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v-COMPACTNESS IN L-TOPOLOGICAL SPACES
A. M. ZAHRAN !, A. GHAREEB 2, AND A. H. ZAKARI 3

ABSTRACT. The concepts of y-compactness, countable y-compactness, the y-Lindel6f
property are introduced in L-topological spaces by means of y-open L-sets and their
inequalities when L is a complete DeMorgan algebra. These definitions do not rely
on the structure of the basis lattice L and no distributivity in L is required.

1. INTRODUCTION

Fuzzy sets theory [27], a recent generalization of classical set theory, has attracted
the attention of researchers working in various areas including topology, which has
had a seminal influence in the development of this new theory.

The concept of compactness of an I-topological space was first introduced by Chang
[4] in terms of open cover. Chang’s compactness has been greatly extended to the
variable-basis case by Rodabaugh [9], and it can be regarded as a successful def-
inition of compactness in poslat topology from the categorical point of view (see
9, 16]). Moreover, Gantner et al. introduced a-compactness [6], Lowen introduced
fuzzy compactness, strong fuzzy compactness and ultra-fuzzy compactness [13, 14],
Chadwick [3] generalized Lowen’s compactness, Liu introduced @Q-compactness [11],
Li introduced strong Q-compactness [10] which is equivalent to strong fuzzy compact-
ness in [14], Wang and Zhao introduced N-compactness [25, 28], and Shi introduced

S*-compactness [20].
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Recently, Shi presented a new definition of fuzzy compactness in L-topological
spaces [23, 19] by means of open L-sets and their inequality where L is a complete
DeMorgan algebra. This new definition doesn’t depend on the structure of L. When
L is completely distributive, it is equivalent to the notion of fuzzy compactness in
(12, 13, 26].

In L-topology, the weaker forms of open L-sets, which were constructed by the
compositions of different combinations of the closure and interior operator, have been
studied by several mathematicians. In general topology, the class of b-open (or 7-
open) sets was presented in [1]. In 1996, Hanafy [8] defined the class of y-open L-sets
(in the case L = [0, 1]) as an extension of b-open sets to L-topology.

In this paper, following the lines of [19, 20, 23|, we will introduce the y-compactness
in L-topological spaces by means of vy-open L-sets and their inequality. We also
introduce countable v-compactness and the y-Lindelof property in L-topology. These
definitions do not rely on the structure of the basis lattice L and no distributivity in

L is required.

2. PRELIMINARIES

Throughout this paper (L, < /A,V, ) is a complete DeMorgan algebra, X is a
nonempty set. L*X is the set of all L-fuzzy sets (or L-sets, for short) on X. The
smallest element and the largest element in L* are denoted by Yy and xx, respec-
tively. We often don’t distinguish a crisp subset A of X and its character function
XA-

A complete lattice L is a complete Heyting algebra if it satisfies the following
infinite distributive law: For all a € L and all BC L,a A\ B =\V{aAb|be B}.

An element a in L is called a prime element if a > b A ¢ implies a > b or a > ¢. An
element a in L is called co-prime if ' is prime [7]. The set of non-unit prime elements
in L is denoted by P(L). The set of non-zero co-prime elements in L is denoted by
M(L).

The binary relation < in L is defined as follows: for a, b € L, a < b if and only if
for every subset D C L, the relation b < sup D always implies the existence of d € D
with @ < d [5]. In a completely distributive DeMorgan algebra L, each element b is a
sup of {a € Lla < b}. A set {a € Lla < b} is called the greatest minimal family of
b in the sense of [12, 26], denoted by ((b), and 3*(b) = 5(b) N M(L). Moreover, for
b e L, we define a(b) = {a € L|a’ <V} and a*(b) = a(b) N P(L).
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For a € L and A € L*, we use the following notations from [18].
A = {z € X|A(z) > a}, AW = {z € X|A(z) £ a},
Ay ={r € X| a € B(A(x))}.
An L-topological space (or L-space, for short) is a pair (X,7), where 7 is a sub-
family of LX which contains xg; xx and is closed for any suprema and finite infima.

T is called an L-topology on X. Members of 7 are called open L-sets and their

complements are called closed L-sets.

Definition 2.1. [12, 26] An L-space (X,7) is called weakly induced if Va € L,
A € LX, it follows that A@ € [T], where [T] denotes the topology formed by all

crisp sets in 7.

Definition 2.2. [12, 26] For a topological space (X, 7), let wr(7) denote the family
of all lower semi-continuous maps from (X, 7) to L, i.e., wy(7) = {A € LX; A@ ¢
7, a € L}. Then wr(7) is an L-topology on X; in this case, (X,wp(7)) is called
topologically generated by (X, 7). A topologically generated L-space is also called an

induced L-space.

Definition 2.3. [22] Let (X, 7) be an L-space, a € Ly and G € L¥. A family U C L
is called a f3,-cover of G if for any « € X it follows that a € 5(G'(x) V Vacy A(2)).
U is called a strong [,-cover of G if a € B(A,ex (G () V Vacy A(2))).

Definition 2.4. [22] Let (X, 7) be an L-space, a € Ly and G € L¥. A family Y C L
is called a Q4-cover of G if for any = € X, it follows that G’'(z) V Vacy A(x) > a.

It is obvious that a strong (,-cover of G is a [,-cover of G, and a [3,-cover of G is
a (Qq-cover of G. For a € L and a crisp subset D C X, we define a A D and aV D as

follows:
@D ={§ T50 wP@={g T5p

Theorem 2.1. [18] For an L-set A € L, the following facts are true:

(1) A= \/aEL<a A A(a)) = \/aEL(& A A[a})
(2) A= /\aEL(a v A(a)) = /\aEL(aJ \% A[a})

Theorem 2.2. [18] Let (X,wr (7)) be the L-space topologically generated by (X, T)
and A € LX. Then the following facts hold:
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(1) cl(A) = Vaer(a N (Aw)™) = Vaer(a A (A@)7);
(2) cd(A)) C (Aw@)” C (Aw)~ Ccd(A)w;

(3) cl(A) = NaerlaV (AD)7) = Nper(aV (Al)7);
(4) cl(A)@ c (A~ c (Alh)= c cl(A)ll;

(5) int(A) = Vaer(@ A (Aw)°) = Vaerla A (Aa)°);
(6) int(A)@) C (Aw)® C (A)° C int(A)w;

(7) int(A) = Neer(aV (AD)°) = Apep(a v (AlT)°);
(8) int(A)(“ C A(“))O - (A[a])C> C mt(A)[“];

where (Awy)~ and (A@))° denote respectively the closure and the interior of Ay in
(X, 7) and so on, cl(A) and int(A) denote respectively the closure and the interior of
Ain (X, wp(71)).

Definition 2.5. [22] Let (X,7) be an L-space, a € L; and G € L¥. A family
A C LX is said to be:

(1) an a-shading of G if for any x € X, (G'(x) V Ve4 A(2)) £ a.

(2) a strong a-shading of G if A,ex(G'(z) V Vaecs A(x)) £ a.

(3) an a-remote family of G if for any x € X, (G(z) A Apes B(x)) # a.

(4) a strong a-remote family of G if V,cx(G(x) A Agea B(x)) # a.

Definition 2.6. [22] Let a € Ly and G € L*. A subfamily U of L* is said to
have a weak a-nonempty intersection in G if V,cx (G(z) A Aacy A(x)) > a. U is
said to have the finite (countable) weak a-intersection property in G if every finite

(countable) subfamily P of U has a weak a-nonempty intersection in G.

Definition 2.7. [22] Let a € Ly and G € L*. A subfamily U of L* is said to
be a weak a-filter relative to G if any finite intersection of members in U is weak
a-nonempty in G. A subfamily B of L is said to be a weak a-filterbase relative to
G if

{A e L¥; there exists B € B such that B < A}

is a weak a-filter relative to G.

For a subfamily ® C LX, 2% denotes the set of all finite subfamilies of ® and 2!%!

denotes the set of all countable subfamilies of ®.

Definition 2.8. Let G be an L-set of an L-space (X, 7). G is called:
(i) semiopen L-set [2] if G < cl(int(Q)),
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(ii) preopen L-set [15] if G < int(cl(Q)),
(iii) a-open L-set [17] if G < int(cl(int(g))).

Definition 2.9. Let (X,7) be an L-space and G € LX. Then G is called fuzzy
compact [23, 19] (resp. semicompact [21], P-compact [24], a-compact [22]) if for
every family U C L~ of open L-sets (resp. semiopen L-sets, preopen L-sets, a-open
L-sets), it follows that

A (0w V aw) < VA (Gwv y A<x>).
zeX Aeld e zeX Aey

Lemma 2.1. [19] Let (X,7;) and (Y,73) be two L-spaces, where L is a complete
Heyting algebra, f : X — Y be a mapping, f;° : L — LY is the extension of f.
Then for any P C LY, we have that

V (@m0 = V (6n A s @)e).

yey BeP zeX BeP

Definition 2.10. [8] An L-set G in an L-space (X,7) is called v-open L-set if
G < c(int(Q)) Vint(cl(Q)). G is called y-closed L-set if G’ is y-open L-set.

Remark 2.1. We could know from [8] that the relationship between y-open L-set and

those mentioned in the Definition 2.8 could be clarified as follows:

preopen L-set

T

Open L-set —— a-open L-set ~v-open L-set

\/

semiopen L-set

3. DEFINITION AND CHARACTERIZATIONS OF y-COMPACTNESS

Definition 3.1. Let (X,7) be an L-space. G € L* is called (countably) ~-compact
if for every (countable) family & C LX of ~-open L-sets, it follows that

A <G/(x) v\ A(x)) <V A (G'(g)\/ \V A(x)) :
zeX Aeld peU xeX Aey

Definition 3.2. Let (X,7) be an L-space. G € L is said to have the ~-Lindel6f
property (or be a ~-Lindelof L-set) if for every family U of v-open L-sets, it follows
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that
A(mmvvmﬂs\/A(wmvvmﬂ.
zeX Acu pealdl zEX Acep

Remark 3.1.

(i) y-compactness implies countable ~-compactness and the ~-Lindelof property.
Moreover, an L-set having the y-Lindelof property is v-compact if and only if
it is countably y-compact.

(ii) We can clarify the relationship between y-compactness and those listed in the

Definition 2.9 as follows:

P-compactness

T

compactness — a-compactness y-compactness

\/

semicompactness

Theorem 3.1. Let (X,7) be an L-space. G € L is (countably) vy-compact if and
only if for every (countable) family B of v-closed L-sets, it follows that

\/X <G<x) AB/\BB(:c)> > /\B \/X (G(:;:) A /\ﬁB(m)) .
Proof. Straightforward. O

Theorem 3.2. Let (X, T) be an L-space. G € L™ has the ~-Lindelof property if and
only if for every family B of v-closed L-sets, it follows that
v@mAAm@zA @wAAm@.
zeX BeB 9e2lBl zeX Bey

Proof. Straightforward. 0

Theorem 3.3. Let (X, 7T) be an L-space and G € LX. Then the following conditions

are equivalent:

(1) G is a (countably) v-compact.

(2) For any a € Ly, each (countable) v-open strong a-shading U of G has a finite
subfamily which is a strong a-shading of G.

(3) For any a € Lg, each (countable) ~y-closed strong a-remote family Pof G has

a finite subfamily which is a strong a-remote family of G.
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(4) For any a € Ly, each (countable) family of ~y-closed L-sets which has the finite
weak a-intersection property in G has a weak a-nonempty intersection in G.
(5) For each a € Ly, every vy-closed (countable) weak a-filterbase relative to G has

a weak a-nonempty intersection in G.

Theorem 3.4. Let (X, 7T) be an L-space and G € LX. Then the following conditions

are equivalent:

(1) G has the ~y-Lindeldf property.

(2) For anya € Ly, each y-open strong a-shadingU of G has a countable subfamily
which is a strong a-shading of G.

(3) For any a € Lg, each ~y-closed strong a-remote family P of G has a countable
subfamily which is a strong a-remote family of G.

(4) For any a € Ly, each family of v-closed L-sets which has the countable weak

a-intersection property in G has a weak a-nonempty intersection in G.

4. PROPERTIES OF (COUNTABLE) y-COMPACTNESS

Theorem 4.1. Let L be a complete Heyting algebra. If both G and H are (countably)
v-compact, then GV H is (countably) v-compact.

Proof. For any (countable) family B of y-closed L-sets, we have by Theorem 3.1 that

V (©vin@a  5e)

zeX BeB

- [y e gy o )

zeX BeB BeB

{A \/(G@:)A/\B

Ye2B xeX Bey

)
A n v (o p o)

Ye2B xeX Bey

v

- AV ((GVH)(x)/\ A B(:v))-

9e2B zeX Bed

This shows that G V H is (countably) ~y-compact. O

Analogously we have the following result.
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Theorem 4.2. Let L be a complete Heyting algebra. If both G and H have vy-Lindelof
property, then GV H has vy-Lindelof property.

Theorem 4.3. If G is (countably) v-compact and H is y-closed, then G N H s
(countably) ~v-compact.

Proof. For any (countable) family B of ~-closed L-sets, we have by Theorem 3.1 that

V ((GAH)(w’)/\ /\ B(ﬂf)) =V (G(x)/\ A B(%))

reX BeB reX BeBU{H}

> AV (G(fv)A /\ B(w))

Ye2BU{H} zeX Bed

= {ﬂéB x\E/X G(z) A B/e\ﬂB(:c)) }
A {ﬂé \E/X G(z) A H(z) A B/e\ﬁB@)) }
= {ﬁég w\E/X G(z) A H(z) A B/e\ﬁ B@:)) }
_ {ﬂéés \G/X (G AH)(x) A B/E\ﬂB(x)) } .
This shows that G' A H is (countably) y-compact. 0

Theorem 4.4. If G has the ~v-Lindelof property and H is ~v-closed, then G N H has
the ~v-Lindelof property.

Proof. Similar to Theorem 4.3. U

Definition 4.1. Let (X, 77) and (Y, 73) be two L-spaces. Amap f: (X,7;) — (Y, 73)
is called v-irresolute iff f; (G) is v-open for each y-open L-set G.

Theorem 4.5. Let L be a complete Heyting algebra and let f : (X, 71) — (Y, 7T3) be
a y-irresolute map. If G is a y-compact (or a countably v-compact, a - Lindeldf)
L-set in (X, 7Ty), then so is f;"(G) in (Y, T3).
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Proof. Suppose that P is a family of y-closed L-sets, then

\/Y (fE(G)(y) A B(y)) = \/X (G(I) A A ff(B)(x))

AV (6 A T30

9e2P xeX BeP

- AV (f@ma A Bw).

9e2P yeY BeP

v

Therefore f;7(G) is y-compact. O

Theorem 4.6. Let L be a complete Heyting algebra and let f : (X, 71) — (Y, 72) be a
~v-continuous map. If G is a y-compact (a countably v-compact, a y-Lindeldf) L-set
in (X,7h), then f;7(G) is a compact (countably compact, Lindeldf) L-set in (Y, T5).

Proof. Straightforward. U

Definition 4.2. Let (X, 7;) and (Y, 73) be two L-spaces. Amap f: (X,7;) — (Y, 73)
is called strongly ~-irresolute if f; (G) is open in (X, 7;) for every y-open L-set G in
(Y, T2).

It is obvious that a strongly 7-irresolute map is vy-irresolute and continuous. Anal-

ogously we have the following result.

Theorem 4.7. Let L be a complete Heyting algebra and f : (X, T7) — (Y, 73) be a
strongly ~v-irresolute map. If G is a compact (countably compact, Lindeldf) L-set in
(X, Th), then fi”(G) is a y-compact (a countably vy-compact, a ~y-Lindeldf) L-set in
(Y. o).

Proof. Straightforward. 0

5. GOOD EXTENSION
Theorem 5.1. Let (X, 7T) be an L-space and G € LX. Then the following conditions
are equivalent:

(1) G is y-compact.
(2) For any a € Ly (a € M(L)), each ~y-closed strong a-remote family of G has a

finite subfamily which is an a-remote (a strong a-remote) family of G.
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(3) For any a € Ly (a € M(L)) and any y-closed strong a-remote family P of G,
there exists a finite subfamily F of P and b € B(a) (b € B*(a)) such that F is
a (strong) b-remote family of G.

(4) For any a € Ly (a € P(L)), each v-open strong a-shading of G has a finite
subfamily which is an a-shading (a strong a-shading) of G.

(5) For any a € Ly (a € P(L)) and any ~y-open strong a-shading U of G, there
exists a finite subfamily V of U and b € ((a) (b € p*(a)) such that V is a
(strong) b-shading of G.

(6) For any a € Ly (a € M(L)), each y-open strong [B,-cover of G has a finite
subfamily which is a (strong) B,-cover of G.

(7) For any a € Ly (a € M(L)) and any ~y-open strong [,-cover U of G, there
exists a finite subfamily V of U and b € L (b € M(L)) with a € B(b) such that
V is a (strong) By-cover of G.

(8) For anya € Ly (a € M(L)) and any b € ((a) \ {0}, each v-open Q,-cover of
G has a finite subfamily which is a Qy-cover of G.

(9) For any a € Ly (a € M(L)) and any b € B(a) \ {0} (b€ *(a)), each y-open
Qq-cover of G has a finite subfamily which is a (strong) Qy-cover of G.

Analogously we also can present characterization of countable y-compactness and

the v-Lindelof property. Now we consider the goodness of y-compactness.

Lemma 5.1. Let (X,w(L)) be generated topologically by (X, 7). If A is a y-open set
in (X, 7), then x4 is y-open L-set in (X,wr(7)). If B is ay-open L-set in (X, w (7)),
then B(q) is v-open set in (X, T) for every a € L.

Proof. Let A be a y-open set in (X, 7), then A C (A4°)~ U (A7)°. Thus we have
XA < X(a0)-u(a-)e = X(a0)- V X(a-)e
= cl(xe)) Vint(xa-)) = cl(int(xa)) Vint(cl(xa))-

This shows that x4 is v-open in (X,wr(7)). If B is a y-open L-set in (X, w (7)),
then B < cl(int(B)) V int(cl(B)). From Theorem 2.2, we have

By C [llint(B)) v int(cl(B))]w)  cl(int(B)) ) Uint(cl(B)w
((int(B)) @)~ U (cl(B)@)" < ((Bw)*))™ U ((Ba)™)*

This shows that B, is a y-open set in (X, 7). O

C
C
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The next two theorems show that y-compactness, countable y-compactness and

the vy-Lindelof property are good extensions.

Theorem 5.2. Let (X,wr (7)) be generated topologically by (X, 7). Then (X,wr (7))
is (countably) v-compact if and only if (X, T) is (countably) ~v-compact.

Proof. (Necessity) Let A be a y-open cover (a countable y-open cover) of (X, 7).
Then {xa: A € A} is a family of y-open L-sets in (X,w (7)) with

A (V xaz) =1.

zeX AeU
From (countable) y-compactness of (X, wy (7)) we know that

L=V AV xa@) = AV xal@) =1
e xeX Acy r€X Ael
This implies that there exists 1) € 2 such that A,ex(Vaey xa(2)) = 1. Hence 1 is
a cover of (X, 7). Therefore (X, 7) is (countably) y-compact.

(Sufficiency) Let U be a (countable) family of y-open L-sets in (X, wr (7)) and let
Naex(Veey B(x)) = a. If a = 0, then we obviously have

AV B@)< V ACV B@).

rxeX BelUd PpeUu xeX Aey
Now we suppose that a # 0. In this case, for any b € 5(a) \ {0} we have

beBCA(V B@) < BV Bl@) = U B(B()).

zeX BelU zeX Beu rzeX BeU
By Lemma 5.1 this implies that {By) : B € U} is a v-open cover of (X, 7). From
(countable) ~y-compactness of (X,7) we know that there exists ¢y € 2Y such that
{Bw) : B € ¥} is a cover of (X, 7). Hence b < V,ex(Apey B(2)). Furthermore we

have

b< AV B@) < VAV Bl

zeX Bey PpeU xeX Bey
This implies that

AV B(x)=a=\{b:bep)} <\ A(V B).

zeX Belu peU zeX Bey

Therefore (X, wr (7)) is (countably) ~v-compact. O
Analogously we have the following theorem.

Theorem 5.3. Let (X,wr (7)) be generated topologically by (X, 7). Then (X,wr (7))
has the ~y-Lindelof property if and only if (X, T) has the vy-Lindeldf property.
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