KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 35 NUMBER 1 (2011), PAGES 25–37.

γ -COMPACTNESS IN L-TOPOLOGICAL SPACES

A. M. ZAHRAN ¹, A. GHAREEB ², AND A. H. ZAKARI ³

ABSTRACT. The concepts of γ -compactness, countable γ -compactness, the γ -Lindelöf property are introduced in *L*-topological spaces by means of γ -open *L*-sets and their inequalities when *L* is a complete DeMorgan algebra. These definitions do not rely on the structure of the basis lattice *L* and no distributivity in *L* is required.

1. INTRODUCTION

Fuzzy sets theory [27], a recent generalization of classical set theory, has attracted the attention of researchers working in various areas including topology, which has had a seminal influence in the development of this new theory.

The concept of compactness of an *I*-topological space was first introduced by Chang [4] in terms of open cover. Chang's compactness has been greatly extended to the variable-basis case by Rodabaugh [9], and it can be regarded as a successful definition of compactness in poslat topology from the categorical point of view (see [9, 16]). Moreover, Gantner et al. introduced α -compactness [6], Lowen introduced fuzzy compactness, strong fuzzy compactness and ultra-fuzzy compactness [13, 14], Chadwick [3] generalized Lowen's compactness, Liu introduced *Q*-compactness [11], Li introduced strong *Q*-compactness [10] which is equivalent to strong fuzzy compactness in [14], Wang and Zhao introduced *N*-compactness [25, 28], and Shi introduced *S**-compactness [20].

Key words and phrases. L-topological spaces, $\gamma\text{-compact},$ Countable $\gamma\text{-compact},$ $\gamma\text{-Lindelöf property.}$

²⁰¹⁰ Mathematics Subject Classification. 54A40. Received: November 08, 2010. Revised: April 25, 2011.

Recently, Shi presented a new definition of fuzzy compactness in L-topological spaces [23, 19] by means of open L-sets and their inequality where L is a complete DeMorgan algebra. This new definition doesn't depend on the structure of L. When L is completely distributive, it is equivalent to the notion of fuzzy compactness in [12, 13, 26].

In *L*-topology, the weaker forms of open *L*-sets, which were constructed by the compositions of different combinations of the closure and interior operator, have been studied by several mathematicians. In general topology, the class of *b*-open (or γ -open) sets was presented in [1]. In 1996, Hanafy [8] defined the class of γ -open *L*-sets (in the case L = [0, 1]) as an extension of *b*-open sets to *L*-topology.

In this paper, following the lines of [19, 20, 23], we will introduce the γ -compactness in *L*-topological spaces by means of γ -open *L*-sets and their inequality. We also introduce countable γ -compactness and the γ -Lindelöf property in *L*-topology. These definitions do not rely on the structure of the basis lattice *L* and no distributivity in *L* is required.

2. Preliminaries

Throughout this paper $(L, \leq, \wedge, \vee, \prime)$ is a complete DeMorgan algebra, X is a nonempty set. L^X is the set of all L-fuzzy sets (or L-sets, for short) on X. The smallest element and the largest element in L^X are denoted by χ_{\emptyset} and χ_X , respectively. We often don't distinguish a crisp subset A of X and its character function χ_{A} .

A complete lattice L is a complete Heyting algebra if it satisfies the following infinite distributive law: For all $a \in L$ and all $B \subset L$, $a \land \lor B = \lor \{a \land b \mid b \in B\}$.

An element a in L is called a prime element if $a \ge b \land c$ implies $a \ge b$ or $a \ge c$. An element a in L is called co-prime if a' is prime [7]. The set of non-unit prime elements in L is denoted by P(L). The set of non-zero co-prime elements in L is denoted by M(L).

The binary relation \prec in L is defined as follows: for $a, b \in L, a \prec b$ if and only if for every subset $D \subseteq L$, the relation $b \leq \sup D$ always implies the existence of $d \in D$ with $a \leq d$ [5]. In a completely distributive DeMorgan algebra L, each element b is a sup of $\{a \in L | a \prec b\}$. A set $\{a \in L | a \prec b\}$ is called the greatest minimal family of b in the sense of [12, 26], denoted by $\beta(b)$, and $\beta^*(b) = \beta(b) \cap M(L)$. Moreover, for $b \in L$, we define $\alpha(b) = \{a \in L | a' \prec b'\}$ and $\alpha^*(b) = \alpha(b) \cap P(L)$.

For $a \in L$ and $A \in L^X$, we use the following notations from [18].

$$A_{[a]} = \{ x \in X | A(x) \ge a \}, \ A^{(a)} = \{ x \in X | A(x) \not\le a \},$$
$$A_{(a)} = \{ x \in X | \ a \in \beta(A(x)) \}.$$

An *L*-topological space (or *L*-space, for short) is a pair (X, \mathcal{T}) , where \mathcal{T} is a subfamily of L^X which contains χ_{\emptyset} ; χ_X and is closed for any suprema and finite infima. \mathcal{T} is called an *L*-topology on *X*. Members of \mathcal{T} are called open *L*-sets and their complements are called closed *L*-sets.

Definition 2.1. [12, 26] An *L*-space (X, \mathcal{T}) is called weakly induced if $\forall a \in L$, $A \in L^X$, it follows that $A^{(a)} \in [\mathcal{T}]$, where $[\mathcal{T}]$ denotes the topology formed by all crisp sets in \mathcal{T} .

Definition 2.2. [12, 26] For a topological space (X, τ) , let $\omega_L(\tau)$ denote the family of all lower semi-continuous maps from (X, τ) to L, i.e., $\omega_L(\tau) = \{A \in L^X; A^{(a)} \in \tau, a \in L\}$. Then $\omega_L(\tau)$ is an L-topology on X; in this case, $(X, \omega_L(\tau))$ is called topologically generated by (X, τ) . A topologically generated L-space is also called an induced L-space.

Definition 2.3. [22] Let (X, \mathcal{T}) be an *L*-space, $a \in L_0$ and $G \in L^X$. A family $\mathcal{U} \subseteq L^X$ is called a β_a -cover of G if for any $x \in X$, it follows that $a \in \beta(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x))$. \mathcal{U} is called a strong β_a -cover of G if $a \in \beta(\bigwedge_{x \in X} (G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x)))$.

Definition 2.4. [22] Let (X, \mathcal{T}) be an *L*-space, $a \in L_0$ and $G \in L^X$. A family $\mathcal{U} \subseteq L^X$ is called a Q_a -cover of G if for any $x \in X$, it follows that $G'(x) \vee \bigvee_{A \in \mathcal{U}} A(x) \ge a$.

It is obvious that a strong β_a -cover of G is a β_a -cover of G, and a β_a -cover of G is a Q_a -cover of G. For $a \in L$ and a crisp subset $D \subset X$, we define $a \wedge D$ and $a \vee D$ as follows:

$$(a \wedge D)(x) = \begin{cases} a, & x \in D; \\ 0, & x \notin D. \end{cases} (a \lor D)(x) = \begin{cases} 1, & x \in D; \\ 0, & x \notin D. \end{cases}$$

Theorem 2.1. [18] For an L-set $A \in L^X$, the following facts are true:

(1) $A = \bigvee_{a \in L} (a \land A_{(a)}) = \bigvee_{a \in L} (a \land A_{[a]}).$ (2) $A = \bigwedge_{a \in L} (a \lor A^{(a)}) = \bigwedge_{a \in L} (a \lor A^{[a]}).$

Theorem 2.2. [18] Let $(X, \omega_L(\tau))$ be the L-space topologically generated by (X, τ) and $A \in L^X$. Then the following facts hold: $(1) \ cl(A) = \bigvee_{a \in L} (a \land (A_{(a)})^{-}) = \bigvee_{a \in L} (a \land (A_{[a]})^{-});$ $(2) \ cl(A)_{(a)} \subset (A_{(a)})^{-} \subset (A_{[a]})^{-} \subset cl(A)_{[a]};$ $(3) \ cl(A) = \bigwedge_{a \in L} (a \lor (A^{(a)})^{-}) = \bigwedge_{a \in L} (a \lor (A^{[a]})^{-});$ $(4) \ cl(A)^{(a)} \subset (A^{(a)})^{-} \subset (A^{[a]})^{-} \subset cl(A)^{[a]};$ $(5) \ int(A) = \bigvee_{a \in L} (a \land (A_{(a)})^{\circ}) = \bigvee_{a \in L} (a \land (A_{[a]})^{\circ});$ $(6) \ int(A)_{(a)} \subset (A_{(a)})^{\circ} \subset (A_{[a]})^{\circ} \subset int(A)_{[a]};$ $(7) \ int(A) = \bigwedge_{a \in L} (a \lor (A^{(a)})^{\circ}) = \bigwedge_{a \in L} (a \lor (A^{[a]})^{\circ});$ $(8) \ int(A)^{(a)} \subset (A^{(a)})^{\circ} \subset (A^{[a]})^{\circ} \subset int(A)^{[a]};$

where $(A_{(a)})^-$ and $(A_{(a)})^\circ$ denote respectively the closure and the interior of $A_{(a)}$ in (X, τ) and so on, cl(A) and int(A) denote respectively the closure and the interior of A in $(X, \omega_L(\tau))$.

Definition 2.5. [22] Let (X, \mathcal{T}) be an *L*-space, $a \in L_1$ and $G \in L^X$. A family $\mathcal{A} \subseteq L^X$ is said to be:

- (1) an *a*-shading of G if for any $x \in X$, $(G'(x) \vee \bigvee_{A \in \mathcal{A}} A(x)) \not\leq a$.
- (2) a strong *a*-shading of G if $\bigwedge_{x \in X} (G'(x) \lor \bigvee_{A \in \mathcal{A}} A(x)) \not\leq a$.
- (3) an *a*-remote family of G if for any $x \in X$, $(G(x) \land \bigwedge_{B \in \mathcal{A}} B(x)) \geq a$.
- (4) a strong *a*-remote family of G if $\bigvee_{x \in X} (G(x) \land \bigwedge_{B \in \mathcal{A}} B(x)) \not\geq a$.

Definition 2.6. [22] Let $a \in L_0$ and $G \in L^X$. A subfamily \mathcal{U} of L^X is said to have a weak *a*-nonempty intersection in G if $\bigvee_{x \in X} (G(x) \land \bigwedge_{A \in \mathcal{U}} A(x)) \ge a$. \mathcal{U} is said to have the finite (countable) weak *a*-intersection property in G if every finite (countable) subfamily \mathcal{P} of \mathcal{U} has a weak *a*-nonempty intersection in G.

Definition 2.7. [22] Let $a \in L_0$ and $G \in L^X$. A subfamily \mathcal{U} of L^X is said to be a weak *a*-filter relative to G if any finite intersection of members in \mathcal{U} is weak *a*-nonempty in G. A subfamily \mathcal{B} of L^X is said to be a weak *a*-filterbase relative to G if

 $\{A \in L^X; \text{ there exists } B \in \mathcal{B} \text{ such that } B \leq A\}$

is a weak a-filter relative to G.

For a subfamily $\Phi \subseteq L^X$, 2^{Φ} denotes the set of all finite subfamilies of Φ and $2^{[\Phi]}$ denotes the set of all countable subfamilies of Φ .

Definition 2.8. Let G be an L-set of an L-space (X, \mathcal{T}) . G is called:

(i) semiopen L-set [2] if $G \leq cl(int(G))$,

- (ii) preopen L-set [15] if $G \leq int(cl(G))$,
- (iii) α -open L-set [17] if $G \leq int(cl(int(g)))$.

Definition 2.9. Let (X, \mathcal{T}) be an *L*-space and $G \in L^X$. Then *G* is called fuzzy compact [23, 19] (resp. semicompact [21], *P*-compact [24], α -compact [22]) if for every family $\mathcal{U} \subset L^X$ of open *L*-sets (resp. semiopen *L*-sets, preopen *L*-sets, α -open *L*-sets), it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \le \bigvee_{\psi \in 2^{\mathcal{U}}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \psi} A(x) \right).$$

Lemma 2.1. [19] Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two L-spaces, where L is a complete Heyting algebra, $f : X \to Y$ be a mapping, $f_L^{\to} : L^X \to L^Y$ is the extension of f. Then for any $P \subset L^Y$, we have that

$$\bigvee_{y \in Y} \left(f_L^{\to}(G)(y) \land \bigwedge_{B \in \mathcal{P}} B(y) \right) = \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{P}} f_L^{\leftarrow}(B)(x) \right).$$

Definition 2.10. [8] An *L*-set *G* in an *L*-space (X, \mathcal{T}) is called γ -open *L*-set if $G \leq cl(int(G)) \lor int(cl(G))$. *G* is called γ -closed *L*-set if *G'* is γ -open *L*-set.

Remark 2.1. We could know from [8] that the relationship between γ -open *L*-set and those mentioned in the Definition 2.8 could be clarified as follows:

3. Definition and characterizations of γ -compactness

Definition 3.1. Let (X, \mathcal{T}) be an *L*-space. $G \in L^X$ is called (countably) γ -compact if for every (countable) family $\mathcal{U} \subseteq L^X$ of γ -open *L*-sets, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \le \bigvee_{\psi \in 2^{\mathcal{U}}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \psi} A(x) \right).$$

Definition 3.2. Let (X, \mathcal{T}) be an *L*-space. $G \in L^X$ is said to have the γ -Lindelöf property (or be a γ -Lindelöf *L*-set) if for every family \mathcal{U} of γ -open *L*-sets, it follows

that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \leq \bigvee_{\psi \in 2^{[\mathcal{U}]}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \psi} A(x) \right).$$

Remark 3.1.

- (i) γ-compactness implies countable γ-compactness and the γ-Lindelöf property. Moreover, an L-set having the γ-Lindelöf property is γ-compact if and only if it is countably γ-compact.
- (ii) We can clarify the relationship between γ-compactness and those listed in the Definition 2.9 as follows:

semicompactness

Theorem 3.1. Let (X, \mathcal{T}) be an L-space. $G \in L^X$ is (countably) γ -compact if and only if for every (countable) family \mathcal{B} of γ -closed L-sets, it follows that

$$\bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{B}} B(x) \right) \ge \bigwedge_{\vartheta \in 2^{\mathcal{B}}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \vartheta} B(x) \right).$$

cforward. \Box

Proof. Straightforward.

Theorem 3.2. Let (X, \mathcal{T}) be an L-space. $G \in L^X$ has the γ -Lindelöf property if and only if for every family \mathcal{B} of γ -closed L-sets, it follows that

$$\bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{B}} B(x) \right) \ge \bigwedge_{\vartheta \in 2^{[\mathcal{B}]}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \vartheta} B(x) \right).$$

Proof. Straightforward.

Theorem 3.3. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then the following conditions are equivalent:

- (1) G is a (countably) γ -compact.
- (2) For any $a \in L_1$, each (countable) γ -open strong a-shading \mathcal{U} of G has a finite subfamily which is a strong a-shading of G.
- (3) For any $a \in L_0$, each (countable) γ -closed strong a-remote family \mathcal{P} of G has a finite subfamily which is a strong a-remote family of G.

30

- (4) For any $a \in L_0$, each (countable) family of γ -closed L-sets which has the finite weak a-intersection property in G has a weak a-nonempty intersection in G.
- (5) For each $a \in L_0$, every γ -closed (countable) weak a-filterbase relative to G has a weak a-nonempty intersection in G.

Theorem 3.4. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then the following conditions are equivalent:

- (1) G has the γ -Lindelöf property.
- (2) For any $a \in L_1$, each γ -open strong a-shading \mathcal{U} of G has a countable subfamily which is a strong a-shading of G.
- (3) For any $a \in L_0$, each γ -closed strong a-remote family \mathcal{P} of G has a countable subfamily which is a strong a-remote family of G.
- (4) For any $a \in L_0$, each family of γ -closed L-sets which has the countable weak *a*-intersection property in G has a weak *a*-nonempty intersection in G.

4. Properties of (countable) γ -compactness

Theorem 4.1. Let L be a complete Heyting algebra. If both G and H are (countably) γ -compact, then $G \lor H$ is (countably) γ -compact.

Proof. For any (countable) family \mathcal{B} of γ -closed L-sets, we have by Theorem 3.1 that

$$\begin{split} &\bigvee_{x\in X} \left((G\vee H)(x) \wedge \bigwedge_{B\in\mathcal{B}} B(x) \right) \\ = & \left\{ \bigvee_{x\in X} \left(G(x) \wedge \bigwedge_{B\in\mathcal{B}} B(x) \right) \right\} \vee \left\{ \bigvee_{x\in X} \left(H(x) \wedge \bigwedge_{B\in\mathcal{B}} B(x) \right) \right\} \\ \geq & \left\{ \bigwedge_{\vartheta\in 2^{\mathcal{B}}} \bigvee_{x\in X} \left(G(x) \wedge \bigwedge_{B\in\vartheta} B(x) \right) \right\} \\ \vee & \left\{ \bigwedge_{\vartheta\in 2^{\mathcal{B}}} \bigvee_{x\in X} \left(H(x) \wedge \bigwedge_{B\in\vartheta} B(x) \right) \right\} \\ = & \bigwedge_{\vartheta\in 2^{\mathcal{B}}} \bigvee_{x\in X} \left((G\vee H)(x) \wedge \bigwedge_{B\in\vartheta} B(x) \right) \right\}. \end{split}$$

This shows that $G \vee H$ is (countably) γ -compact.

Analogously we have the following result.

31

Theorem 4.2. Let L be a complete Heyting algebra. If both G and H have γ -Lindelöf property, then $G \lor H$ has γ -Lindelöf property.

Theorem 4.3. If G is (countably) γ -compact and H is γ -closed, then $G \wedge H$ is (countably) γ -compact.

Proof. For any (countable) family \mathcal{B} of γ -closed L-sets, we have by Theorem 3.1 that

$$\begin{split} \bigvee_{x \in X} \left((G \wedge H)(x) \wedge \bigwedge_{B \in \mathcal{B}} B(x) \right) &= \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \mathcal{B} \cup \{H\}} B(x) \right) \\ &\geq \bigwedge_{\vartheta \in 2^{\mathcal{B} \cup \{H\}}} \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \vartheta} B(x) \right) \\ &= \left\{ \bigwedge_{\vartheta \in 2^{\mathcal{B}}} \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \vartheta} B(x) \right) \right\} \\ &\wedge \left\{ \bigwedge_{\vartheta \in 2^{\mathcal{B}}} \bigvee_{x \in X} \left(G(x) \wedge H(x) \wedge \bigwedge_{B \in \vartheta} B(x) \right) \right\} \\ &= \left\{ \bigwedge_{\vartheta \in 2^{\mathcal{B}}} \bigvee_{x \in X} \left(G(x) \wedge H(x) \wedge \bigwedge_{B \in \vartheta} B(x) \right) \right\} \\ &= \left\{ \bigwedge_{\vartheta \in 2^{\mathcal{B}}} \bigvee_{x \in X} \left((G \wedge H)(x) \wedge \bigwedge_{B \in \vartheta} B(x) \right) \right\} . \end{split}$$

This shows that $G \wedge H$ is (countably) γ -compact.

Theorem 4.4. If G has the γ -Lindelöf property and H is γ -closed, then $G \wedge H$ has the γ -Lindelöf property.

Proof. Similar to Theorem 4.3.

Definition 4.1. Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two *L*-spaces. A map $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is called γ -irresolute iff $f_L^{\leftarrow}(G)$ is γ -open for each γ -open *L*-set *G*.

Theorem 4.5. Let L be a complete Heyting algebra and let $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ be a γ -irresolute map. If G is a γ -compact (or a countably γ -compact, a γ - Lindelöf) L-set in (X, \mathcal{T}_1) , then so is $f_L^{\to}(G)$ in (Y, \mathcal{T}_2) . *Proof.* Suppose that \mathcal{P} is a family of γ -closed L-sets, then

$$\bigvee_{y \in Y} \left(f_L^{\rightarrow}(G)(y) \wedge \bigwedge_{B \in \mathcal{P}} B(y) \right) = \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \mathcal{P}} f_L^{\leftarrow}(B)(x) \right)$$
$$\geq \bigwedge_{\vartheta \in 2^{\mathcal{P}}} \bigvee_{x \in X} \left(G(x) \wedge \bigwedge_{B \in \mathcal{P}} f_L^{\leftarrow}(B)(x) \right)$$
$$= \bigwedge_{\vartheta \in 2^{\mathcal{P}}} \bigvee_{y \in Y} \left(f_L^{\leftarrow}(G)(y) \wedge \bigwedge_{B \in \mathcal{P}} B(y) \right).$$
Dre $f_L^{\rightarrow}(G)$ is γ -compact.

Therefore $f_L^{\rightarrow}(G)$ is γ -compact.

Theorem 4.6. Let L be a complete Heyting algebra and let $f: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ be a γ -continuous map. If G is a γ -compact (a countably γ -compact, a γ -Lindelöf) L-set in (X, \mathcal{T}_1) , then $f_L^{\rightarrow}(G)$ is a compact (countably compact, Lindelöf) L-set in (Y, \mathcal{T}_2) .

Proof. Straightforward.

Definition 4.2. Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two *L*-spaces. A map $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is called strongly γ -irresolute if $f_L^{\leftarrow}(G)$ is open in (X, \mathcal{T}_1) for every γ -open L-set G in $(Y, \mathcal{T}_2).$

It is obvious that a strongly γ -irresolute map is γ -irresolute and continuous. Analogously we have the following result.

Theorem 4.7. Let L be a complete Heyting algebra and $f: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ be a strongly γ -irresolute map. If G is a compact (countably compact, Lindelöf) L-set in (X, \mathcal{T}_1) , then $f_L^{\rightarrow}(G)$ is a γ -compact (a countably γ -compact, a γ -Lindelöf) L-set in $(Y, \mathcal{T}_2).$

Proof. Straightforward.

5. GOOD EXTENSION

Theorem 5.1. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then the following conditions are equivalent:

- (1) G is γ -compact.
- (2) For any $a \in L_0$ ($a \in M(L)$), each γ -closed strong a-remote family of G has a finite subfamily which is an a-remote (a strong a-remote) family of G.

- (3) For any a ∈ L₀ (a ∈ M(L)) and any γ-closed strong a-remote family P of G, there exists a finite subfamily F of P and b ∈ β(a) (b ∈ β*(a)) such that F is a (strong) b-remote family of G.
- (4) For any $a \in L_1$ ($a \in P(L)$), each γ -open strong a-shading of G has a finite subfamily which is an a-shading (a strong a-shading) of G.
- (5) For any $a \in L_1$ $(a \in P(L))$ and any γ -open strong a-shading \mathcal{U} of G, there exists a finite subfamily \mathcal{V} of \mathcal{U} and $b \in \beta(a)$ $(b \in \beta^*(a))$ such that \mathcal{V} is a (strong) b-shading of G.
- (6) For any $a \in L_0$ ($a \in M(L)$), each γ -open strong β_a -cover of G has a finite subfamily which is a (strong) β_a -cover of G.
- (7) For any $a \in L_0$ ($a \in M(L)$) and any γ -open strong β_a -cover \mathcal{U} of G, there exists a finite subfamily \mathcal{V} of \mathcal{U} and $b \in L$ ($b \in M(L)$) with $a \in \beta(b)$ such that \mathcal{V} is a (strong) β_b -cover of G.
- (8) For any $a \in L_0$ $(a \in M(L))$ and any $b \in \beta(a) \setminus \{0\}$, each γ -open Q_a -cover of G has a finite subfamily which is a Q_b -cover of G.
- (9) For any $a \in L_0$ $(a \in M(L))$ and any $b \in \beta(a) \setminus \{0\}$ $(b \in \beta^*(a))$, each γ -open Q_a -cover of G has a finite subfamily which is a (strong) Q_b -cover of G.

Analogously we also can present characterization of countable γ -compactness and the γ -Lindelöf property. Now we consider the goodness of γ -compactness.

Lemma 5.1. Let $(X, \omega(L))$ be generated topologically by (X, τ) . If A is a γ -open set in (X, τ) , then χ_A is γ -open L-set in $(X, \omega_L(\tau))$. If B is a γ -open L-set in $(X, \omega_L(\tau))$, then $B_{(a)}$ is γ -open set in (X, τ) for every $a \in L$.

Proof. Let A be a γ -open set in (X, τ) , then $A \subseteq (A^{\circ})^{-} \cup (A^{-})^{\circ}$. Thus we have

$$\begin{aligned} \chi_A &\leq \chi_{(A^\circ)^- \cup (A^-)^\circ} = \chi_{(A^\circ)^-} \lor \chi_{(A^-)^\circ} \\ &= cl(\chi_{(A^\circ)}) \lor int(\chi_{(A^-)}) = cl(int(\chi_A)) \lor int(cl(\chi_A)). \end{aligned}$$

This shows that χ_A is γ -open in $(X, \omega_L(\tau))$. If B is a γ -open L-set in $(X, \omega_L(\tau))$, then $B \leq cl(int(B)) \lor int(cl(B))$. From Theorem 2.2, we have

$$B_{(a)} \subseteq [cl(int(B)) \lor int(cl(B))]_{(a)} \subseteq cl(int(B))_{(a)} \cup int(cl(B))_{(a)}$$
$$\subseteq ((int(B))_{(a)})^{-} \cup (cl(B)_{(a)})^{\circ} \subseteq (((B_{(a)})^{\circ}))^{-} \cup ((B_{(a)})^{-})^{\circ}.$$

This shows that $B_{(a)}$ is a γ -open set in (X, τ) .

The next two theorems show that γ -compactness, countable γ -compactness and the γ -Lindelöf property are good extensions.

Theorem 5.2. Let $(X, \omega_L(\tau))$ be generated topologically by (X, τ) . Then $(X, \omega_L(\tau))$ is (countably) γ -compact if and only if (X, τ) is (countably) γ -compact.

Proof. (Necessity) Let \mathcal{A} be a γ -open cover (a countable γ -open cover) of (X, τ) . Then $\{\chi_A : A \in \mathcal{A}\}$ is a family of γ -open L-sets in $(X, \omega_L(\tau))$ with

$$\bigwedge_{x \in X} \left(\bigvee_{A \in \mathcal{U}} \chi_A(x)\right) = 1$$

From (countable) γ -compactness of $(X, \omega_L(\tau))$ we know that

$$1 \ge \bigvee_{\psi \in 2^{\mathcal{U}}} \bigwedge_{x \in X} (\bigvee_{A \in \psi} \chi_A(x)) \ge \bigwedge_{x \in X} (\bigvee_{A \in \mathcal{U}} \chi_A(x)) = 1.$$

This implies that there exists $\psi \in 2^{[\mathcal{U}]}$ such that $\bigwedge_{x \in X} (\bigvee_{A \in \psi} \chi_A(x)) = 1$. Hence ψ is a cover of (X, τ) . Therefore (X, τ) is (countably) γ -compact.

(Sufficiency) Let \mathcal{U} be a (countable) family of γ -open *L*-sets in $(X, \omega_L(\tau))$ and let $\bigwedge_{x \in X} (\bigvee_{B \in \mathcal{U}} B(x)) = a$. If a = 0, then we obviously have

$$\bigwedge_{x \in X} \left(\bigvee_{B \in \mathcal{U}} B(x) \right) \le \bigvee_{\psi \in 2^{\mathcal{U}}} \bigwedge_{x \in X} \left(\bigvee_{A \in \psi} B(x) \right).$$

Now we suppose that $a \neq 0$. In this case, for any $b \in \beta(a) \setminus \{0\}$ we have

$$b \in \beta(\bigwedge_{x \in X} (\bigvee_{B \in \mathcal{U}} B(x))) \subseteq \bigcap_{x \in X} \beta(\bigvee_{B \in \mathcal{U}} B(x)) = \bigcap_{x \in X} \bigcup_{B \in \mathcal{U}} \beta(B(x)).$$

By Lemma 5.1 this implies that $\{B_{(b)} : B \in \mathcal{U}\}$ is a γ -open cover of (X, τ) . From (countable) γ -compactness of (X, τ) we know that there exists $\psi \in 2^{\mathcal{U}}$ such that $\{B_{(b)} : B \in \psi\}$ is a cover of (X, τ) . Hence $b \leq \bigvee_{x \in X} (\bigwedge_{B \in \psi} B(x))$. Furthermore we have

$$b \leq \bigwedge_{x \in X} \left(\bigvee_{B \in \psi} B(x)\right) \leq \bigvee_{\psi \in 2^{\mathcal{U}}} \bigwedge_{x \in X} \left(\bigvee_{B \in \psi} B(x)\right).$$

This implies that

$$\bigwedge_{x \in X} (\bigvee_{B \in \mathcal{U}} B(x)) = a = \bigvee \{ b : b \in \beta(a) \} \le \bigvee_{\psi \in 2^{\mathcal{U}}} \bigwedge_{x \in X} (\bigvee_{B \in \psi} B(x))$$

Therefore $(X, \omega_L(\tau))$ is (countably) γ -compact.

Analogously we have the following theorem.

Theorem 5.3. Let $(X, \omega_L(\tau))$ be generated topologically by (X, τ) . Then $(X, \omega_L(\tau))$ has the γ -Lindelöf property if and only if (X, τ) has the γ -Lindelöf property.

Acknowledgement: The authors would like to thank the reviewers for their valuable comments and helpful suggestions for improvement of the original manuscript.

References

- [1] D. Andrijević, On b-open sets, Mat. Vesnik 48 (1996), 59–64.
- K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14–32.
- [3] J. J. Chadwick, A generalized form of compactness in fuzzy topological spaces, J. Math. Anal. Appl. 162 (1991), 92–110.
- [4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 39–90.
- [5] P. Dwinger, Characterizations of the complete homomorphic images of a completely distributive complete lattice i, Indagationes Mathematicae (Proceedings) 85 (1982), 403–414.
- [6] T. E. Gantner, R. C. Steinlage, and R. H. Warren, Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62 (1978), 547–562.
- [7] G. Gierz and et al., A compendium of continuous lattices, Springer Verlag, Berlin, 1980.
- [8] I. M. Hanafy, Fuzzy γ-open sets and fuzzy γ-continuity, J. Fuzzy Math. 7 (1999), 419–430.
- [9] U. Höhle and S. E. Rodabaugh, *Mathematics of fuzzy sets: Logic, Topology, and Measure theory*, vol. 3, Kluwer Academic Publishers, Boston/Dordrecht/London, 1999.
- [10] Z. F. Li, Compactness in fuzzy topological spaces, Chinese Kexue Tongbao 6 (1983), 321–323.
- [11] Y. M. Liu, Compactness and tychnoff theorem in fuzzy topological spaces, Acta Mathematica Sinica 24 (1981), 260–268.
- [12] Y. M. Liu and M. K. Luo, *Fuzzy topology*, World Scientific, Singapore, 1997.
- [13] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56 (1976), 621–633.
- [14] R. Lowen, A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl. 64 (1978), 446–454.
- [15] N. Prakash M. K. Singal, Fuzzy preopen sets and fuzzy preseparation axioms, Fuzzy Sets and Systems 44 (1991), 273–281.
- [16] S. E. Rodabaugh, Point-set lattice-theoretic topology, Fuzzy Sets and Systems 40 (1991), 297– 345.
- [17] A. S. Bin Shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991), 303–308.
- [18] F.-G. Shi, Theory of L_{β} -nested sets and L_{α} -nested and their applications, Fuzzy Systems and Mathematics (In Chinese) 4 (1995), 65–72.
- [19] F.-G. Shi, Countable compactness and the Lindelöf property of L-fuzzy sets, Iranian Journal of Fuzzy Systems 1 (2004), 79–88.
- [20] F.-G. Shi, A new notion of fuzzy compactness in L-topological spaces, Information Sciences 173 (2005), 35–48.
- [21] F.-G. Shi, Semicompactness in L-topological spaces, Int. J. Math. Math. Sci. 12 (2005), 1869– 1878.
- [22] F.-G. Shi, A new form of fuzzy α -compactness, Mathematica Bohemica 131 (2006), 15–28.
- [23] F.-G. Shi, A new definition of fuzzy compactness, Fuzzy sets and systems 158 (2007), 1486–1495.
- [24] F.-G. Shi, *P*-compactness in *L*-topological spaces, J. Nonlinear Sci. Appl. 2 (2009), 225–233.
- [25] G. J. Wang, A new fuzzy compactness defined by fuzzy nets, J. Math. Anal. Appl. 94 (1983), 1–23.
- [26] G.-J. Wang, Theory of L-fuzzy topological space, Shaanxi Normal University Press, Xi'an, 1988 (in Chinese).
- [27] L. A. Zadeh, *Fuzzy sets*, Inform. Control 8 (1965), 338–353.

[28] D. S. Zhao, The N-compactness in L-fuzzy topological spaces, J. Math. Anal. Appl. 128 (1987), 64–70.

¹ MATHEMATICS DEPARTMENT, FACULTY OF SCIENCE, TAIBAH UNIVERSITY, MADENAH MONAWWARA, K. S. A *E-mail address*: amzahran@yahoo.com

² MATHEMATICS DEPARTMENT, FACULTY OF SCIENCE, SOUTH VALLEY UNIVERSITY, QENA, EGYPT *E-mail address*: nasserfuzt@aim.com

³ MATHEMATICS DEPARTMENT, GIRLS'S EDUCATION COLLEGE, JAZAN UNIVERSITY, JAZAN, K. S. A *E-mail address*: d_ahz@hotmail.com