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γ-COMPACTNESS IN L-TOPOLOGICAL SPACES

A. M. ZAHRAN 1, A. GHAREEB 2, AND A. H. ZAKARI 3

Abstract. The concepts of γ-compactness, countable γ-compactness, the γ-Lindelöf
property are introduced in L-topological spaces by means of γ-open L-sets and their
inequalities when L is a complete DeMorgan algebra. These definitions do not rely
on the structure of the basis lattice L and no distributivity in L is required.

1. Introduction

Fuzzy sets theory [27], a recent generalization of classical set theory, has attracted

the attention of researchers working in various areas including topology, which has

had a seminal influence in the development of this new theory.

The concept of compactness of an I-topological space was first introduced by Chang

[4] in terms of open cover. Chang’s compactness has been greatly extended to the

variable-basis case by Rodabaugh [9], and it can be regarded as a successful def-

inition of compactness in poslat topology from the categorical point of view (see

[9, 16]). Moreover, Gantner et al. introduced α-compactness [6], Lowen introduced

fuzzy compactness, strong fuzzy compactness and ultra-fuzzy compactness [13, 14],

Chadwick [3] generalized Lowen’s compactness, Liu introduced Q-compactness [11],

Li introduced strong Q-compactness [10] which is equivalent to strong fuzzy compact-

ness in [14], Wang and Zhao introduced N -compactness [25, 28], and Shi introduced

S∗-compactness [20].
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Recently, Shi presented a new definition of fuzzy compactness in L-topological

spaces [23, 19] by means of open L-sets and their inequality where L is a complete

DeMorgan algebra. This new definition doesn’t depend on the structure of L. When

L is completely distributive, it is equivalent to the notion of fuzzy compactness in

[12, 13, 26].

In L-topology, the weaker forms of open L-sets, which were constructed by the

compositions of different combinations of the closure and interior operator, have been

studied by several mathematicians. In general topology, the class of b-open (or γ-

open) sets was presented in [1]. In 1996, Hanafy [8] defined the class of γ-open L-sets

( in the case L = [0, 1]) as an extension of b-open sets to L-topology.

In this paper, following the lines of [19, 20, 23], we will introduce the γ-compactness

in L-topological spaces by means of γ-open L-sets and their inequality. We also

introduce countable γ-compactness and the γ-Lindelöf property in L-topology. These

definitions do not rely on the structure of the basis lattice L and no distributivity in

L is required.

2. Preliminaries

Throughout this paper (L,≤,
∧

,
∨

,′ ) is a complete DeMorgan algebra, X is a

nonempty set. LX is the set of all L-fuzzy sets (or L-sets, for short) on X. The

smallest element and the largest element in LX are denoted by χ∅ and χX , respec-

tively. We often don’t distinguish a crisp subset A of X and its character function

χA.

A complete lattice L is a complete Heyting algebra if it satisfies the following

infinite distributive law: For all a ∈ L and all B ⊂ L, a ∧ ∨
B =

∨{a ∧ b | b ∈ B}.
An element a in L is called a prime element if a ≥ b∧ c implies a ≥ b or a ≥ c. An

element a in L is called co-prime if a′ is prime [7]. The set of non-unit prime elements

in L is denoted by P (L). The set of non-zero co-prime elements in L is denoted by

M(L).

The binary relation ≺ in L is defined as follows: for a, b ∈ L, a ≺ b if and only if

for every subset D ⊆ L, the relation b ≤ supD always implies the existence of d ∈ D

with a ≤ d [5]. In a completely distributive DeMorgan algebra L, each element b is a

sup of {a ∈ L|a ≺ b}. A set {a ∈ L|a ≺ b} is called the greatest minimal family of

b in the sense of [12, 26], denoted by β(b), and β∗(b) = β(b) ∩M(L). Moreover, for

b ∈ L, we define α(b) = {a ∈ L|a′ ≺ b′} and α∗(b) = α(b) ∩ P (L).
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For a ∈ L and A ∈ LX , we use the following notations from [18].

A[a] = {x ∈ X|A(x) ≥ a}, A(a) = {x ∈ X|A(x) 6≤ a},
A(a) = {x ∈ X| a ∈ β(A(x))}.

An L-topological space (or L-space, for short) is a pair (X, T ), where T is a sub-

family of LX which contains χ∅; χX and is closed for any suprema and finite infima.

T is called an L-topology on X. Members of T are called open L-sets and their

complements are called closed L-sets.

Definition 2.1. [12, 26] An L-space (X, T ) is called weakly induced if ∀a ∈ L,

A ∈ LX , it follows that A(a) ∈ [T ], where [T ] denotes the topology formed by all

crisp sets in T .

Definition 2.2. [12, 26] For a topological space (X, τ), let ωL(τ) denote the family

of all lower semi-continuous maps from (X, τ) to L, i.e., ωL(τ) = {A ∈ LX ; A(a) ∈
τ, a ∈ L}. Then ωL(τ) is an L-topology on X; in this case, (X,ωL(τ)) is called

topologically generated by (X, τ). A topologically generated L-space is also called an

induced L-space.

Definition 2.3. [22] Let (X, T ) be an L-space, a ∈ L0 and G ∈ LX . A family U ⊆ LX

is called a βa-cover of G if for any x ∈ X, it follows that a ∈ β(G′(x) ∨ ∨
A∈U A(x)).

U is called a strong βa-cover of G if a ∈ β(
∧

x∈X(G′(x) ∨ ∨
A∈U A(x))).

Definition 2.4. [22] Let (X, T ) be an L-space, a ∈ L0 and G ∈ LX . A family U ⊆ LX

is called a Qa-cover of G if for any x ∈ X, it follows that G′(x) ∨ ∨
A∈U A(x) ≥ a.

It is obvious that a strong βa-cover of G is a βa-cover of G, and a βa-cover of G is

a Qa-cover of G. For a ∈ L and a crisp subset D ⊂ X, we define a ∧D and a ∨D as

follows:

(a ∧D)(x) =

{
a, x ∈ D;
0, x 6∈ D.

(a ∨D)(x) =

{
1, x ∈ D;
0, x 6∈ D.

Theorem 2.1. [18] For an L-set A ∈ LX , the following facts are true:

(1) A =
∨

a∈L(a ∧ A(a)) =
∨

a∈L(a ∧ A[a]).

(2) A =
∧

a∈L(a ∨ A(a)) =
∧

a∈L(a ∨ A[a]).

Theorem 2.2. [18] Let (X, ωL(τ)) be the L-space topologically generated by (X, τ)

and A ∈ LX . Then the following facts hold:
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(1) cl(A) =
∨

a∈L(a ∧ (A(a))
−) =

∨
a∈L(a ∧ (A[a])

−);

(2) cl(A)(a) ⊂ (A(a))
− ⊂ (A[a])

− ⊂ cl(A)[a];

(3) cl(A) =
∧

a∈L(a ∨ (A(a))−) =
∧

a∈L(a ∨ (A[a])−);

(4) cl(A)(a) ⊂ (A(a))− ⊂ (A[a])− ⊂ cl(A)[a];

(5) int(A) =
∨

a∈L(a ∧ (A(a))
◦) =

∨
a∈L(a ∧ (A[a])

◦);

(6) int(A)(a) ⊂ (A(a))
◦ ⊂ (A[a])

◦ ⊂ int(A)[a];

(7) int(A) =
∧

a∈L(a ∨ (A(a))◦) =
∧

a∈L(a ∨ (A[a])◦);

(8) int(A)(a) ⊂ (A(a))◦ ⊂ (A[a])◦ ⊂ int(A)[a];

where (A(a))
− and (A(a))

◦ denote respectively the closure and the interior of A(a) in

(X, τ) and so on, cl(A) and int(A) denote respectively the closure and the interior of

A in (X, ωL(τ)).

Definition 2.5. [22] Let (X, T ) be an L-space, a ∈ L1 and G ∈ LX . A family

A ⊆ LX is said to be:

(1) an a-shading of G if for any x ∈ X, (G′(x) ∨ ∨
A∈A A(x)) 6≤ a.

(2) a strong a-shading of G if
∧

x∈X(G′(x) ∨ ∨
A∈A A(x)) 6≤ a.

(3) an a-remote family of G if for any x ∈ X, (G(x) ∧ ∧
B∈A B(x)) 6≥ a.

(4) a strong a-remote family of G if
∨

x∈X(G(x) ∧ ∧
B∈A B(x)) 6≥ a.

Definition 2.6. [22] Let a ∈ L0 and G ∈ LX . A subfamily U of LX is said to

have a weak a-nonempty intersection in G if
∨

x∈X (G(x) ∧ ∧
A∈U A(x)) ≥ a. U is

said to have the finite (countable) weak a-intersection property in G if every finite

(countable) subfamily P of U has a weak a-nonempty intersection in G.

Definition 2.7. [22] Let a ∈ L0 and G ∈ LX . A subfamily U of LX is said to

be a weak a-filter relative to G if any finite intersection of members in U is weak

a-nonempty in G. A subfamily B of LX is said to be a weak a-filterbase relative to

G if

{A ∈ LX ; there exists B ∈ B such that B ≤ A}
is a weak a-filter relative to G.

For a subfamily Φ ⊆ LX , 2Φ denotes the set of all finite subfamilies of Φ and 2[Φ]

denotes the set of all countable subfamilies of Φ.

Definition 2.8. Let G be an L-set of an L-space (X, T ). G is called:

(i) semiopen L-set [2] if G ≤ cl(int(G)),
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(ii) preopen L-set [15] if G ≤ int(cl(G)),

(iii) α-open L-set [17] if G ≤ int(cl(int(g))).

Definition 2.9. Let (X, T ) be an L-space and G ∈ LX . Then G is called fuzzy

compact [23, 19] (resp. semicompact [21], P -compact [24], α-compact [22]) if for

every family U ⊂ LX of open L-sets (resp. semiopen L-sets, preopen L-sets, α-open

L-sets), it follows that

∧

x∈X

(
G′(x) ∨ ∨

A∈U
A(x)

)
≤ ∨

ψ∈2U

∧

x∈X


G′(x) ∨ ∨

A∈ψ

A(x)


 .

Lemma 2.1. [19] Let (X, T1) and (Y, T2) be two L-spaces, where L is a complete

Heyting algebra, f : X → Y be a mapping, f→L : LX → LY is the extension of f .

Then for any P ⊂ LY , we have that

∨

y∈Y

(
f→L (G)(y) ∧ ∧

B∈P
B(y)

)
=

∨

x∈X

(
G(x) ∧ ∧

B∈P
f←L (B)(x)

)
.

Definition 2.10. [8] An L-set G in an L-space (X, T ) is called γ-open L-set if

G ≤ cl(int(G)) ∨ int(cl(G)). G is called γ-closed L-set if G′ is γ-open L-set.

Remark 2.1. We could know from [8] that the relationship between γ-open L-set and

those mentioned in the Definition 2.8 could be clarified as follows:

preopen L-set

))RRRRRRRRRRRRR

Open L-set // α-open L-set

55lllllllllllll

))RRRRRRRRRRRRR
γ-open L-set

semiopen L-set

55lllllllllllll

3. Definition and characterizations of γ-compactness

Definition 3.1. Let (X, T ) be an L-space. G ∈ LX is called (countably) γ-compact

if for every (countable) family U ⊆ LX of γ-open L-sets, it follows that

∧

x∈X

(
G′(x) ∨ ∨

A∈U
A(x)

)
≤ ∨

ψ∈2U

∧

x∈X


G′(x) ∨ ∨

A∈ψ

A(x)


 .

Definition 3.2. Let (X, T ) be an L-space. G ∈ LX is said to have the γ-Lindelöf

property (or be a γ-Lindelöf L-set) if for every family U of γ-open L-sets, it follows
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that
∧

x∈X

(
G′(x) ∨ ∨

A∈U
A(x)

)
≤ ∨

ψ∈2[U]

∧

x∈X


G′(x) ∨ ∨

A∈ψ

A(x)


 .

Remark 3.1.

(i) γ-compactness implies countable γ-compactness and the γ-Lindelöf property.

Moreover, an L-set having the γ-Lindelöf property is γ-compact if and only if

it is countably γ-compact.

(ii) We can clarify the relationship between γ-compactness and those listed in the

Definition 2.9 as follows:

P -compactness

))SSSSSSSSSSSSSS

compactness // α-compactness

55kkkkkkkkkkkkkk

))SSSSSSSSSSSSSSS
γ-compactness

semicompactness

55kkkkkkkkkkkkkk

Theorem 3.1. Let (X, T ) be an L-space. G ∈ LX is (countably) γ-compact if and

only if for every (countable) family B of γ-closed L-sets, it follows that

∨

x∈X

(
G(x) ∧ ∧

B∈B
B(x)

)
≥ ∧

ϑ∈2B

∨

x∈X


G(x) ∧ ∧

B∈ϑ

B(x)


 .

Proof. Straightforward. ¤

Theorem 3.2. Let (X, T ) be an L-space. G ∈ LX has the γ-Lindelöf property if and

only if for every family B of γ-closed L-sets, it follows that

∨

x∈X

(
G(x) ∧ ∧

B∈B
B(x)

)
≥ ∧

ϑ∈2[B]

∨

x∈X


G(x) ∧ ∧

B∈ϑ

B(x)


 .

Proof. Straightforward. ¤

Theorem 3.3. Let (X, T ) be an L-space and G ∈ LX . Then the following conditions

are equivalent:

(1) G is a (countably) γ-compact.

(2) For any a ∈ L1, each (countable) γ-open strong a-shading U of G has a finite

subfamily which is a strong a-shading of G.

(3) For any a ∈ L0, each (countable) γ-closed strong a-remote family Pof G has

a finite subfamily which is a strong a-remote family of G.
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(4) For any a ∈ L0, each (countable) family of γ-closed L-sets which has the finite

weak a-intersection property in G has a weak a-nonempty intersection in G.

(5) For each a ∈ L0, every γ-closed (countable) weak a-filterbase relative to G has

a weak a-nonempty intersection in G.

Theorem 3.4. Let (X, T ) be an L-space and G ∈ LX . Then the following conditions

are equivalent:

(1) G has the γ-Lindelöf property.

(2) For any a ∈ L1, each γ-open strong a-shading U of G has a countable subfamily

which is a strong a-shading of G.

(3) For any a ∈ L0, each γ-closed strong a-remote family P of G has a countable

subfamily which is a strong a-remote family of G.

(4) For any a ∈ L0, each family of γ-closed L-sets which has the countable weak

a-intersection property in G has a weak a-nonempty intersection in G.

4. Properties of (countable) γ-compactness

Theorem 4.1. Let L be a complete Heyting algebra. If both G and H are (countably)

γ-compact, then G ∨H is (countably) γ-compact.

Proof. For any (countable) family B of γ-closed L-sets, we have by Theorem 3.1 that

∨

x∈X

(
(G ∨H)(x) ∧ ∧

B∈B
B(x)

)

=

{ ∨

x∈X

(
G(x) ∧ ∧

B∈B
B(x)

)}
∨

{ ∨

x∈X

(
H(x) ∧ ∧

B∈B
B(x)

)}

≥




∧

ϑ∈2B

∨

x∈X


G(x) ∧ ∧

B∈ϑ

B(x)








∨




∧

ϑ∈2B

∨

x∈X


H(x) ∧ ∧

B∈ϑ

B(x)








=
∧

ϑ∈2B

∨

x∈X


(G ∨H)(x) ∧ ∧

B∈ϑ

B(x)


 .

This shows that G ∨H is (countably) γ-compact. ¤

Analogously we have the following result.
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Theorem 4.2. Let L be a complete Heyting algebra. If both G and H have γ-Lindelöf

property, then G ∨H has γ-Lindelöf property.

Theorem 4.3. If G is (countably) γ-compact and H is γ-closed, then G ∧ H is

(countably) γ-compact.

Proof. For any (countable) family B of γ-closed L-sets, we have by Theorem 3.1 that

∨

x∈X

(
(G ∧H)(x) ∧ ∧

B∈B
B(x)

)
=

∨

x∈X


G(x) ∧ ∧

B∈B∪{H}
B(x)




≥ ∧

ϑ∈2B∪{H}

∨

x∈X


G(x) ∧ ∧

B∈ϑ

B(x)




=





∧

ϑ∈2B

∨

x∈X


G(x) ∧ ∧

B∈ϑ

B(x)








∧




∧

ϑ∈2B

∨

x∈X


G(x) ∧H(x) ∧ ∧

B∈ϑ

B(x)








=





∧

ϑ∈2B

∨

x∈X


G(x) ∧H(x) ∧ ∧

B∈ϑ

B(x)








=





∧

ϑ∈2B

∨

x∈X


(G ∧H)(x) ∧ ∧

B∈ϑ

B(x)






 .

This shows that G ∧H is (countably) γ-compact. ¤

Theorem 4.4. If G has the γ-Lindelöf property and H is γ-closed, then G ∧H has

the γ-Lindelöf property.

Proof. Similar to Theorem 4.3. ¤

Definition 4.1. Let (X, T1) and (Y, T2) be two L-spaces. A map f : (X, T1) → (Y, T2)

is called γ-irresolute iff f←L (G) is γ-open for each γ-open L-set G.

Theorem 4.5. Let L be a complete Heyting algebra and let f : (X, T1) → (Y, T2) be

a γ-irresolute map. If G is a γ-compact (or a countably γ-compact, a γ- Lindelöf)

L-set in (X, T1), then so is f→L (G) in (Y, T2).
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Proof. Suppose that P is a family of γ-closed L-sets, then

∨

y∈Y


f→L (G)(y) ∧ ∧

B∈P
B(y)


 =

∨

x∈X


G(x) ∧ ∧

B∈P
f←L (B)(x)




≥ ∧

ϑ∈2P

∨

x∈X

(
G(x) ∧ ∧

B∈P
f←L (B)(x)

)

=
∧

ϑ∈2P

∨

y∈Y

(
f←L (G)(y) ∧ ∧

B∈P
B(y)

)
.

Therefore f→L (G) is γ-compact. ¤

Theorem 4.6. Let L be a complete Heyting algebra and let f : (X, T1) → (Y, T2) be a

γ-continuous map. If G is a γ-compact (a countably γ-compact, a γ-Lindelöf) L-set

in (X, T1), then f→L (G) is a compact (countably compact, Lindelöf) L-set in (Y, T2).

Proof. Straightforward. ¤

Definition 4.2. Let (X, T1) and (Y, T2) be two L-spaces. A map f : (X, T1) → (Y, T2)

is called strongly γ-irresolute if f←L (G) is open in (X, T1) for every γ-open L-set G in

(Y, T2).

It is obvious that a strongly γ-irresolute map is γ-irresolute and continuous. Anal-

ogously we have the following result.

Theorem 4.7. Let L be a complete Heyting algebra and f : (X, T1) → (Y, T2) be a

strongly γ-irresolute map. If G is a compact (countably compact, Lindelöf) L-set in

(X, T1), then f→L (G) is a γ-compact (a countably γ-compact, a γ-Lindelöf) L-set in

(Y, T2).

Proof. Straightforward. ¤

5. Good Extension

Theorem 5.1. Let (X, T ) be an L-space and G ∈ LX . Then the following conditions

are equivalent:

(1) G is γ-compact.

(2) For any a ∈ L0 (a ∈ M(L)), each γ-closed strong a-remote family of G has a

finite subfamily which is an a-remote (a strong a-remote) family of G.
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(3) For any a ∈ L0 (a ∈ M(L)) and any γ-closed strong a-remote family P of G,

there exists a finite subfamily F of P and b ∈ β(a) (b ∈ β∗(a)) such that F is

a (strong) b-remote family of G.

(4) For any a ∈ L1 (a ∈ P (L)), each γ-open strong a-shading of G has a finite

subfamily which is an a-shading (a strong a-shading) of G.

(5) For any a ∈ L1 (a ∈ P (L)) and any γ-open strong a-shading U of G, there

exists a finite subfamily V of U and b ∈ β(a) ( b ∈ β∗(a)) such that V is a

(strong) b-shading of G.

(6) For any a ∈ L0 (a ∈ M(L)), each γ-open strong βa-cover of G has a finite

subfamily which is a (strong) βa-cover of G.

(7) For any a ∈ L0 ( a ∈ M(L)) and any γ-open strong βa-cover U of G, there

exists a finite subfamily V of U and b ∈ L (b ∈ M(L)) with a ∈ β(b) such that

V is a (strong) βb-cover of G.

(8) For any a ∈ L0 (a ∈ M(L)) and any b ∈ β(a) \ {0}, each γ-open Qa-cover of

G has a finite subfamily which is a Qb-cover of G.

(9) For any a ∈ L0 (a ∈ M(L)) and any b ∈ β(a) \ {0} ( b ∈ β∗(a)), each γ-open

Qa-cover of G has a finite subfamily which is a (strong) Qb-cover of G.

Analogously we also can present characterization of countable γ-compactness and

the γ-Lindelöf property. Now we consider the goodness of γ-compactness.

Lemma 5.1. Let (X,ω(L)) be generated topologically by (X, τ). If A is a γ-open set

in (X, τ), then χA is γ-open L-set in (X, ωL(τ)). If B is a γ-open L-set in (X,ωL(τ)),

then B(a) is γ-open set in (X, τ) for every a ∈ L.

Proof. Let A be a γ-open set in (X, τ), then A ⊆ (A◦)− ∪ (A−)◦. Thus we have

χA ≤ χ(A◦)−∪(A−)◦ = χ(A◦)− ∨ χ(A−)◦

= cl(χ(A◦)) ∨ int(χ(A−)) = cl(int(χA)) ∨ int(cl(χA)).

This shows that χA is γ-open in (X,ωL(τ)). If B is a γ-open L-set in (X, ωL(τ)),

then B ≤ cl(int(B)) ∨ int(cl(B)). From Theorem 2.2, we have

B(a) ⊆ [cl(int(B)) ∨ int(cl(B))](a) ⊆ cl(int(B))(a) ∪ int(cl(B))(a)

⊆ ((int(B))(a))
− ∪ (cl(B)(a))

◦ ⊆ (((B(a))
◦))− ∪ ((B(a))

−)◦.

This shows that B(a) is a γ-open set in (X, τ). ¤
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The next two theorems show that γ-compactness, countable γ-compactness and

the γ-Lindelöf property are good extensions.

Theorem 5.2. Let (X,ωL(τ)) be generated topologically by (X, τ). Then (X, ωL(τ))

is (countably) γ-compact if and only if (X, τ) is (countably) γ-compact.

Proof. (Necessity) Let A be a γ-open cover (a countable γ-open cover) of (X, τ).

Then {χA : A ∈ A} is a family of γ-open L-sets in (X, ωL(τ)) with
∧

x∈X

(
∨

A∈U
χA(x)) = 1.

From (countable) γ-compactness of (X,ωL(τ)) we know that

1 ≥ ∨

ψ∈2U

∧

x∈X

(
∨

A∈ψ

χA(x)) ≥ ∧

x∈X

(
∨

A∈U
χA(x)) = 1.

This implies that there exists ψ ∈ 2[U ] such that
∧

x∈X(
∨

A∈ψ χA(x)) = 1. Hence ψ is

a cover of (X, τ). Therefore (X, τ) is (countably) γ-compact.

(Sufficiency) Let U be a (countable) family of γ-open L-sets in (X,ωL(τ)) and let
∧

x∈X(
∨

B∈U B(x)) = a. If a = 0, then we obviously have
∧

x∈X

(
∨

B∈U
B(x)) ≤ ∨

ψ∈2U

∧

x∈X

(
∨

A∈ψ

B(x)).

Now we suppose that a 6= 0. In this case, for any b ∈ β(a) \ {0} we have

b ∈ β(
∧

x∈X

(
∨

B∈U
B(x))) ⊆ ⋂

x∈X

β(
∨

B∈U
B(x)) =

⋂

x∈X

⋃

B∈U
β(B(x)).

By Lemma 5.1 this implies that {B(b) : B ∈ U} is a γ-open cover of (X, τ). From

(countable) γ-compactness of (X, τ) we know that there exists ψ ∈ 2U such that

{B(b) : B ∈ ψ} is a cover of (X, τ). Hence b ≤ ∨
x∈X(

∧
B∈ψ B(x)). Furthermore we

have

b ≤ ∧

x∈X

(
∨

B∈ψ

B(x)) ≤ ∨

ψ∈2U

∧

x∈X

(
∨

B∈ψ

B(x)).

This implies that
∧

x∈X

(
∨

B∈U
B(x)) = a =

∨{b : b ∈ β(a)} ≤ ∨

ψ∈2U

∧

x∈X

(
∨

B∈ψ

B(x)).

Therefore (X, ωL(τ)) is (countably) γ-compact. ¤

Analogously we have the following theorem.

Theorem 5.3. Let (X,ωL(τ)) be generated topologically by (X, τ). Then (X, ωL(τ))

has the γ-Lindelöf property if and only if (X, τ) has the γ-Lindelöf property.
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