KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 35 NUMBER 1 (2011), PAGES 5–12.

FUNCTIONS AND BAIRE SPACES

ZBIGNIEW DUSZYŃSKI

ABSTRACT. Some results concerning functions that preserve Baire spaces in the context of images and preimages are obtained in *Section IV* of [R. C. Haworth, R. A. McCoy, *Baire spaces*, Dissertationes Math., **151**, PWN, Warszawa 1977]. In Section 2 of the present paper further results in this direction are offered. In Sections 3 and 4 a few theorems related to some other problems on baireness of topological spaces are proposed.

1. Preliminaries

Throughout, topological spaces are denoted by (X, τ) or (Y, σ) . Let S be a subset of a space (X, τ) . The *interior* and the *closure* of S in (X, τ) will be denoted by $\operatorname{int}_{\tau}(S)$ (or $\operatorname{int}(S)$) and $\operatorname{cl}_{\tau}(S)$ (or $\operatorname{cl}(S)$) respectively. The set S is said to be *semi-open* [12] (resp. *preopen* [13], *semi-closed* [3], *preclosed*, *regular open*) in (X, τ) , if $S \subset$ cl ($\operatorname{int}(S)$) (resp. $S \subset \operatorname{int}(\operatorname{cl}(S)), S \supset \operatorname{int}(\operatorname{cl}(S)), S \supset \operatorname{cl}(\operatorname{int}(S)), S = \operatorname{int}(\operatorname{cl}(S))$). The collection of all semi-open (resp. preopen, semi-closed, pre-closed, closed, clopen) subsets of (X, τ) shall be denoted by SO (X, τ) (resp. PO $(X, \tau),$ SC $(X, \tau),$ PC $(X, \tau),$ c $(X, \tau),$ CO (X, τ)). A set $S \in \operatorname{SO}(X, \tau)$ if and only if there exists an $O \in \tau$ such that $O \subset S \subset \operatorname{cl}(S)$ [12]. Every nonvoid semi-open set contains a nonvoid open subset [3, Remark 1.2]. The intersection of all $F \in \operatorname{SC}(X, \tau)$ with $S \subset F$ is called the *semiclosure* [3] of S in (X, τ) . The union of all $U \in \operatorname{SO}(X, \tau)$ with $U \subset S$ is called the *semi-interior* [3] of S in (X, τ) . The semi-closure and semi-interior of S are denoted respectively by scl (S) (or scl $_{\tau}(S)$) and sint (S) (or sint $_{\tau}(S)$). We have $S \in \operatorname{SO}(X, \tau)$

Key words and phrases. Continuous, Contra-semicontinuous, Semi-open, δ -open function, Baire space.

²⁰¹⁰ Mathematics Subject Classification. 54C08.

Received: July 07, 2010.

(resp. $S \in SC(X,\tau)$) iff S = sint(S) (resp. S = scl(S)) [3, Theorem 1.4]. Also, scl(S) = int(cl(S)) if and only if $S \in PO(X,\tau)$ [11, Proposition 2.7(a)]. If $O \in \tau$ and $S \in SO(X,\tau)$ then $O \cap S \in SO(X,\tau)$ [3, Theorem 1.9]. A space (X,τ) is **Baire** if each nonempty set $S \in \tau$ is of the 2nd category (equivalently: $cl(\bigcap_{n \in \mathbb{N}} O_n) = X$ for any family $\{O_n\}_{n \in \mathbb{N}} \subset \tau$ with $cl(O_n) = X$ for each n; or: $cl(\bigcap_{n \in \mathbb{N}} A_n) = X$ for any family $\{A_n\}_{n \in \mathbb{N}} \subset SO(X,\tau)$ with $cl(A_n) = X$ for each n, see [8]). A space (X,τ) is said to be S-connected [16] if there are no nonempty sets $A_1, A_2 \in SO(X,\tau)$ such that $A_1 \cap A_2 = \emptyset$ and $A_1 \cup A_2 = X$. In the opposite case (X,τ) is called S-disconnected.

2. Continuous and semi-open injections

Lemma 2.1. If an injection $f : (X, \tau) \to (Y, \sigma)$ is continuous and closed, then for any subset $S \subset X$ we have

(2.1)
$$\operatorname{int}_{\sigma}\left(\operatorname{cl}_{\sigma}\left(f(S)\right)\right) \subset f\left(\operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(S))\right).$$

Proof. As f is closed we have $f^{-1}(\operatorname{int}(\operatorname{cl}(f(S)))) \subset f^{-1}(\operatorname{int}(f(\operatorname{cl}(S))))$. But f is also continuous, so $f^{-1}(\operatorname{int}(\operatorname{cl}(f(S)))) \subset \operatorname{int}(f^{-1}(f(\operatorname{cl}(S)))) = \operatorname{int}(\operatorname{cl}(S))$. Consequently,

$$f(f^{-1}(\operatorname{int}(\operatorname{cl}(f(S)))))) \subset f(\operatorname{int}(\operatorname{cl}(S))).$$

Since f is closed, int $(cl(f(S))) \subset f(X)$. Thus, by injectivity of f the inclusion (2.1) holds.

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be *semi-open* [2] if $f(S) \in SO(Y, \sigma)$ for every $S \in \tau$.

Theorem 2.1. Let an injection $f : (X, \tau) \to (Y, \sigma)$ be continuous, semi-open, and closed. If (Y, σ) is Baire, then so is (X, τ) .

Proof. Suppose $G \in \tau$ is of first category in (X, τ) . Then $f(G) = \bigcup_{k=1}^{\infty} f(N_k)$ where for each $k \in \mathbb{N}$ the sets N_k are nowhere dense in (X, τ) . Using Lemma 2.1 we get that the images $f(N_k)$ are nowhere dense in (Y, σ) , $k \in \mathbb{N}$. Hence the semi-open set $f(G) \subset Y$ is of first category. Thus there exists a nonempty set $O \in \sigma$, $O \subset f(G)$, which is of first category. It contradicts the assumption that (Y, σ) is Baire. \Box Recall the following result: if a function $f: (X, \tau) \to (Y, \sigma)$ is continuous and open, then for any subset $S \subset X$ we have

$$\operatorname{int}_{\sigma} \Big(\operatorname{cl}_{\sigma} \Big(f(S) \Big) \Big) \supset f\Big(\operatorname{int}_{\tau} (\operatorname{cl}_{\tau}(S)) \Big).$$

So, in view of Lemma 2.1 we get what follows.

Proposition 2.1. If an injection $f : (X, \tau) \to (Y, \sigma)$ is continuous, open, and closed, then for any subset $S \subset X$

$$\operatorname{int}_{\sigma} \left(\operatorname{cl}_{\sigma} \left(f(S) \right) \right) = f \left(\operatorname{int}_{\tau} (\operatorname{cl}_{\tau}(S)) \right).$$

Corollary 2.1. Let an injection $f : (X, \tau) \to (Y, \sigma)$ be continuous, open, and closed. Then, for any subset $S \subset X$,

- (a) S is nowhere dense in (X, τ) if and only if f(S) is nowhere dense in (Y, σ) ,
- (b) if S is regular open in (X, τ) , then f(S) is regular open in (Y, σ) .

The following continuity-like property will be useful in the sequel.

Definition 2.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be *s*-perfectly continuous if the preimage $f^{-1}(V) \in CO(X, \tau)$ for each $V \in SO(Y, \sigma)$.

Every s-perfectly continuous function is perfectly continuous $(f^{-1}(V) \in CO(X, \tau))$ for each $V \in \sigma$, see [1]), but the converse does not hold in general.

Example 2.1.

- (a) Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$, $\sigma = \{\emptyset, Y, \{a\}\}$. The function $\operatorname{id}_X : (X, \tau) \to (X, \sigma)$ is perfectly continuous, but it is not *s*-perfectly continuous: consider $\{a, b\} \in \operatorname{SO}(X, \sigma)$.
- (b) If we put in (a) $Y = \{a, b, c, d\}$, then injective but not surjective id_X is perfectly continuous and not *s*-perfectly continuous, as well.

Recall that every perfectly continuous function is continuous, but the converse is not true, see [15, p.249]. Next, we shall establish

Theorem 2.2. Let an injection $f : (X, \tau) \to (Y, \sigma)$ be s-perfectly continuous and semi-open. If (X, τ) is compact, (Y, σ) is Hausdorff and Baire, then (X, τ) is Baire.

In order to prove this result we shall need some lemmas. The second one is wellknown.

Lemma 2.2. [14, Theorem 5] Let, for a (Y, σ) , $Y_0 \in SO(Y, \sigma)$. Then for every $A \subset Y_0, A \in SO(Y, \sigma)$ if and only if $A \in SO(Y_0, \sigma_{Y_0})$.

Lemma 2.3. If a function $f: (X, \tau) \to (Y, \sigma)$ is continuous, (X, τ) is compact, and (Y, σ) is Hausdorff, then for each subset $S \subset X$ one has

$$f(\operatorname{cl}_{\tau}(S)) = \operatorname{cl}_{\sigma}(f(S)).$$

Recall that a collection of subsets of a space (X, τ) is called a **pseudo-cover** [9, p.13], if its union is dense in (X, τ) . A pseudo-cover is said to be semi-open (resp. open) if all its members are semi-open (resp. open) in (X, τ) .

Lemma 2.4 ([8] for semi-open and [9, Theorem 1.21] for open case). If there exists a semi-open (or open) pseudo-cover of (X, τ) whose members are Baire subspaces of (X, τ) , then (X, τ) is a Baire space as well.

Lemma 2.5 ([8], [9, Proposition 1.14], [7, p.256 Problem 2]). Any semi-open (hence open) subset of a Baire space is Baire too.

Proof of Theorem 2.2. In virtue of Lemma 2.4 it is enough to show that each point of (X,τ) has an open neighbourhood which is Baire in (X,τ) . So, let $x \in X$ be arbitrarily chosen. Then $f(x) \in f(X) \in SO(Y, \sigma)$. Since (Y, σ) is Hausdorff, there exists $G_x \subsetneq Y$ with $f(x) \in G_x \in \sigma$. Hence $f(x) \in G_x \cap f(X) = V_x \in SO(Y, \sigma)$, consequently by Lemma 2.2, $V_x \in SO(f(X), \sigma_{f(X)})$. Now consider a subset $f^{-1}(V_x) \in$ τ . Since f is continuous, then the restriction $f \upharpoonright f^{-1}(V_x) = f_x \colon f^{-1}(V_x) \to V_x$ is continuous too. Thus $f_x(\operatorname{cl}_{\tau_{f^{-1}(V_x)}}(S)) \subset \operatorname{cl}_{\sigma_{V_x}}(f_x(S))$ for any $S \subset f^{-1}(V_x)$. Let $\{O_n\}_{n\in\mathbb{N}}\subset \tau_{f^{-1}(V_x)}$ be an arbitrary family of sets dense in $(f^{-1}(V_x),\tau_{f^{-1}(V_x)})$. We shall show that

(2.2)
$$\operatorname{cl}_{\tau_{f^{-1}(V_x)}}\left(\bigcap_{n\in\mathbb{N}}O_n\right) = f^{-1}(V_x).$$

By continuity of f_x each $f_x(O_n) \in SO(Y, \sigma), n \in \mathbb{N}$, is dense in (V_x, σ_{V_x}) . Obviously (by Lemma 2.2), $f_x(O_n) \in SO(V_x, \sigma_{V_x})$ for each n. Since, by assumption, (Y, σ) is Baire, then (V_x, σ_{V_x}) is Baire as well (see Lemma 2.5). So, $\operatorname{cl}_{\tau_{V_x}} \left(\bigcap_{n \in \mathbb{N}} f_x(O_n) \right) = V_x$. But $f^{-1}(V_x) \in c(X,\tau)$ and hence it is compact. Applying now Lemma 2.3 we get

$$f_x\left(\operatorname{cl}_{\tau_{f^{-1}(V_x)}}\left(\bigcap_{n\in\mathbb{N}}O_n\right)\right) = \operatorname{cl}_{\sigma_{V_x}}\left(f_x\left(\bigcap_{n\in\mathbb{N}}O_n\right)\right) = \operatorname{cl}_{\sigma_{V_x}}\left(\bigcap_{n\in\mathbb{N}}f_x(O_n)\right) = V_x.$$

refore (2.2) follows.

Therefore (2.2) follows.

A brief insight into the foregoing proof leads to the next result.

Theorem 2.3. Let an injection $f : (X, \tau) \to (Y, \sigma)$ be perfectly continuous and open. If (X, τ) is compact, (Y, σ) is Hausdorff and Baire, then (X, τ) is Baire.

Recall that a function $f : (X, \tau) \to (Y, \sigma)$ is called a *semi-homeomorphism* [4] if it is bijective, pre-semi-open (i.e., $f(U) \in SO(Y, \sigma)$ for every $U \in SO(X, \tau)$), and irresolute $(f^{-1}(V) \in SO(X, \tau)$ for every $V \in SO(Y, \sigma)$). Each homeomorphism is a semi-homeomorphism, but not conversely [4, Theorem 1.9 and Example 1.2]. The following interesting result is a consequence of [9, Theorem 4.1 and Proposition 4.3]; the details are left to the reader (we make use of [3, Remark 1.2]).

Proposition 2.2. Let $f : (X, \tau) \to (Y, \sigma)$ be a semi-homeomorphism. Then (X, τ) is a Baire space if and only if (Y, σ) is Baire.

3. Contra-continuity

A function $f : (X, \tau) \to (Y, \sigma)$ is said to be *contra-continuous* [5] if $f^{-1}(V) \in c(X, \tau)$ for every $V \in \sigma$ (or, equivalently, $f^{-1}(F) \in \tau$ for every $F \in c(Y, \sigma)$).

Theorem 3.1. Let a surjection $f : (X, \tau) \to (Y, \sigma)$ be contra-continuous and open. Then (Y, σ) is a Baire space.

Proof. Suppose $B \in \sigma$, $B \neq \emptyset$, is of first category in (Y, σ) . So, $B = \bigcup_{n \in \mathbb{N}} B_n$ where each B_n is nowhere dense in (Y, σ) . By contra-continuity and openness of f we calculate as follows.

$$f^{-1}(B) = f^{-1}\left(\bigcup_{n\in\mathbb{N}} B_n\right) = \bigcup_{n\in\mathbb{N}} f^{-1}(B_n) \subset \bigcup_{n\in\mathbb{N}} f^{-1}(\operatorname{cl}(B_n)) =$$
$$= \bigcup_{n\in\mathbb{N}} \operatorname{int}\left(f^{-1}(\operatorname{cl}(B_n))\right) \subset \bigcup_{n\in\mathbb{N}} f^{-1}(\operatorname{int}\left(\operatorname{cl}(B_n)\right)) = \varnothing.$$

A contradiction completes the proof.

Let us remark that from the above proof it follows, under assumptions of Theorem 3.1, that each nonempty subset of a space (Y, σ) is of second category.

Definition 3.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be *s*-contra-precontinuous if the preimage $f^{-1}(V) \in \text{PC}(X, \tau)$ for each $V \in \text{SO}(Y, \sigma)$ (equivalently $f^{-1}(F) \in$ $\text{PO}(X, \tau)$ for each $F \in \text{SC}(Y, \sigma)$).

Each s-contra-precontinuous function is contra-precontinuous $(f^{-1}(V) \in \text{PC}(X, \tau))$ for each $V \in \sigma$ [10]) and not conversely.

Example 3.1. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{b\}\}, \sigma = \{\emptyset, X, \{a\}\}$. Then id_X : $(X,\tau) \to (X,\sigma)$ is contra-precontinuous, but not s-contra-precontinuous: consider $V = \{a, b\} \in \mathrm{SO}\,(X, \sigma).$

Theorem 3.2. Let a surjection $f: (X, \tau) \to (Y, \sigma)$ be s-contra-continuous, continuous and open. Then (Y, σ) is a Baire space.

Proof. Let $\emptyset \neq B = \bigcup_{n \in \mathbb{N}} B_n \in \sigma$, where B_n is nowhere dense in (Y, σ) for every $n \in \mathbb{N}$. Since each nowhere dense set is semi-closed [3, Theorem 1.3], using our assumption we calculate as follows:

$$f^{-1}(B) = \bigcup_{n \in \mathbb{N}} f^{-1}(B_n) \subset \bigcup_{n \in \mathbb{N}} \operatorname{int} \left(\operatorname{cl} \left(f^{-1}(B_n) \right) \right) \subset \bigcup_{n \in \mathbb{N}} f^{-1}(\operatorname{int} \left(\operatorname{cl} \left(B_n \right) \right)) = \varnothing.$$

$$\subset \bigcup_{n \in \mathbb{N}} \operatorname{int} \left(f^{-1}(\operatorname{cl} \left(B_n \right) \right) \right) \subset \bigcup_{n \in \mathbb{N}} f^{-1}(\operatorname{int} \left(\operatorname{cl} \left(B_n \right) \right)) = \varnothing.$$

$$s \ \emptyset \neq f^{-1}(B) = \emptyset, \text{ a contradiction.}$$

Thus $\emptyset \neq f^{-1}(B) = \emptyset$, a contradiction.

Observe also that under assumptions of Theorem 3.2 every nonempty subset of (Y, σ) is of second category. As an example of a Baire space with such a property, it is enough to consider $X = \{a, b, c, d\}$ with

$$\tau = \Big\{ \emptyset, X, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\} \Big\}.$$

A function $f:(X,\tau) \to (Y,\sigma)$ is called *contra-semicontinuous* [6] if $f^{-1}(V) \in$ SC (X, τ) for every $V \in \sigma$ (equivalently, $f^{-1}(F) \in SO(X, \tau)$ for every $F \in c(Y, \sigma)$). In order to prove our next result we need the following improvement of Baire category theorem.

Lemma 3.1. [8] Let (X, τ) be a Baire space. If $\{A_n\}_{n \in \mathbb{N}} \subset SC(X, \tau)$ is a family covering X, then at least one A_n must contain a set from τ ; i.e., have a nonvoid interior.

Theorem 3.3. Let (X, τ) be a Baire space and let (Y, σ) be Lindelöf. If there is a contra-semicontinuous bijection $f: (X, \tau) \to (Y, \sigma)$, then (X, τ) is S-disconnected.

Proof. As (Y, σ) is Lindelöf, by definition, it is Hausdorff. So, for every $y \in Y$ there is a $U_y \in \sigma$ with $y \in U_y \subsetneq Y$ and in turn (lindelöfness) $Y = \bigcup_{k=1}^{\infty} U_{y_k}$ for a certain countable set $\{y_k\}_{k=1}^{\infty} \subset Y$. Then $X = \bigcup_{k=1}^{\infty} f^{-1}(U_{y_k})$, where $f^{-1}(U_{y_k}) \in \mathrm{SC}(X,\tau)$, $k \in \mathbb{N}$. Applying Lemma 3.1 we pick a k_0 such that $\operatorname{int}_{\tau}(U_{y_{k_0}}) \neq \emptyset$. Hence $\emptyset \neq \operatorname{scl}_{\tau}(\operatorname{int}_{\tau}(U_{y_{k_0}})) \subset f^{-1}(U_{y_{k_0}}) \subsetneq X$. By [11, Proposition 2.7(a)], $\operatorname{scl}(\operatorname{int}(U_{y_{k_0}})) = \operatorname{int}(\operatorname{cl}(\operatorname{int}(U_{y_{k_0}}))) = A_1$. Obviously, $\emptyset \neq A_2 = X \setminus A_1 \in \mathrm{SO}(X,\tau)$ and therefore (X,τ) is S-disconnected.

4. δ -open and δ^* -open functions

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be δ -open [9] if $f^{-1}(N)$ is nowhere dense in (X, τ) for every nowhere dense subset N of (Y, σ) .

Lemma 4.1. [8] For every subset S of a space (X, τ) , cl(sint(S)) = cl(int(S)).

Theorem 4.1. Let a surjective contra-semicontinuous function $f : (X, \tau) \to (Y, \sigma)$ be δ -open. If (Y, σ) is a \mathcal{T}_1 -space having a dense subset $Y_0 \in SO(Y, \sigma)$ with the property that $f^{-1}(\{y\})$ is a Baire subspace of (X, τ) for each $y \in Y$, then (X, τ) is Baire.

Proof. We have $Y = \operatorname{cl}(Y_0) = \operatorname{cl}(\operatorname{sint}(Y_0)) = \operatorname{cl}(\operatorname{int}(Y_0))$. Consequently int $(\operatorname{cl}(Y \setminus Y_0)) = \emptyset$ and, since f is δ -open, int $\left(\operatorname{cl}\left(f^{-1}(Y \setminus Y_0)\right)\right) = \emptyset$. Hence, it may be easily seen that $\operatorname{cl}\left(\operatorname{int}\left(f^{-1}(Y_0)\right)\right) = X$. Then $f^{-1}(Y_0)$ is dense in (X, τ) . By hypothesis, $\bigcup_{y \in Y_0} f^{-1}(\{y\})$ is also dense in (X, τ) . Since, moreover, each preimage $f^{-1}(\{y\}) \in$ SO (X, τ) is Baire, by Lemma 2.4 the whole space (X, τ) is Baire. \Box

Definition 4.1. A function $f : (X, \tau) \to (Y, \sigma)$ will be called δ^* -open if f(N) is nowhere dense in (Y, σ) for every nowhere dense subset N of (X, τ) .

In our last proof we will follow an idea due to Haworth and McCoy [9, p.48], despite their proof is far from being clear enough at some points.

Theorem 4.2. Let a space (X, τ) satisfy the second axiom of countability, a space (Y, σ) be of second category in itself, and a surjection $f : (X, \tau) \to (Y, \sigma)$ be δ^* -open. If there exists a residual subset Z of (Y, σ) such that for each $z \in Z$ the preimage $f^{-1}(z)$ is of second category in itself, then (X, τ) is of second category.

Proof. The notation is the same as in the proof of [9, Theorem 4.11]. Suppose (X, τ) is of first category in itself; i.e., $X = \bigcup_{n \in \mathbb{N}} F_n$ for some nowhere dense closed sets F_n in $(X, \tau), n \in \mathbb{N}$. We set $M(F_n) = \left\{ y \in Y : \operatorname{int}_{f^{-1}(y)}(f^{-1}(y) \cap F_n) \neq \varnothing \right\}, n \in \mathbb{N}$. Fix a countable base $\{U_i\}_{i \in \mathbb{N}}$ for (X, τ) and set also $M_i^n = \left\{ y \in Y : \varnothing \neq f^{-1}(y) \cap U_i \subset F_n \right\}$,

 $n, i \in \mathbb{N}$. We have $M(F_n) = \bigcup_{i \in \mathbb{N}} M_i^n$, $n \in \mathbb{N}$. Choose arbitrary n and consider a nonempty M_i^n , $i \in \mathbb{N}$. For any $y \in M_i^n$ we have $f^{-1}(y) \cap U_i \subset F_n$, so $\{y\} \cap f(U_i) \subset$ $f(F_n)$. Consequently, $M_i^n \cap f(U_i) \subset f(F_n)$. Therefore, $\bigcup_{i \in \mathbb{N}} M_i^n \cap \bigcup_{i \in \mathbb{N}} f(U_i) =$ $M(F_n) \cap Y = M(F_n) \subset f(F_n)$. By assumption the set $M(F_n)$ is nowhere dense and so $M = \bigcup_{n \in \mathbb{N}} M(F_n)$ has the first category in (Y, σ) . The remaining steps of the proof are the same as at the end of the proof of [9, Theorem 4.1].

Corollary 4.1. Theorem 4.2 is true if to assume all $f^{-1}(z)$, $z \in Z$, are Baire subspaces (instead of the second category assumption).

References

- S. P. Arya, R. Gupta, On strongly continuous mappings, Kyungpook Math. J., 14 (1974), 131–143.
- [2] N. Biswas, On some mappings in topological spaces, Bull. Cal. Math. Soc., 61 (1969), 127–135.
- [3] C. G. Crossley, S. K. Hildebrand, Semi-closure, Texas J. Sci., 22(2-3) (1971), 99–112.
- [4] C. G. Crossley, S. K. Hildebrand, Semi-topological properties, Fundamenta Mathematicae, 74 (1972), 233–254.
- [5] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci., 19 (2) (1996), 303–310.
- [6] J. Dontchev, T. Noiri, Contra-semicontinuous functions, Math. Pannonica, 10 (2) (1999), 159-168.
- [7] J. Dugundji, Topology, Allyn&Bacon, Inc., Boston, 1966.
- [8] Z. Duszyński, Semi-open sets and Baire spaces, submitted.
- [9] R. C. Haworth, R. A. McCoy, *Baire spaces*, Dissertationes Math., 151, PWN, Warszawa 1977.
- [10] S. Jafari, T. Noiri, On contra-precontinuous functions, Bul. Malaysian Math. Sci. Soc., 25 (2002), 115–128.
- [11] D. S. Janković, A note on mappings of extremally disconnected spaces, Acta Math. Hungar., 46 (1-2) (1985), 83–92.
- [12] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
- [13] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt, 53 (1982), 47–53.
- [14] T. Noiri, Remarks on semi-open mappings, Bull. Cal. Math. Soc., 65 (1973), 197-201.
- [15] T. Noiri, Super-continuity and some strong forms of continuity, Indian J. Pure Appl. Math., 15 (3) (1984), 241–250.
- [16] V. Pipitone, G. Russo, Spazi semiconnessi a spazi semiaperti, Rend. Circ. Mat. Palermo, 24 (2) (1975), 273–285.

INSTITUTE OF MATHEMATICS, CASIMIRUS THE GREAT UNIVERSITY, PLAC WEYSSENHOFFA 11, 85-072 BYDGOSZCZ, POLAND *E-mail address*: imath@ukw.edu.pl