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FUNCTIONS AND BAIRE SPACES

ZBIGNIEW DUSZYŃSKI

Abstract. Some results concerning functions that preserve Baire spaces in the
context of images and preimages are obtained in Section IV of [R. C. Haworth,
R. A. McCoy, Baire spaces, Dissertationes Math., 151, PWN, Warszawa 1977]. In
Section 2 of the present paper further results in this direction are offered. In Sections
3 and 4 a few theorems related to some other problems on baireness of topological
spaces are proposed.

1. Preliminaries

Throughout, topological spaces are denoted by (X, τ) or (Y, σ). Let S be a subset of
a space (X, τ). The interior and the closure of S in (X, τ) will be denoted by intτ (S)

(or int (S)) and clτ (S) (or cl (S)) respectively. The set S is said to be semi-open [12]
(resp. preopen [13], semi-closed [3], preclosed, regular open) in (X, τ), if S ⊂
cl (int (S)) (resp. S ⊂ int (cl (S)), S ⊃ int (cl (S)), S ⊃ cl (int (S)), S = int (cl (S))).
The collection of all semi-open (resp. preopen, semi-closed, pre-closed, closed, clopen)
subsets of (X, τ) shall be denoted by SO (X, τ) (resp. PO (X, τ), SC (X, τ), PC (X, τ),
c (X, τ), CO (X, τ)). A set S ∈ SO (X, τ) if and only if there exists an O ∈ τ such that
O ⊂ S ⊂ cl (S) [12]. Every nonvoid semi-open set contains a nonvoid open subset [3,
Remark 1.2]. The intersection of all F ∈ SC (X, τ) with S ⊂ F is called the semi-
closure [3] of S in (X, τ). The union of all U ∈ SO (X, τ) with U ⊂ S is called the
semi-interior [3] of S in (X, τ). The semi-closure and semi-interior of S are denoted
respectively by scl (S) (or sclτ (S)) and sint (S) (or sintτ (S)). We have S ∈ SO (X, τ)
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(resp. S ∈ SC (X, τ)) iff S = sint (S) (resp. S = scl (S)) [3, Theorem 1.4]. Also,
scl (S) = int (cl (S)) if and only if S ∈ PO (X, τ) [11, Proposition 2.7(a)]. If O ∈ τ

and S ∈ SO (X, τ) then O ∩S ∈ SO (X, τ) [3, Theorem 1.9]. A space (X, τ) is Baire
if each nonempty set S ∈ τ is of the 2nd category (equivalently: cl (

⋂
n∈NOn) = X

for any family {On}n∈N ⊂ τ with cl (On) = X for each n; or: cl (
⋂

n∈NAn) = X for
any family {An}n∈N ⊂ SO (X, τ) with cl (An) = X for each n, see [8]). A space (X, τ)

is said to be S-connected [16] if there are no nonempty sets A1, A2 ∈ SO (X, τ)

such that A1 ∩ A2 = ∅ and A1 ∪ A2 = X. In the opposite case (X, τ) is called
S-disconnected.

2. Continuous and semi-open injections

Lemma 2.1. If an injection f : (X, τ) → (Y, σ) is continuous and closed, then for
any subset S ⊂ X we have

(2.1) intσ

(
clσ

(
f(S)

))
⊂ f

(
intτ (clτ (S))

)
.

Proof. As f is closed we have f−1
(

int (cl (f(S)))
)
⊂ f−1

(
int (f(cl (S)))

)
. But f is

also continuous, so f−1
(

int (cl (f(S)))
)
⊂ int

(
f−1(f(cl (S)))

)
= int (cl (S)). Conse-

quently,

f
(
f−1

(
int (cl (f(S)))

))
⊂ f

(
int (cl (S))

)
.

Since f is closed, int (cl (f(S))) ⊂ f(X). Thus, by injectivity of f the inclusion (2.1)
holds. ¤

A function f : (X, τ) → (Y, σ) is said to be semi-open [2] if f(S) ∈ SO (Y, σ) for
every S ∈ τ .

Theorem 2.1. Let an injection f : (X, τ) → (Y, σ) be continuous, semi-open, and
closed. If (Y, σ) is Baire, then so is (X, τ).

Proof. Suppose G ∈ τ is of first category in (X, τ). Then f(G) =
⋃∞

k=1 f(Nk) where
for each k ∈ N the sets Nk are nowhere dense in (X, τ). Using Lemma 2.1 we get
that the images f(Nk) are nowhere dense in (Y, σ), k ∈ N. Hence the semi-open set
f(G) ⊂ Y is of first category. Thus there exists a nonempty set O ∈ σ, O ⊂ f(G),
which is of first category. It contradicts the assumption that (Y, σ) is Baire. ¤
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Recall the following result: if a function f : (X, τ) → (Y, σ) is continuous and open,
then for any subset S ⊂ X we have

intσ

(
clσ

(
f(S)

))
⊃ f

(
intτ (clτ (S))

)
.

So, in view of Lemma 2.1 we get what follows.

Proposition 2.1. If an injection f : (X, τ) → (Y, σ) is continuous, open, and closed,
then for any subset S ⊂ X

intσ

(
clσ

(
f(S)

))
= f

(
intτ (clτ (S))

)
.

Corollary 2.1. Let an injection f : (X, τ) → (Y, σ) be continuous, open, and closed.
Then, for any subset S ⊂ X,

(a) S is nowhere dense in (X, τ) if and only if f(S) is nowhere dense in (Y, σ),
(b) if S is regular open in (X, τ), then f(S) is regular open in (Y, σ).

The following continuity-like property will be useful in the sequel.

Definition 2.1. A function f : (X, τ) → (Y, σ) is said to be s-perfectly continuous
if the preimage f−1(V ) ∈ CO (X, τ) for each V ∈ SO (Y, σ).

Every s-perfectly continuous function is perfectly continuous (f−1(V ) ∈ CO (X, τ)

for each V ∈ σ, see [1]), but the converse does not hold in general.

Example 2.1.
(a) Let X = {a, b, c} = Y , τ =

{
∅, X, {a}, {b, c}

}
, σ =

{
∅, Y, {a}

}
. The func-

tion idX : (X, τ) → (X, σ) is perfectly continuous, but it is not s-perfectly
continuous: consider {a, b} ∈ SO (X, σ).

(b) If we put in (a) Y = {a, b, c, d}, then injective but not surjective idX is perfectly
continuous and not s-perfectly continuous, as well.

Recall that every perfectly continuous function is continuous, but the converse is
not true, see [15, p.249]. Next, we shall establish

Theorem 2.2. Let an injection f : (X, τ) → (Y, σ) be s-perfectly continuous and
semi-open. If (X, τ) is compact, (Y, σ) is Hausdorff and Baire, then (X, τ) is Baire.

In order to prove this result we shall need some lemmas. The second one is well-
known.



8 ZBIGNIEW DUSZYŃSKI

Lemma 2.2. [14, Theorem 5] Let, for a (Y, σ), Y0 ∈ SO (Y, σ). Then for every
A ⊂ Y0, A ∈ SO (Y, σ) if and only if A ∈ SO (Y0, σY0).

Lemma 2.3. If a function f : (X, τ) → (Y, σ) is continuous, (X, τ) is compact, and
(Y, σ) is Hausdorff, then for each subset S ⊂ X one has

f
(

clτ (S)
)

= clσ(f(S)).

Recall that a collection of subsets of a space (X, τ) is called a pseudo-cover [9,
p.13], if its union is dense in (X, τ). A pseudo-cover is said to be semi-open (resp.
open) if all its members are semi-open (resp. open) in (X, τ).

Lemma 2.4 ([8] for semi -open and [9, Theorem 1.21] for open case). If there exists a
semi-open (or open) pseudo-cover of (X, τ) whose members are Baire subspaces of
(X, τ), then (X, τ) is a Baire space as well.

Lemma 2.5 ([8], [9, Proposition 1.14], [7, p.256 Problem 2]). Any semi-open (hence
open) subset of a Baire space is Baire too.

Proof of Theorem 2.2. In virtue of Lemma 2.4 it is enough to show that each point
of (X, τ) has an open neighbourhood which is Baire in (X, τ). So, let x ∈ X be
arbitrarily chosen. Then f(x) ∈ f(X) ∈ SO (Y, σ). Since (Y, σ) is Hausdorff, there
exists Gx ( Y with f(x) ∈ Gx ∈ σ. Hence f(x) ∈ Gx ∩ f(X) = Vx ∈ SO (Y, σ),
consequently by Lemma 2.2, Vx ∈ SO

(
f(X), σf(X)

)
. Now consider a subset f−1(Vx) ∈

τ . Since f is continuous, then the restriction f ¹ f−1(Vx) = fx : f−1(Vx) → Vx is
continuous too. Thus fx

(
clτf−1(Vx)

(S)
)
⊂ clσVx

(fx(S)) for any S ⊂ f−1(Vx). Let

{On}n∈N ⊂ τf−1(Vx) be an arbitrary family of sets dense in
(
f−1(Vx), τf−1(Vx)

)
. We

shall show that

(2.2) clτf−1(Vx)

( ⋂

n∈N
On

)
= f−1(Vx).

By continuity of fx each fx(On) ∈ SO (Y, σ), n ∈ N, is dense in (Vx, σVx). Obviously
(by Lemma 2.2), fx(On) ∈ SO (Vx, σVx) for each n. Since, by assumption, (Y, σ) is
Baire, then (Vx, σVx) is Baire as well (see Lemma 2.5). So, clτVx

( ⋂
n∈N fx(On)

)
= Vx.

But f−1(Vx) ∈ c (X, τ) and hence it is compact. Applying now Lemma 2.3 we get

fx

(
clτf−1(Vx)

( ⋂

n∈N
On

))
= clσVx

(
fx

( ⋂

n∈N
On

))
= clσVx

( ⋂

n∈N
fx(On)

)
= Vx.

Therefore (2.2) follows. ¤
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A brief insight into the foregoing proof leads to the next result.

Theorem 2.3. Let an injection f : (X, τ) → (Y, σ) be perfectly continuous and open.
If (X, τ) is compact, (Y, σ) is Hausdorff and Baire, then (X, τ) is Baire.

Recall that a function f : (X, τ) → (Y, σ) is called a semi-homeomorphism [4]
if it is bijective, pre-semi-open (i.e., f(U) ∈ SO (Y, σ) for every U ∈ SO (X, τ)), and
irresolute (f−1(V ) ∈ SO (X, τ) for every V ∈ SO (Y, σ)). Each homeomorphism is
a semi-homeomorphism, but not conversely [4, Theorem 1.9 and Example 1.2]. The
following interesting result is a consequence of [9, Theorem 4.1 and Proposition 4.3];
the details are left to the reader (we make use of [3, Remark 1.2]).

Proposition 2.2. Let f : (X, τ) → (Y, σ) be a semi-homeomorphism. Then (X, τ)

is a Baire space if and only if (Y, σ) is Baire.

3. Contra-continuity

A function f : (X, τ) → (Y, σ) is said to be contra-continuous [5] if f−1(V ) ∈
c (X, τ) for every V ∈ σ (or, equivalently, f−1(F ) ∈ τ for every F ∈ c (Y, σ)).

Theorem 3.1. Let a surjection f : (X, τ) → (Y, σ) be contra-continuous and open.
Then (Y, σ) is a Baire space.

Proof. Suppose B ∈ σ, B 6= ∅, is of first category in (Y, σ). So, B =
⋃

n∈NBn

where each Bn is nowhere dense in (Y, σ). By contra-continuity and openness of f we
calculate as follows.

f−1(B) = f−1

( ⋃

n∈N
Bn

)
=

⋃

n∈N
f−1(Bn) ⊂ ⋃

n∈N
f−1(cl (Bn)) =

=
⋃

n∈N
int

(
f−1(cl (Bn))

)
⊂ ⋃

n∈N
f−1(int (cl (Bn))) = ∅.

A contradiction completes the proof. ¤

Let us remark that from the above proof it follows, under assumptions of Theo-
rem 3.1, that each nonempty subset of a space (Y, σ) is of second category.

Definition 3.1. A function f : (X, τ) → (Y, σ) is said to be s-contra-precontinuous
if the preimage f−1(V ) ∈ PC (X, τ) for each V ∈ SO (Y, σ) (equivalently f−1(F ) ∈
PO (X, τ) for each F ∈ SC (Y, σ)).
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Each s-contra-precontinuous function is contra-precontinuous (f−1(V ) ∈ PC (X, τ)

for each V ∈ σ [10]) and not conversely.

Example 3.1. Let X = {a, b, c}, τ =
{
∅, X, {b}

}
, σ =

{
∅, X, {a}

}
. Then idX :

(X, τ) → (X, σ) is contra-precontinuous, but not s-contra-precontinuous: consider
V = {a, b} ∈ SO (X, σ).

Theorem 3.2. Let a surjection f : (X, τ) → (Y, σ) be s-contra-continuous, continu-
ous and open. Then (Y, σ) is a Baire space.

Proof. Let ∅ 6= B =
⋃

n∈NBn ∈ σ, where Bn is nowhere dense in (Y, σ) for every
n ∈ N. Since each nowhere dense set is semi-closed [3, Theorem 1.3], using our
assumption we calculate as follows:

f−1(B) =
⋃

n∈N
f−1(Bn) ⊂ ⋃

n∈N
int

(
cl

(
f−1(Bn)

))
⊂

⊂ ⋃

n∈N
int

(
f−1(cl (Bn))

)
⊂ ⋃

n∈N
f−1(int (cl (Bn))) = ∅.

Thus ∅ 6= f−1(B) = ∅, a contradiction. ¤

Observe also that under assumptions of Theorem 3.2 every nonempty subset of
(Y, σ) is of second category. As an example of a Baire space with such a property, it
is enough to consider X = {a, b, c, d} with

τ =
{
∅, X, {a}, {b}, {a, b}, {c, d}, {a, c, d}, {b, c, d}

}
.

A function f : (X, τ) → (Y, σ) is called contra-semicontinuous [6] if f−1(V ) ∈
SC (X, τ) for every V ∈ σ (equivalently, f−1(F ) ∈ SO (X, τ) for every F ∈ c (Y, σ)).
In order to prove our next result we need the following improvement of Baire category
theorem.

Lemma 3.1. [8] Let (X, τ) be a Baire space. If {An}n∈N ⊂ SC (X, τ) is a family
covering X, then at least one An must contain a set from τ ; i.e., have a nonvoid
interior.

Theorem 3.3. Let (X, τ) be a Baire space and let (Y, σ) be Lindelöf. If there is a
contra-semicontinuous bijection f : (X, τ) → (Y, σ), then (X, τ) is S-disconnected.

Proof. As (Y, σ) is Lindelöf, by definition, it is Hausdorff. So, for every y ∈ Y there
is a Uy ∈ σ with y ∈ Uy ( Y and in turn (lindelöfness) Y =

⋃∞
k=1 Uyk

for a certain
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countable set {yk}∞k=1 ⊂ Y . Then X =
⋃∞

k=1 f−1(Uyk
), where f−1(Uyk

) ∈ SC (X, τ),
k ∈ N. Applying Lemma 3.1 we pick a k0 such that intτ

(
Uyk0

)
6= ∅. Hence ∅ 6=

sclτ
(

intτ

(
Uyk0

))
⊂ f−1

(
Uyk0

)
( X. By [11, Proposition 2.7(a)], scl

(
int

(
Uyk0

))
=

int
(

cl
(

int
(
Uyk0

)))
= A1. Obviously, ∅ 6= A2 = X \ A1 ∈ SO (X, τ) and therefore

(X, τ) is S-disconnected. ¤

4. δ-open and δ∗-open functions

A function f : (X, τ) → (Y, σ) is said to be δ-open [9] if f−1(N) is nowhere dense
in (X, τ) for every nowhere dense subset N of (Y, σ).

Lemma 4.1. [8] For every subset S of a space (X, τ), cl (sint (S)) = cl (int (S)).

Theorem 4.1. Let a surjective contra-semicontinuous function f : (X, τ) → (Y, σ) be
δ-open. If (Y, σ) is a T1-space having a dense subset Y0 ∈ SO (Y, σ) with the property
that f−1({y}) is a Baire subspace of (X, τ) for each y ∈ Y , then (X, τ) is Baire.

Proof. We have Y = cl (Y0) = cl (sint (Y0)) = cl (int (Y0)). Consequently int (cl (Y \ Y0)) =

∅ and, since f is δ-open, int
(

cl
(
f−1(Y \ Y0)

))
= ∅. Hence, it may be easily

seen that cl
(

int
(
f−1(Y0)

))
= X. Then f−1(Y0) is dense in (X, τ). By hypothesis,

⋃
y∈Y0

f−1({y}) is also dense in (X, τ). Since, moreover, each preimage f−1({y}) ∈
SO (X, τ) is Baire, by Lemma 2.4 the whole space (X, τ) is Baire. ¤

Definition 4.1. A function f : (X, τ) → (Y, σ) will be called δ∗-open if f(N) is
nowhere dense in (Y, σ) for every nowhere dense subset N of (X, τ).

In our last proof we will follow an idea due to Haworth and McCoy [9, p.48], despite
their proof is far from being clear enough at some points.

Theorem 4.2. Let a space (X, τ) satisfy the second axiom of countability, a space
(Y, σ) be of second category in itself, and a surjection f : (X, τ) → (Y, σ) be δ∗-open.
If there exists a residual subset Z of (Y, σ) such that for each z ∈ Z the preimage
f−1(z) is of second category in itself, then (X, τ) is of second category.

Proof. The notation is the same as in the proof of [9, Theorem 4.11]. Suppose (X, τ)

is of first category in itself; i.e., X =
⋃

n∈N Fn for some nowhere dense closed sets Fn in
(X, τ), n ∈ N. We set M(Fn) =

{
y ∈ Y : intf−1(y)(f

−1(y) ∩ Fn) 6= ∅
}
, n ∈ N. Fix a

countable base {Ui}i∈N for (X, τ) and set also Mn
i =

{
y ∈ Y : ∅ 6= f−1(y)∩Ui ⊂ Fn

}
,
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n, i ∈ N. We have M(Fn) =
⋃

i∈NMn
i , n ∈ N. Choose arbitrary n and consider a

nonempty Mn
i , i ∈ N. For any y ∈ Mn

i we have f−1(y) ∩ Ui ⊂ Fn, so {y} ∩ f(Ui) ⊂
f(Fn). Consequently, Mn

i ∩ f(Ui) ⊂ f(Fn). Therefore,
⋃

i∈NMn
i ∩

⋃
i∈N f(Ui) =

M(Fn) ∩ Y = M(Fn) ⊂ f(Fn). By assumption the set M(Fn) is nowhere dense and
so M =

⋃
n∈NM(Fn) has the first category in (Y, σ). The remaining steps of the proof

are the same as at the end of the proof of [9, Theorem 4.1]. ¤

Corollary 4.1. Theorem 4.2 is true if to assume all f−1(z), z ∈ Z, are Baire sub-
spaces (instead of the second category assumption).
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