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Abstract. Plateau’s irradiation phenomenon in particular describes what one sees
when observing a brighter object on a darker background and a physically congruent
darker object on a brighter background: the brighter object is seen as being larger.
This phenomenon occurs in many optical visual illusions and it involves some funda-
mental aspects of human vision. We present a general geometrical model of human
visual sensation and perception, hereby taking into account the law of Fechner in
addition to the anisotropic smoothing that was introduced in [1], and explicitly
illustrate its meaning for irradiation illusions of Helmholtz and Kitaoka.

Introduction

In our previous article “A geometrical description of visual sensation” [1] the main

purpose was to introduce anisotropic (i.e. properly elliptical) Gaussian smoothing

(with kernels G0(x, y; ah, av), whereby the horizontal axis ah is smaller than the verti-

cal axis av) of planar light intensities
(
I(x, y)

)
so as to define human visual sensation

in a way which basically takes into account human’s factually different appreciations

of horizontal and vertical dimensions (thus considering I(x, y; ah, av) = I(x, y) ⊗
G0(x, y; ah, av) as the observed luminosities for apertures ah, av). Then, knowing that

perception essentially is determined by the Casorati curvature of the corresponding

relief surface (that is, of the surface consisting of the points
(
x, y, z = I(x, y; ah, av)

)
in R3) cfr. a.o. [2] and [3], in [1] we illustrated the relevance of such anisotropic

smoothing in the context of the perception of visual stimuli which are tilted elliptical

Gaussian blobs, referring to [4] for concrete experimental data in this respect. In [1],

we announced our intention to deal later on with more general stimuli as well. When

actually setting out to do so we realised that, still aiming merely for the modest goal

of very roughly and just qualitatively to scientifically define human visual sensation,

it seemed likely to be best right from the start further to add, and this not “between

the lines” as was done in [1] but rather explicitly, the law of Fechner (i.e. to consider

visual sensation F (x, y) = k ln I(x, y; ah, av) for some constant k); this will be done

in Section 1. And, then, in Section 2, (and as by now might demand less of some

reader’s goodwill in their consideration of our views on the matters of sensation and

of perception -at least eventually, since, as Albert Einstein stated: “The truth of a

theory is in your mind, not in your eyes.”-), the ”border lines” between 2D regions

of distinct luminosities
(
I(x, y)

)
as these are fixed by the extrema of the Casorati

surfaces
(
x, y, z = C(x, y)

)
of the relief surfaces of visual sensation (i.e. of the sur-

faces consisting of the points
(
x, y, z = F (x, y)

)
in R3) will be shown in the particular
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instance of a standard version of the so–called “brightness illusions”, namely for the

illusion of Helmholtz (cfr. [5],[6]). In Section 3 we apply our geometrical model to Ki-

taoka’s “bulge illusion” [7], i.e. an irradiation illusion that on a first sight looks more

complicated than Helmholtz’s illusion and which became kind of popular ever since

its introduction in 1998. In Section 4 we will give somewhat more information on

the history of the study of the phenomenon of irradiation as well as some comments

on the very nature of science via some quotes of o.a. Plateau, Fechner, Helmholtz,

Schrödinger and Minnaert. At last, we thought that it might be not amiss to include

two small Appendices, one about geometry and one about psychophysics, treating

some of their aspects in a bit more sophisticated way than was done in the preceding

text, but showing at the same time that the more brutal approach that was given

before pretty well ”does its job” from a practical point of view and is likely so much

less demanding to visualise in our minds.

1. A geometrical description of human visual sensation

Along the lines drawn in [1], also at present we merely intend to give a basic, qual-

itative and direct geometrical description of human visual sensation, (e.g. hereafter

we will not care about the inhomogeneity of the human visual field, nor about related

Finsler–Riemann anisotropies of the image planes). But, in comparison with the pro-

posal made before, now we will moreover explicitly take into account Fechner’s law in

the definition of sensation, rather than to just mention its relevance in passing, since

this is of crucial importance for a better understanding of the definition of human

visual perception, in general, and more in particular, for a better understanding of

Plateau’s irradiation phenomenon.

Thus, let I(x, y) be the luminosity of a given image in an (x, y)–plane R2, which

will be extended in a z–direction R as a scalar field on R2. Consider, thereby following

[1], its elliptical Gaussian smoothing I(x, y; ah, av) = I(x, y)⊗G0(x, y; ah, av) whereby

G0(x, y; ah, av) = e−[(x/ah)
2+(y/av)2]/2/2πahav, for suitable ah < av. Then, in view of

the law of Fechner (cfr. [8],[9],[10],[11],[12]), we define the human visual sensation

corresponding to the given image by F (x, y) = S(x, y; ah, av) = k ln I(x, y; ah, av),

whereby k is some real constant. And, according to e.g. [2],[3], the corresponding

human visual perception is basically defined via the Casorati curvatures, i.e., by the

scalar valued extrinsic curvature measures which best reflect the human intuitive
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numerical curvature appreciations of the relief surface of the Fechner sensation of the

given image, i.e. of the graph
(
x, y, z = F (x, y)

)
in R3 of the sensation function F .

In 1D, i.e., for curves in a plane R2 which are the graphs
(
x, I(x)

)
of some function

I : R → R instead of in 2D, i.e. for surfaces in a space R3, and by smoothing the

signal with a one–dimensional Gaussian kernel with aperture s, the above could be

illustrated as follows, cfr. Figure 1.

Figure 1. Fechner sensation for one–dimensional luminance step func-
tions I and their Euclidean curvatures C.

On the first row of this figure, one sees an ”image” consisting of two regions R1 and

R2 with respective intensities I1 and I2, displayed left I1 < I2 and right for I1 > I2,

having I(x) = I1 on R1 : x ≤ 400 and I(x) = I2 on R2 : x > 400 (the dotted gray

line), its Gaussian smoothing I(x, s) with aperture s (the gray line) and the latter’s

curvature C(x) = |I ′′(x, s)/[1 + I ′2(x, s)]
3
2 |, (whereby the accents ′ and ′′ denote the

first and the second derivatives with respect to x; the black line). On the second row,

one sees, for the same image intensities I(x) (dotted gray line), their logarithms (gray
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line) and the curvatures (black line) of these logarithms. Finally, on the last row of

Figure 1, still for the same image curves I (dotted gray line), one sees the ”Fechner

sensations” F (x) = k ln I(x, s) (gray line), for some constant k, and the curvatures

C (black line) of these planar F curves. In the examples of Figure 1, the transition

between the distinct intensities I1 and I2, which is located at x = 400 in the ”ideal”

image (cfr. [12]), would ”happen” at x ≈ 300 and at x ≈ 500) in the transition

”from lower to higher” and ”from higher to lower”, respectively, when looking at

the maximum of the curvature and would ”happen” at x ≈ 350 and at x ≈ 450,

respectively, when looking at the minimum of the curvature.

2. Helmholtz’s illusion as case study of Plateau’s irradiation

phaenomenae

The illusion of Helmholtz, as depicted in Figure 2, essentially concerns the fact that

a white square on a black background looks larger than a physically congruent dark

square on a white background; (cfr. e.g. [5], [6], [13], [14]).

Figure 2. The illusion of Helmholtz, (the numbers on the axes repre-
sent distances in some arbitrary unit).

In Figure 3 are then presented: (A), the graphs of the intensities I1 < I2, whereby

I = I1(x, y) for points (x, y) belonging to the white square and I = I2(x, y) for points

not belonging to the white square in the left part of Figure 2, and, vice–versa, with

arbitrary discrete luminance values I1 and I2, (which are put equal to 10 and 1 verti-

cal units here, just by way of example); (B), the graphs of their anisotropic Gaussian
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smoothing, (the hereby applied values for ah and av are 4 and 6 units, respectively,

having a ratio ah : av equal to 2 : 3, [of course, one may feel very welcome indeed to

refine or better calibrate to one’s own reality the scales that were used in our figures,

(we repeat to envisage here and now only a fundamental point of view on the matters

of human visual sensation and perception)]; (C), the Fechner sensations of the two

“original” images, i.e. the surfaces z = F (x, y) = S(x, y; ah, av) = k ln I(x, y; ah, av),

(whereby actually k = 2 was used, again just by way of example); (D), the correspond-

ing Casorati surfaces, i.e. the surfaces z = C(x, y) = 1
2
∥h(x, y)∥2 = 1

2
([k2

1 + k2
2])(x, y),

whereby h and k1 and k2 respectively denote the second fundamental form and Eu-

ler’s principal curvatures of the surfaces z = F (x, y) in the 3D Euclidean space at

the points of these surfaces lying in R3 above the points with Cartesian co–ordinates

(x, y) in the image plane R2 [15], [16], [17].

Figure 3. The reliefs of the functions I(x, y) (A), I(x, y; ah, av) (B),
F (x, y) (C) and C(x, y) (D) for the illusion of Helmholtz.

Finally, in Figure 4 are shown the border lines between the square regions and their

backgrounds which are presented in Figure 2, as these border lines are determined by
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the extremal values of the Casorati curvatures of the Fechner surfaces z = F (x, y) in

the two situations at hand, “white on black” and “black on white”, (whereby in full

agreement with the previously announced direct and non–subtle present approach, at

this stage, we completely neglect an albeit pretty interesting, more delicate analysis

of what there is actually to be seen in the very near vicinity of the vertices of these

squares, or still, whereby we restrict to our at most unsophisticated “early vision”).

Figure 4. ”Und deines Geistes höchster Feuerflug
Hat shon am Gleichnis, hat am Bild genug”, (Goethe).

Hereby, naturally (in view of the horizontal–vertical effect), proper rectangles do

result: “a rectangle standing up” in the left case, and a “rectangle lying down” in the

right case. This latter observation in itself, i.e., in particular, actually seeing a brighter

“horizontal–vertical” square on a darker background as a standing up rectangle, is

a (though not so often “treated”) manifestation of a brightness–illusion (cfr. e.g.

[7], [13]); moreover this further illustrates the relevance of the anisotropic Gaussian

smoothing of the images’ luminosities as this was introduced in [1]. And, concerning

the comparison of the perceptions of the sizes of the white and black squares, which

in the original images both have horizontal and vertical sides of 241 units, with the

parameters ah, av and k chosen above, the “bases and heights” of the rectangles which

are –in the meaning of this word at the time of the “Old Greeks”– the “phaenomenae”,

i.e. : the appearances to us of these squares, are 249 and 253 units for the “white on

black” square, respectively, and 233 and 229 units for the ”black on white” square,

respectively. (In addition, as one more manifestation of irradiation, one may observe



12 BART ONS 1 AND PAUL VERSTRAELEN 2

that the vertical line separating the two halves of Figure 2 is situated essentially left

of the 500 mark in Figure 4.)

Herman Helmholtz and Felice Casorati

3. One further illustration: Kitaoka’s bulge illusion

The bulge illusion, as depicted in Figure 5, essentially concerns the fact that the

alternating black and white main squares of the picture are perceived as more and

Figure 5. The standard image of Kitaoka’s bulge illusion.

more deformed 4–gons when proceeding from the boundaries to the center resulting
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in curved perceived lines lying in between the rows and columns of the squares,

whereas, physically, all seemingly non–squares are mutually congruent real squares

indeed, and, consequently, all the lines between these true squares are physically

perfectly horizontal and vertical lines.

Figure 6. A view on the corresponding relief surface z = I(x, y).

Figure 7. The corresponding Fechner sensation surface z = F (x, y)
and a central close–up.
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Figure 8. The Casorati surface z = C(x, y) and a central close–up.

Figure 9. The Casorati surface’s main extrema.
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4. Some more or less appropriate further

citations and comments

From Maurice Dorikens’ book “Joseph Plateau (1801–1883). Leven tussen Kunst

en Wetenschap, Vivre entre l’Art et la Science, Living between Art and Science”,

(Provincie Oost–Vlaanderen, België, 2001), we learned the following. Plateau pre-

sented a detailed description and an analysis of his irradiation experiments to the

Belgian Academy in November 1838 and this presentation was published in 1839 as

“Mémoire sur l’irradiation”. This article also contains a bibliography concerning irra-

diation from Epicurus onwards. “Irradiation” describes what one sees when observing

a brighter object on a darker background: the image formed on the retina “s’étend

un peu au–delà de l’espace directement excité”, as Plateau described it, i.e. : the

brighter object is seen as being larger than it actually is. As an example, Plateau

a.o. treated the diameter of the moon, as follows (see Figure 10). In the first quarter

of the moon, when it forms a crescent, one sees the lit crescent extend beyond the

remaining dark disc of the moon, and thus seem larger. To systematically study this

effect, Plateau constructed a suitable instrument and, based on the measurements

made with it, deduced a number of properties of irradiation on which the quoted

article reported.

Figure 10. A crescent of the moon.
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After college studies at Brussels with in particular Adolphe Quetelet as professor

of mathematics, Plateau obtained his doctoral degree at Liege in 1829 with a thesis

on human vision. Afterwards he was appointed as professor at Gent where he set

up a great laboratory which a.o. was specialised for the scientific study of vision.

The Museum for the History of Science at Gent could be highly recommended to

be visited in this and many other respects, as, according to Georges Sarton, the

history of mathematics is the kernel of the history of human culture, the skeleton

which supports and keeps together all the rest of the sciences; ([18] offers a recent

brief history of geometry).

About irradiation, in his “Handbuch der Physiologischen Optik”, (cfr. e.g. the

third edition, 1911), Herman Helmholtz wrote as follows: “Die Erscheinungen, welche

Plateau als Irradiation beschreibt, .... ..., während sich alles einfach erklärt, wenn

man annimmt, die Irradiation rühre Zerstreuungsbildern her.”; (in this handbook,

also, a.o. the distinct opinions of Plateau, Fechner and Helmholtz on irradiation are

put in a historical context). And, upon the latter statement, Plateau reacted (“a bit

sharply” in the opinion of Dorikens) with “Tout s’explique, mais de quel manière?”.

In the present article, strolling somewhat further along the paths of our previous

papers (cfr., in particular [1], [2], [3]), to answer this question is actually precisely what

we try to do: to properly describe such a manner, at least qualitatively. Incidentally,

close to the previous by the way, the first director of the “Laboratory of Experimental

Psychology and Paedagogy” at Leuven was Armand Thiéry. After a.o. obtaining a

doctor’s degree in mathematics and physics at Leuven, he went to Leipzig, where in

the mean time also Wundt had started a laboratory for experimental psychology, and

made one more doctoral thesis there which offered a critical survey on the knowledge

till about 1895 on visual illusions. For instance, Thiéry casually remarked that,

at the time of his thesis, concerning Zöllner’s illusion of 1860 there were already

more than a thousand “explanations” going around ... . And, what were then and

are up till now called “explanations” of the optical visual illusions, are, in many

cases, at least in our opinion, rather evocations of certain situations which really

may lead to analogous effects as the ones seen in these illusions proper, or, in many

cases, are simply fantastic nonsense. And, in any case, still at least in our opinion,

they have no connection whatsoever with any even remotely scientifical approach

to the problem; as the natural scientist Marcel Minnaert of Gent and of Utrecht

did formulate: “Fantasie en rede, samenwerkend, elkaar aanvullend en doordringend,
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dat is ware wetenschap!”. From Helmholtz’s “The Aim and Progress of Physical

Science” we quote the following: ”Isolated facts and experiments have in themselves

no value, however great their number may be. They only become valuable in a

theoretical or practical point of view when they make us acquainted with the law of

a series of uniformly recurring phenomena, or, it may be, only give a negative result

showing an incompleteness in our own knowledge of such a law, till then held on to be

perfect. ... To find the law by which they are regulated is to understand phenomena”.

And as René Thom said in “Paraboles et Catastrophes”: “Comprendre signifie avant

tout géométriser!”. Finally, at this stage, here is the opening sentence of Gustav

Fechner’s “Elemente der Psychophysik”: ”Unter Psychophysik verstehe ich gemäss

der, ... Erklärung eine Lehre, die, obwohl der Aufgabe nach uralt, doch in Betreff

der Fassung und Behandlung dieser Aufgabe sich hier insoweit als eine neue darstellt,

das man den neuen Namen dafür nicht unpassend und nicht unnöthig finden dürfte,

kurz eine exacte Lehre von den Beziehungen zwischen Leib und Seele”. And, to make

sure: our views as presented above in Section 1 at most claim to be a beginning of a

scientific understanding of the concepts of human (visual) sensation and perception,

i.e. to be the outline of a geometrical phenomenology for these processes.

As expressed by Chern in his foreword to the “Handbook of Differential Geometry,

Volume 1” (Eds. Franki Dillen e.a., A’dam, 2000): “While algebra and analysis

provide the foundations of mathematics, geometry is at the core.”, and as stressed by

Marcel Berger: “the numero uno geometrical invariant is curvature” (cfr. a.o. his

“A Panoramic view of Riemannian Geometry” of 2003 and his “Géométrie vivante”

of 2009). Two of the most well known examples of scientific understandings, or still,

of geometric definitions, of some other fundamental natural concepts were discussed

as such by Erwin Schrödinger in the article “The General Theory of Relativity and

Wave Mechanics” (which he wrote at Gent for the 1940 volume of the Flemish “Wis–

en Natuurkundig Tijdschrift”): “The most important discoveries are those which in

the course of time tend to become tautological. The logical content of Newton’s first

two laws of motion was to state, that a body moves uniformly in a straight line,

unless it does something else and that in the latter case we agree upon calling force

its acceleration (i.e. basically, the curvature vector field of its trajectory in space,

–the authors–) multiplied by an individual constant. The great achievement was, to

concentrate attention on the second derivatives–to suggest that they–not the first or

third or fourth, not any other property of the motion–ought to be accounted for by the
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environment. The fundamental statements of Einstein’s theory of gravitation are of

the similar kind. The equations Shk − 1
2
τghk = −8πThk (*) state, that the contracted

curvature tensor Shk, (or, the Ricci tensor, while τ and ghk denote the Riemannian

scalar curvature and the metric, respectively–the authors–), is either zero or not and

that, when and where it’s not, we call matter (Thk) the left hand side of equations

(*).”. And, in a way, similarly, we above called perception the (Casorati) curvature of

sensation.

5. Appendices

5.1. ON SOME RELATED ASPECTS OF GEOMETRY

In the consideration of relief surfaces in R3 = R2 × R, whereby on the z–axis

are extended, say, the values z = F (x, y) ∈ R of sensations of lumonosities at the

locations (x, y) ∈ R2 in the image plane, the co–ordinates (x, y) on the one hand

and the z co–ordinates on the other hand do relate to by nature completely different

quantities per sé and even are incommensurable. Therefore, the use, in particular, of

the Euclidean geometry of the ambient space R3 to study the geometrical properties

of these graph surfaces z = F (x, y) in principle is not acceptable at all. Rather, in

the present situation, the more appropriate geometry to be used on the standard

space R3(x, y, z) would be the 1–fold isotropical geometry which is determined by the

degenerate Riemannian first or metrical fundamental form g = ds2 = dx2 + dy2; (a

fundamental article in this respect was written by Jan Koenderink and Andrea van

Doorn, at Utrecht, not so long ago, [11]). For graphs z = F (x, y) in the ambient space

R3 structured by this latter geometry, the second fundamental form h essentially is

nothing but the (symmetrical) Hessian matrix of F , i.e.

H =

(
Fxx Fxy

Fyx Fyy

)
,

whereby the indices x and y hereby refer to partial differentiation. And, thus, the

Casorati curvatures of such surfaces z = F (x, y) in (R3(x, y, z), ds2 = dx2 + dy2) are

given by C = F 2
xx + F 2

xy + F 2
yx + F 2

yy; (cfr., most in particular at this stage, the above

quote of Schrödinger).

In Figure 11 are shown some step functions I(x) and their smoothings I(x, s), their

logarithms ln I(x, s) and their associated Fechner functions F (x) = k ln I(x, s) and
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in each case the curvatures C(x) = [f ′′(x)]2 of these functions f : R → R : x 7→ f(x),

in order to get some 1D–impression (of the 2D–situation which actually describes

sensation and perception) of the geometry which is determined by such a degenerate

metric. And, we draw the reader’s attention to the following fact: the basic effects

hereby observed in the shifts of the curvature extrema turn out to be very similar

indeed to the ones observed before in the Euclidean framework which was shown in

Figure 1.

Figure 11. The curvature C(x) = [f ′′(x)]2 of planar graphs of func-
tions f : R → R.

And, in Figure 12, pictures are shown corresponding to dealing with the 1–fold

isotropic geometry on R3 = R2 × R in the determination of the curvatures of the

Fechner surfaces z = F (x, y) yielded by the images of the Helmholtz illusion.
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Figure 12. The Helmholtz irradiation illusion: the Casorati curvature
surfaces z = F 2

xx + F 2
xy + F 2

yx + F 2
yy of the Fechner surfaces z = F (x, y)

corresponding to the given white and black squares, respectively, and
the rectangles determined by their extrema.

Finally, in Figure 13, we show the analogous pictures for Kitaoka’s bulge illusion.

So, at least qualitatively, and for the present kind of considerations, the Euclidean

geometrical structure ds2 = dx2 + dy2 + dz2 (cfr. the theorem of Pythagoras) and

the 1–fold isotropical structure ds2 = dx2 + dy2 (which geometrically cannot help to

occur in the description of human visual sensation) on the standard space R3(x, y, z)

basically measure the same effect pretty much in the same way. Therefore, almost just

like that, before we have been so free to stage our geometrical descriptions of visual

sensation and perception in the for all after all most familiar geometrical setting,

i.e.: right from the start we have taken liberty to formulate our description of human

vision within the framework of Euclidean geometry. (But also for all, it could be very

worthwhile to read the classical textbook at present on “isotropical space geometry”,

namely Hans Sachs’ “Isotrope Geometrie des Raumes” [19].)
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Figure 13. The Kitaoka bulge illusion: (A), a view of the Casorati
curvature surfaces z = F 2

xx + F 2
xy + F 2

yx + F 2
yy of the Fechner surfaces

z = F (x, y); (B), a central close–up of this curvature surface; and (C),
this Casorati surface’s main extrema.

5.2. ON SOME RELATED ASPECTS OF FECHNER’S LAW

Many try to sketch a person’s internal organisation by measuring brain activity,

while only few attempt to understand the interaction between the external environ-

ment and the mind, that is, the conscious experience induced by external stimuli.
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Philosophically, the body–mind problem has been stated in different ways and ob-

served from different perspectives. Gustav Fechner revised the body–mind problem in

a scientific approach, in which he mainly resisted materialism as a dominant stream

of thought where physical events or physiology were treated in isolation from the mys-

terious mind. The experience accompanying an observation is what Fechner denoted

as a sensation. In “Elemente der Psychophysik” [8], Fechner assumed that sensation

could be measured hypothetically along an internal scale. To arrive at the elementary

transformation between external stimulus magnitudes and sensation, he founded his

law on two premises: (i) the empirical law of Weber ∆I/I = c, for some constant c:

when ∆I denotes the smallest difference that a person can notice between two physical

stimulus quantities (e.g. like light intensity), then Weber’s law states that the just–

noticeable–difference is not constant along its physical scale, but it is proportional to

the absolute level on this scale; and (ii) the mathematical auxiliary principle: infinites-

imally small increments are proportional to observable increments. When we denote

the steps on the hypothetical internal scale of sensations proposed by Fechner as ∆F ,

then ∆F is assumed to be constant (= b) along its range if the administered pairs

of stimulus levels are committed to the constant ratio ∆I/I, and by joining together

both expressions, we come to the following relation: ∆F/(∆I/I) = b/c = k (**).

By exerting Fechner’s mathematical auxiliary principle, (**) becomes dF = k(dI/I),

and integrating yields F = k ln I + d, whereby d is an integration constant (which

can be omitted because the origin of the internal scale can be chosen appropriately).

To accommodate with some deviating empirical measurements, especially in the

lower part of the scale, Weber’s law can be generalized to ∆I = cI+a, whereby c and

a are constants, leading to F = K ln(cI + a) for some constant K, as a generalised

Fechner’s law. And further different versions have been put forward choosing some

alternatives for the previous assumptions (e.g., see [20]). The internal scale cannot

be accessed directly through measurements and psychophysical measurements are

constrained to relate the induced stimulus magnitudes expressed in some physical

quantity to a person’s subjective report of stimulus magnitudes on some scale. For

instance, assuming that ∆F/F is constant, just like ∆I/I was assumed to be constant

in Weber’s law, leads to two logarithmic scales for the physical and the sensory quan-

tities concerned. Putting ∆F/F = n∆I/I, whereby n denotes one more constant,

by integration, the physical magnitude I and the corresponding sensation F can be

related by the power law as lnF = ln In + lnL, for some integration constant L. In
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the case of human vision, in practice, the power law F = LIn holds for some constant

n < 1 and consequently the curvature behaviours of the sensation surfaces which

correspond to given luminosities essentially are the same, whether using Fechner’s

law or using the power law. The debate between both laws is an empirical one and

as further references in this context, in general and also to the point, see e.g. [21]

and [22], [23]. In the present study, we defined human visual sensation in two steps

by using the logarithm and convolution of light intensities. In the future, we intend

to treat the mathematical description of human visual sensation in a more delicate

manner.

References

[1] B. Ons, P. Verstraelen, A geometrical description of visual sensation, Kragujevac J. Math. 33
(2010), 5–15.

[2] P. Verstraelen, The geometry of eye and brain, Soochow J. Math. 30 (2004), 367-376.
[3] P. Verstraelen, A geometrical descripition of visual perception–The Leuven Café Erasmus model
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