)† ∼=





K3 if n = 3,

K2 ∪K2 if n = 4,

Cn/2 ∪ Cn/2 if n is even and n ≥ 6,

Cn if n is odd and n ≥ 5.

Since (G1 ∪ G2)
† ∼= (G1)

† ∪ (G2)
†, the derived graph of a disconnected graph is

necessarily disconnected. However, in numerous cases (e. g. for all bipartite graphs)

the derived graph of a connected graph is also disconnected. In [1], classes of graphs

were characterized whose derived graphs are connected. In [1] also upper bounds for

the largest eigenvalue of G† were established.

Denote the eigenvalues of the graph G by λi = λi(G), i = 1, 2, . . . , n, and order

them so that

(1.1) λ1 ≥ λ2 ≥ . . . ≥ λn.

These eigenvalues form the spectrum of G, denoted by Spec(G). Two graphs G and

H are said to be cospectral if Spec(G) = Spec(H). For more details on graph spectral

theory see [3].

The eigenvalues of G† are also real and will be ordered according to (1.1). As usual

[7], [9], the energy of G† is defined as

(1.2) E(G†) =
n∑

i=1

|λi(G
†)|.

Recall that the graph energy has long known chemical applications; for details see the

surveys [6], [8]. Two graphs with the same energy are called equienergetic. Equiener-

getic graphs need not be cospectral. Cospectral graphs are equienergetic in a trivial

manner. We are interested in those equienergetic graphs which are not cospectral.

All graphs considered in this paper are simple. In the subsequent considerations

we need the following previously established results:
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Lemma 1.1. [4] Let

A =

[
A0 A1

A1 A0

]

be a 2× 2 block symmetric matrix. Then the eigenvalues of A are those of A0 + A1

together with those of A0 −A1.

Lemma 1.2. [3] Let L(G) denote the line graph of the graph G. If G is r-regular

and connected, r ≥ 3, with Spec(G) = {r, λ2, . . . , λn}, then

Spec(L(G)) =




2r − 2 λ2 + r − 2 · · · λn + r − 2 −2

1 1 · · · 1 1
2
n(r − 2)


 .

Lemma 1.3. [13]. Let G be same as in Lemma 1.2, and let L2(G) = L(L(G)). Then

Spec(L2(G)) =




4r − 6 λ2 + 3r − 6 . . . λn + 3r − 6 2r − 2 −2

1 1 . . . 1 1
2
n(r − 2) 1

2
nr(r − 2)


 .

Lemma 1.4. [3] Let G be a connected r-regular graph with spectrum {r, λ2, . . . , λn}.
Then Spec(G) = {n− r − 1,−(λ2 + 1), . . . ,−(λn + 1)}.

Lemma 1.5. [3] For every p ≥ 3, there exists a pair of non-cospectral cubic graphs

on 2p vertices.

Lemma 1.6. [10] For every n ≥ 8, there exists a pair of 4-regular non-cospectral

graphs on n vertices.

This paper is organized as follows. First, we determine the spectrum of some

derived graphs G†, in the case when the graph G has diameter 2. Then we state a

few bounds for the energy of G†. Finally, we describe a few cases of equienergetic

derived graphs.

2. Graphs of diameter two

The diameter of a graph is the maximum distance between its vertices. If the

diameter of the graph G is two, then any pair of non-adjacent vertices is at distance

two, and is thus connected in G†. Consequently,

G† ∼= G.
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In other words, if G is an (n,m)-graph, then G† is an
(
n,

(
n
2

)
−m

)
-graph. Con-

sequently, all previously known spectral results, depending only on the number of

vertices and edges of a graph G , can now be re-stated for G†. For instance, by

Lemma 1.4 we have

Theorem 2.1. Let G be an r-regular graph of diameter 2 and let its spectrum be

{r, λ2, . . . , λn}. Then Spec(G†) = {n− r − 1,−(λ2 + 1), . . . ,−(λn + 1)}.

As special cases of Theorem 2.1 we have:

Spec((Kn,n)†) =

(
n− 1 −1

2 2n− 2

)
; Spec((CP (n))†) =

(
1 −1
n n

)

where CP (n) denotes the “cocktail party graph”, namely the (2n)-vertex regular

graph of degree 2n− 2 (obtained by deleting n independent edges from the complete

graph K2n).

Let G1 ×G2 denote the Cartesian product of the graphs G1 and G2 [3].

Theorem 2.2. Let G be an r-regular graph of diameter 2 and spectrum {r, λ2, . . . , λn}.
Then

Spec((G×K2)
†) =




3n− 2(r + 2) −2(λi + 1) −n 0

1 1 1 n− 1


 , i = 2, . . . , n.

Proof. Since G is of diameter 2, its second–stage matrix is A(G). The product H ∼=
G×K2 is (r + 1)-regular and of diameter 3. Its second–stage matrix is of the form




A(G) A(G) + J

A(G) + J A(G)




where J is the all-one square matrix of order n. Theorem 2.2 follows by Lemmas 1.1

and 1.4. ¤

If G is of diameter 2 having m edges, then G† has m† =
(

n
2

)
− m edges. If, in

addition, G is regular of degree r, then G† is regular of degree n − r − 1. Bearing

these facts in mind, we may use known results from the theory of graph energy [7, 9]

to state:
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Theorem 2.3. Let G be an (n,m)-graph of diameter 2. Then
√

2m† + n(n− 1)∆2/n ≤ E(G†) ≤
√

2nm†

2
√

m† ≤ E(G†) ≤ 2m†

E(G†) ≤ 2m†

n
+

√√√√√(n− 1)


2m† −

(
2m†

n

)2



where ∆ = | detA2(G)|.

Corollary 2.1. Let G be an r-regular graph of diameter 2. Then,

E(G†) ≤ (n− r − 1) +
√

(n− 1)(n− r − 1)(r + 1).

Let the graphs G1 and G2 have disjoint vertex sets. Their join, G1∇G2, is the

graph obtained by joining every vertex of G1 with every vertex of G2. If G1
∼= Ka

and Gb
∼= Kb, then G1∇G2

∼= Ka+b, having diameter equal to one. In all other cases,

the join G1∇G2 has diameter two. Therefore, the derived graph of G1∇G2 satisfies:

(2.1) (G1∇G2)
† ∼= G1 ∪G2 .

From (2.1) and Lemma 1.4 we obtain:

Theorem 2.4. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and spectrum

{ri, λi,2, . . . , λi,ni
}. Then Spec((G1∇G2)

†) consists of eigenvalues −λi,j−1 for i = 1, 2

and j = 2, 3, . . . , ni, and two more eigenvalues n1 − r1 − 1 and n2 − r2 − 1.

Corollary 2.2. Let G be a connected r-regular graph on n vertices. Then

Spec((G∇G)†) =




n− r − 1 −(λi(G) + 1)

2 2


 , i = 2, 3, . . . , n.

3. Equienergetic derived graphs

Theorem 3.1. For every n ≡ 0 (mod 6) ≥ 18, there exists a pair of equienergetic

n-vertex derived graphs.

Proof. Let n = 6p, p ≥ 3. Let G1 and G2 be non-cospectral cubic graphs on 2p

vertices, cf. Lemma 1.5. Then their line graphs, L(G1) and L(G2), are 4-regular



144 SINGARAJ K. AYYASWAMY 1, SELVARAJ BALACHANDRAN 2 AND IVAN GUTMAN 3

on 3p vertices. By Lemma 1.2 and Corollary 2.2, the only positive eigenvalues of

(G1∇G1)
† are 3p− 5 and 3p− 5. The same is true for (G2∇G2)

†. Thus,

E((G1∇G1)
†) = E((G2∇G2)

†) = 2 · 2 · (3p− 5) = 12p− 20.

The theorem follows now from the fact that both (G1∇G1)
† and (G2∇G2)

† have 6p

vertices. ¤

In [11] a result similar to Theorem 3.1 can be found, pertaining to distance-

equienergetic graphs.

We now find the spectrum of some derived self–complementary graphs, in terms of

the spectra of the parent graphs. These results are then used to show that there exist

equienergetic derived self–complementary graphs.

A graph G is said to be self–complementary if G ∼= G. The following construction

[5] yields self–complementary graphs.

Construction [5, 10]. Let G be an n-vertex graph. Replace the end vertices of P4

by a copy of G and the internal vertices of P4 by a copy of G. Join the vertices

of these graphs by all possible edges whenever the corresponding vertices of P4 are

adjacent. The 4n-vertex graph thus constructed will be denoted by H. The graph H

is self–complementary.

Theorem 3.2. Let G be a connected r-regular graph on n vertices, with spectrum

{r, λ2, λ3 . . . , λn}. Let H be the graph constructed from G in the above described

manner. Then the spectrum of H† consists of λi , −(λi + 1) i = 2, 3, . . . , n, each

with multiplicity 2, together with the numbers 1
2

[
1±

√
5n2 + 4r(r + 1− n)− 2n + 1

]
,

each with multiplicity 2.

Proof. The second–stage matrix of H is of the form



A(G) 0 J 0

0 A(G) 0 J

J 0 A(G) 0

0 J 0 A(G)




.

Being regular, the graph G has the all-one vector j as an eigenvector, corresponding

to eigenvalue r. All other eigenvectors of G are orthogonal to j. The complement G

has an eigenvalue −λ − 1 corresponding to eigenvalue λ 6= r of G, such that both

eigenvalues have the same multiplicities and eigenvectors.
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Let λ be an eigenvalue of G with eigenvector x, such that jT x = 0. Then

(x,0,0,0)T and (0,0,0,x)T are the eigenvectors of A2(H), corresponding to eigen-

value −λ− 1. Similarly, (0,x,0,0)T and (0,0,x,0)T are the eigenvectors of A2(H),

corresponding to eigenvalue λ.

In this way, by means of (x,0,0,0)T , (0,x,0,0)T , (0,0,x,0)T , and (0,0,0,x)T we

constructed a total of 4(n − 1) eigenvectors of A2(H), all orthogonal to (j,0,0,0)T ,

(0, j,0,0)T , (0,0, j,0)T , and (0,0,0, j)T .

The four remaining eigenvectors of H† are of the form Ψ = (αj, βj, γj, δj)T for

some (α, β, γ, δ) 6= (0, 0, 0, 0). Now, suppose that ν is an eigenvalue of A2(H) with

eigenvector Ψ. Then from A2(H)Ψ = νΨ we get:

(n− r − 1)α + 0 β + n γ + 0 δ = ν α(3.1)

0 α + r β + 0 γ + n δ = ν β(3.2)

nα + 0 β + r γ + 0 δ = ν γ(3.3)

0 α + nβ + 0 γ + (n− r − 1)δ = ν δ(3.4)

By solving Eqs. (3.1)–(3.4), we obtain the remaining four eigenvalues. ¤

Theorem 3.3. Let B be a connected 4-regular graph on n vertices, with spectrum

{4, λ2, . . . , λn}. Let G = L2(B) and let H be the self-complementary graph obtained

from G according to the above described construction. Then

E(H†) = 3
(
10n− 7 + 2

√
20n2 − 28n + 49

)
.

Proof. In [13] it was shown that the energy of the second line graph of an n-vertex

regular graph of degree r depends only on n and r. Theorem 9 is obtained using

an analogous argument: Apply Theorem 3.2 and Lemma 1.3 and observe that both

λi + 3r − 5 and λi + 3r − 6 are positive when r = 4. ¤

Theorem 3.4. For every n = 48t and n = 24(2t + 1), for t ≥ 4, there exists a pair

of equienergetic derived graphs of self–complementary graphs.

Proof. Case 1: n = 48t.

Let B1 and B2 be two non-cospectral 4-regular graphs on 2t vertices, as given by

Lemma 1.6. Then both L2(B1) and L2(B2) are 10-regular and possess 12t vertices. Let

H1 and H2 be the respective self–complementary graphs on 48t vertices, constructed

by the above described method. Then by Theorem 3.3, the derived graphs of H1 and

H2 are equienergetic.
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Case 2: n = 24(2t + 1).

This case is treated analogously, by considering pairs of non-cospectral 4-regular

graphs on 2t + 1 vertices, whose existence is guaranteed by Lemma 1.6. ¤
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