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THE χ2 SEQUENCE SPACES DEFINED BY A MODULUS

NAGARAJAN SUBRAMANIAN 1, UMAKANTA MISRA 2, AND VLADIMIR RAKOČEVIĆ 3

Abstract. In this paper we introduce the following sequence spaces{
x ∈ χ2 : P − limk,`

∑∞
m=0

∑∞
n=0 a

mn
k` f

(
((m+ n)! |xmn|)

1
m+n

)
= 0
}

and
{
x ∈ Λ2 : supk,`

∑∞
m=0

∑∞
m=0 a

mn
k` f

(
|xmn|

1
m+n

)
<∞

}
where f is a modulus

function and A is a nonnegative four dimensional matrix. We establish the inclusion
theorems between these spaces and also general properties are discussed.

1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued

single sequences, respectively.

We write w2 for the set of all complex sequences (xmn), where m,n ∈ N, the set of

positive integers. Then, w2 is a linear space under the coordinate wise addition and

scalar multiplication.

Some initial work on double sequence spaces is found in Bromwich [4]. Later on,

they were investigated by Hardy [5], Moricz [9], Moricz and Rhoades [10], Basarir

and Solankan [2], Tripathy [17], Turkmenoglu [19], and many others.

Let us define the following sets of double sequences:

Mu (t) :=

{
(xmn) ∈ w2 : sup

m,n∈N
|xmn|tmn <∞

}
,

Cp (t) :=

{
(xmn) ∈ w2 : p− lim

m,n→∞
|xmn − l|tmn = 1 for some l ∈ C

}
,
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C0p (t) :=

{
(xmn) ∈ w2 : p− lim

m,n→∞
|xmn|tmn = 1

}
,

Lu (t) :=

{
(xmn) ∈ w2 :

∞∑
m=1

∞∑
n=1

|xmn|tmn <∞

}
,

Cbp (t) := Cp (t)
⋂

Mu (t) and C0bp (t) = C0p (t)
⋂

Mu (t) ;

where t = (tmn) is the sequence of strictly positive reals tmn for all m,n ∈ N and

p − limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case tmn = 1 for

all m,n ∈ N; Mu (t), Cp (t), C0p (t), Lu (t), Cbp (t) and C0bp (t) reduce to the sets

Mu, Cp, C0p, Lu, Cbp and C0bp, respectively. Now, we may summarize the knowledge

given in some document related to the double sequence spaces. Gökhan and Colak

[21,22] have proved that Mu (t) and Cp (t), Cbp (t) are complete paranormed spaces

of double sequences and gave the α−, β−, γ− duals of the spaces Mu (t) and Cbp (t).

Quite recently, in her PhD thesis, Zelter [23] has essentially studied both the the-

ory of topological double sequence spaces and the theory of summability of double

sequences. Mursaleen and Edely [24] have recently introduced the statistical con-

vergence and Cauchy for double sequences and given the relation between statistical

convergent and strongly Cesàro summable double sequences. Nextly, Mursaleen [25]

and Mursaleen and Edely [26] have defined the almost strong regularity of matrices

for double sequences and applied these matrices to establish a core theorem and in-

troduced the M−core for double sequences and determined those four dimensional

matrices transforming every bounded double sequences x = (xjk) into one whose core

is a subset of the M−core of x. More recently, Altay and Başar [27] have defined

the spaces BS, BS (t), CSp, CSbp, CSr and BV of double sequences consisting of all

double series whose sequence of partial sums are in the spaces Mu, Mu (t), Cp, Cbp,

Cr and Lu, respectively, and also have examined some properties of those sequence

spaces and determined the α− duals of the spaces BS, BV, CSbp and the β (ϑ)−
duals of the spaces CSbp and CSr of double series. Quite recently Başar and Sever [28]

have introduced the Banach space Lq of double sequences corresponding to the well-

known space `q of single sequences and have examined some properties of the space

Lq. Quite recently Subramanian and Misra [29] have studied the space χ2
M (p, q, u)

of double sequences and have given some inclusion relations.

Spaces are strongly summable sequences was discussed by Kuttner [31], Maddox

[32], and others. The class of sequences which are strongly Cesàro summable with
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respect to a modulus was introduced by Maddox [8] as an extension of the definition

of strongly Cesàro summable sequences. Connor [33] further extended this definition

to a definition of strong A− summability with respect to a modulus where A = (an,k)

is a nonnegative regular matrix and established some connections between strong A−
summability, strong A− summability with respect to a modulus, and A− statistical

convergence. In [34] the notion of convergence of double sequences was presented

by A. Pringsheim. Also, in [35]-[38], and [39] the four dimensional matrix trans-

formation (Ax)k,` =
∑∞

m=1

∑∞
n=1 a

mn
k` xmn was studied extensively by Robison and

Hamilton. In their work and throughout this paper, the four dimensional matrices

and double sequences have real-valued entries unless specified otherwise. In this paper

we extend a few results known in the literature for ordinary (single) sequence spaces

to multiply sequence spaces. This will be accomplished by presenting the following

sequence spaces:
{
x ∈ χ2 : P − limk,`

∑∞
m=0

∑∞
n=0 a

mn
k` f

(
((m+ n)! |xmn|)

1
m+n

)
= 0
}

and{
x ∈ Λ2 : supk,`

∑∞
m=0

∑∞
m=0 a

mn
k` f

(
|xmn|

1
m+n

)
<∞

}
where f is a modulus function

and A is a nonnegative four dimensional matrix. Other implications,general proper-

ties and variations will also be presented.

We need the following inequality in the sequel of the paper. For a, b ≥ 0 and

0 < p < 1, we have

(1.1) (a+ b)p ≤ ap + bp.

The double series
∑∞

m,n=1 xmn is called convergent if and only if the double sequence

(smn) is convergent, where smn =
∑m,n

i,j=1 xij(m,n ∈ N) (see [1]).

A sequence x = (xmn)is said to be double analytic if supmn |xmn|
1/m+n < ∞. The

vector space of all double analytic sequences will be denoted by Λ2. A sequence

x = (xmn) is called double gai sequence if ((m+ n)! |xmn|)1/m+n → 0 as m,n → ∞.
The double gai sequences will be denoted by χ2. Let φ = {all finite sequences}.

Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the sequence

is defined by x[m,n] =
∑m,n

i,j=0xij=ij for all m,n ∈ N; where =ij denotes the double

sequence whose only non zero term is a 1
(i+j)!

in the (i, j)th place for each i, j ∈ N.

An FK-space (or a metric space) X is said to have AK property if (=mn) is a

Schauder basis for X. Or equivalently x[m,n] → x.
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An FDK-space is a double sequence space endowed with a complete metrizable;

locally convex topology under which the coordinate mappings x = (xk) → (xmn)

(m,n ∈ N) are also continuous.

Orlicz [13] used the idea of Orlicz function to construct the space
(
LM
)
. Lin-

denstrauss and Tzafriri [7] investigated Orlicz sequence spaces in more detail, and

they proved that every Orlicz sequence space `M contains a subspace isomorphic to

`p (1 ≤ p <∞). Subsequently, different classes of sequence spaces were defined by

Parashar and Choudhary [14], Mursaleen et al. [11], Bektas and Altin [3], Tripathy

et al. [18], Rao and Subramanian [15], and many others. The Orlicz sequence spaces

are the special cases of Orlicz spaces studied in [6].

Recalling [13] and [6], an Orlicz function is a function M : [0,∞) → [0,∞) which

is continuous, non-decreasing, and convex with M (0) = 0, M (x) > 0, for x > 0 and

M (x)→∞ as x→∞. If convexity of Orlicz function M is replaced by subadditivity

ofM , then this function is called modulus function, defined by Nakano [12] and further

discussed by Ruckle [16] and Maddox [8], and many others.

An Orlicz function M is said to satisfy the ∆2− condition for all values of u if there

exists a constant K > 0 such that M (2u) ≤ KM (u) (u ≥ 0). The ∆2− condition is

equivalent to M (`u) ≤ K`M (u), for all values of u and for ` > 1.

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to construct Orlicz

sequence space

`M =

{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

}
.

The space `M with the norm

‖x‖ = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
,

becomes a Banach space which is called an Orlicz sequence space. For M (t) =

tp (1 ≤ p <∞), the spaces `M coincide with the classical sequence space `p.

If X is a sequence space, we give the following definitions:

(i) X
′
= the continuous dual of X;

(ii) Xα =
{
a = (amn) :

∑∞
m,n=1 |amnxmn| <∞, for each x ∈ X

}
;

(iii) Xβ =
{
a = (amn) :

∑∞
m,n=1amnxmn is convergent, for each x ∈ X

}
;

(iv) Xγ =
{
a = (amn) : supmn ≥ 1

∣∣∣∑M,N
m,n=1 amnxmn

∣∣∣ <∞, for each x ∈ X
}

;

(v) let X be an FK-space ⊃ φ; then Xf =
{
f(=mn) : f ∈ X ′}

;
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(vi) Xδ =
{
a = (amn) : supmn |amnxmn|

1/m+n <∞, for each x ∈ X
}

.

Xα, Xβ, Xγ are called α− (or Köthe-Toeplitz) dual of X, β− (or generalized-Köthe-

Toeplitz) dual of X, γ− dual of X, δ−dual of X respectively. Xα is defined by Gupta

and Kamptan [20]. It is clear that Xα ⊂ Xβ and Xα ⊂ Xγ, but Xβ ⊂ Xγ does not

hold, since the sequence of partial sums of a double convergent series need not to be

bounded.

The notion of difference sequence spaces (for single sequences) was introduced by

Kizmaz [30] as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}

for Z = c, c0 and `∞, where ∆xk = xk − xk+1 for all k ∈ N.

Here c, c0 and `∞ denote the classes of convergent, null and bounded scalar valued

single sequences respectively. The difference space bvp of the classical space `p is

introduced and studied in the case 1 ≤ p ≤ ∞ by Başar and Altay in [42] and in the

case 0 < p < 1 by Altay and Başar in [43]. The spaces c (∆), c0 (∆), `∞ (∆) and bvp

are Banach spaces normed by

‖x‖ = |x1|+ supk≥1 |∆xk| and ‖x‖bvp =

(
∞∑
k=1

|xk|p
)1/p

, (1 ≤ p <∞) .

Later on the notion was further investigated by many others. We now introduce the

following difference double sequence spaces defined by

Z (∆) =
{
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

}
where Z = Λ2, χ2 and ∆xmn = (xmn − xmn+1)− (xm+1n − xm+1n+1) = xmn−xmn+1−
xm+1n + xm+1n+1 for all m,n ∈ N.

2. Definitions and Preliminaries

χ2
M and Λ2

M denote the Pringscheims sense of double Orlicz space of gai sequences

and Pringscheims sense of double Orlicz space of bounded sequences respectively.

Definition 2.1. A modulus function was introduced by Nakano [12]. We recall that

a modulus f is a function from [0,∞)→ [0,∞), such that

(1) f (x) = 0 if and only if x = 0;

(2) f (x+ y) ≤ f (x) + f (y), for all x ≥ 0, y ≥ 0;

(3) f is increasing;
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(4) f is continuous from the right at 0. Since |f (x)− f (y)| ≤ f (|x− y|), it

follows from here that f is continuous on [0,∞).

Definition 2.2. Let p, q be semi norms on a vector space X. Then p is said to be

stronger than q if whenever (xmn) is a sequence such that p (xmn) → 0, then also

q (xmn)→ 0. If each is stronger than the others, the p and q are said to be equivalent.

Lemma 2.1. Let p and q be semi norms on a linear space X. Then p is stronger

than q if and only if there exists a constant M such that q(x) ≤Mp(x) for all x ∈ X.

Definition 2.3. A sequence E is said to be solid or normal if (αmnxmn) ∈ E whenever

(xmn) ∈ E and for all sequences of scalars (αmn) with |αmn| ≤ 1, for all m,n ∈ N.

Definition 2.4. A sequence space E is said to be monotone if it contains the canonical

pre-images of all its step spaces.

Remark 2.1. From the two above definitions it is clear that a sequence space E is

solid implies that E is monotone.

Definition 2.5. A set E is said to be convergence free if (ymn) ∈ E whenever (xmn) ∈
E and xmn = 0 implies that ymn = 0.

By the gai of a double sequence we mean the gai on the Pringsheim sense that

is, a double sequence x = (xmn) has Pringsheim limit 0 (denoted by P − limx = 0)

such that ((m+ n)! |xmn|)
1

m+n → 0, whenever m,n→∞. We shall denote the space

of all P− gai sequences by χ2. The double sequence x is analytic if there exists a

positive number M such that |xjk|
1
j+k < M for all j and k. We will denote the set of

all analytic double sequences by Λ2.

Throughout this paper we shall examine our sequence spaces using the following

type of transformation:

Definition 2.6. Let A =
(
amnk,`

)
denotes a four dimensional summability method that

maps the complex double sequences x into the double sequence Ax where the k, `−
th term of Ax is as follows:

(Ax)k` =
∞∑
m=1

∞∑
n=1

amnk` xmn

such transformation is said to be nonnegative if amnk` is nonnegative.



THE χ2 SEQUENCE SPACES DEFINED BY A MODULUS 45

The notion of regularity for two dimensional matrix transformations was presented

by Silverman [40] and Toeplitz [41]. Following Silverman and Toeplitz, Robison and

Hamilton presented the following four dimensional analog of regularity for double

sequences in which they both added an additional assumption of boundedness. This

assumption was made because a double sequence which is P− convergent is not

necessarily bounded.

Definition 2.7. The four dimensional matrix A is said to be RH-regular if it maps

every bounded P−gai sequence into a P−gai sequence with the same P−limit.

In addition to this definition, Robison and Hamilton also presented the following

Silverman-Toeplitz type multidimensional characterization of regularity in [39] and

[35].

Theorem 2.1. The four dimensional matrix A is RH-regular if and only if

RH1 : P − lim
k,`

amnk` = 0 for each m and n;

RH2 : P − lim
k,`

∞∑
m=1

∞∑
n=1

amnk` = 1;

RH3 : P − lim
k,`

∞∑
m=1

|amnk` | = 0 for each n;

RH4 : P − lim
k,`

∞∑
n=1

|amnk` | = 0 for each m;

RH5 :
∞∑
m=1

∞∑
n=1

amnk` is P − convergent; and

RH6 : there exist positive numbers M and N such that
∑

m,n>N

|amnk` | < M.

Definition 2.8. A double sequence (xmn) of complex numbers is said to be strongly

A− summable to 0, if P − limk,`

∑
m,n a

mn
k` ((m+ n)! |xmn − 0|)

1
m+n = 0.

Let σ be a one to one mapping of the set of positive integers into itself such that

σm(n) = σ(σm−1(n)), m = 1, 2, 3, . . .. A continuous linear functional φ on Λ2 is said

to be an invariant mean or a σ-mean if and only if

(1) φ(x) ≥ 0 when the sequence x = (xmn) has xmn ≥ 0 for all m,n.
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(2) φ(e) = 1 where e =


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 and

(3) φ(
{
xσ(m),σ(n)

}
) = φ({xmn}) for all x ∈ Λ2.

For certain kinds of mappings σ, every invariant mean φ extends the limit functional

on the space C of all real convergent sequences in the sense that φ(x) = lim x for all

x ∈ C consequently C ⊂ Vσ, where Vσ is the set of double analytic sequences all of

those σ− means are equal.

If x = (xmn), set Tx = (Tx)1/m+n = (xσ(m),σ(n)). It can be shown that

Vσ =
{
x ∈ Λ2 : lim

m→∞
tmn(xn)1/n = Le uniformly in n, L = σ − lim(xmn)1/m+n

}
where

(2.1) tmn(x) =
(xn + Txn + . . .+ Tmxn)1/m+n

m+ 1

we say that a double analytic sequence x = (xmn) is σ− convergent if and only if

x ∈ Vσ.

Definition 2.9. A double analytic sequence x = (xmn) of real numbers is said to be

σ− convergent to zero provided that

P − lim
p,q

1

pq

p∑
m=1

q∑
n=1

∣∣xσm(k),σm(`)

∣∣ 1
σm(k)+σm(`) = 0,

uniformly in (k, `).

In this case we write σ2 − limx = 0. We shall also denote the set of all double σ−
convergent sequences by V 2

σ . Clearly V 2
σ ⊂ Λ2.

One can see that in contrast to the case for single sequences, a P− convergent

double sequence need not be σ− convergent. But, it is easy to see that every bounded

P− convergent double sequence is convergent. In addition, if we let σ (m) = m + 1,

and σ (n) = n+ 1 in then σ− convergence of double sequences reduces to the almost

convergence of double sequences.

The following definition is a combination of stronglyA− summable to zero, modulus

function, and σ− convergent.
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Definition 2.10. Let f be a modulus, A = (amnk` ) be a nonnegative RH-regular

summability matrix method and e =


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

.

We now define the following sequence spaces:

χ2 (A, f)

=

{
x ∈ χ2 : P − lim

k`

∞∑
m=0

∞∑
n=0

(amnk` ) f
(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`) = 0

}
,

Λ2 (A, f) =

{
x ∈ Λ2 : sup

k`

∞∑
m=0

∞∑
n=0

(amnk` ) f
(∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`) <∞

}
.

If f (x) = x then the sequence spaces defined above reduce to the following:

χ2 (A)

=

{
x ∈ χ2 : P − lim

k`

∞∑
m=0

∞∑
n=0

(amnk` )
(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`) = 0

}
,

and

Λ2 (A) =

{
x ∈ Λ2 : sup

k`

∞∑
m=0

∞∑
n=0

(amnk` )
(∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`) <∞

}
.

Some well-known spaces are defined by specializing A and f . For example, if

A = (C, 1, 1), the sequence spaces defined above reduce to χ2 (f) and Λ2 (f) as follows:

χ2 (f)

=

{
x ∈ χ2 : P − lim

k`

1

k`

k−1∑
m=0

`−1∑
n=0

f
(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`) = 0

}
,

Λ2 (f) =

{
x ∈ Λ2 : sup

k`

1

k`

k−1∑
m=0

`−1∑
n=0

f
(∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`) <∞

}
.

As a final illustration, let A = (C, 1, 1) and f (x) = x, we obtain the following spaces:

χ2 =

{
x ∈ χ2 : P − lim

k`

1

k`

k−1∑
m=0

`−1∑
n=0

(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`) = 0

}
and

Λ2 =

{
x ∈ Λ2 : sup

k`

1

k`

k−1∑
m=0

`−1∑
n=0

∣∣xσm(k),σn(`)

∣∣ 1
σm(k)+σn(`) <∞

}
.
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3. Main Results

In this section we shall establish some general properties for the above sequence

spaces.

Theorem 3.1. χ2 (A, f) and Λ2 (A, f) are linear spaces over the complex filed C.

Proof. We shall establish the linearity of χ2 (A, f) only. The other cases can be treated

in a similar manner. Let x and y be elements in χ2 (A, f). For λ and µ in C there

exist integers Mλ and Nµ such that |λ| < Mλ and |µ| < Nµ. From the conditions (2)

and (3) of Definition 2.1, we granted the following
∞∑
m=0

∞∑
n=0

(amnk` ) f
(
(σm (k) + σn (`))!

∣∣λxσm(k),σn(`) + µyσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

≤Mλ

∞∑
m=0

∞∑
n=0

(amnk` ) f
(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

+Nµ

∞∑
m=0

∞∑
n=0

(amnk` ) f
(
(σm (k) + σn (`))!

∣∣yσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

for all k and `. Since x and y are χ2 (A, f), we have λx + µy ∈ χ2 (A, f). Thus

χ2 (A, f) is a linear space. This completes the proof. �

Theorem 3.2. χ2 (A, f) is a complete linear topological spaces with the paranorm

g (x) = sup
k`

∞∑
m=0

∞∑
n=0

(amnk` ) f
(∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`) .

Proof. For each x ∈ χ2 (A, f) , g (x) exists. Clearly g (θ) = 0, g (−x) = g (x) and

g (x+ y) ≤ g (x) + g (y). We now show that the scalar multiplication is continuous.

Now observe the following

g (λx) = sup
k`

∞∑
m=0

∞∑
n=0

(amnk` ) f
(∣∣λxσm(k),σn(`)

∣∣) 1
σm(k)+σn(`) ≤ (1 + [λ]) g (x)

where
[
|λ|

1
σm(n)+σn(`)

]
denotes the integer part of |λ|

1
σm(n)+σn(`) . In addition observe

that g (x) and λ approach to 0 implies g (λx) approaches to 0. For fixed λ, if x

approaches to 0 then g (λx) approaches to 0. We now show that fixed x, g (λx)

approaches to 0 whenever λ approaches to 0. Let x ∈ χ2 (A, f), thus

P − lim
k`

∞∑
m=0

∞∑
n=0

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
= 0.
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If |λ|
1

σm(n)+σn(`) < 1 and M ∈ N we have

∞∑
m=0

∞∑
n=0

(amnk` ) f
((

(σm (k) + σn (`))!λ
∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
≤

∞∑
m≤M

∞∑
n≤M

(amnk` ) f
((

(σm (k) + σn (`))!λ
∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
+

∞∑
m≥M

∞∑
n≥M

(amnk` ) f
((

(σm (k) + σn (`))!λ
∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
.

Let ε > 0 and choose N such that

(3.1)
∞∑
m=0

∞∑
n=0

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
<
ε

2

for k, ` > N . Also for each (k, `) with 1 ≤ k ≤ N , 1 ≤ ` ≤ N , and since

∞∑
m=0

∞∑
n=0

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
<∞,

there exists an integer Mk,` such that∑
m>Mk,`

∑
n>Mk,`

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
<
ε

2
.

Taking M = inf1≤k≤N (or) 1≤`≤N {Mk,`}, we have for each (k, `) with 1 ≤ k ≤ N or

1 ≤ ` ≤ N∑
m>M

∑
n>M

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
<
ε

2
.

Also from (??), for k, ` > N we have∑
m>M

∑
n>M

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
<
ε

2
.

Thus M is an integer independent of (k, `) such that

(3.2)
∑
m>M

∑
n>M

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
<
ε

2
.
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Further for |λ|
1

σm(n)+σn(`) < 1 and for all (k, `)

∞∑
m=0

∞∑
n=0

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣λxσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
≤
∑
m>M

∑
n>M

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣λxσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
+
∑
m≤M

∑
n≤M

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣λxσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
.

For each (k, `) and by the continuity of f as λ→ 0 we have the following∑
m≤M

∑
n≤M

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣λxσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
.

Now choose δ < 1 such that |λ|
1

σm(n)+σn(`) < δ implies

(3.3)
∑
m≤M

∑
n≤M

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣λxσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
<
ε

2
.

It follows that
∞∑
m=0

∞∑
n=0

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣λxσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
< ε

for all (k, `). Thus g (λx) → 0 as λ → 0. Therefore χ2 (A, f) is a paranormed linear

topological space.

Now let us show that χ2 (A, f) is complete with respect to its paranorm topologies.

Let (xsmn) be a cauchy sequence in χ2 (A, f). Then, we write g (xs − xt) → 0 as

s, t→∞, to mean, as s, t→∞ for all (k, `)

(3.4)
∞∑
m=0

∞∑
n=0

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣xsσm(k),σn(`) − xtσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
→ 0.

Thus for each fixed m and n as s, t→∞. We are granted

f
(
(m+ n)!

∣∣xsmn − xtmn∣∣)→ 0

and so (xsmn) is a cauchy sequence in C for each fixed m and n. Since C is complete

we have xsmn → xmn, as s → ∞ for each (mn). Now from (2.9), we have for ε > 0

there exists a natural number N such that
∞∑
m=0

∞∑
n=0 and s,t>N

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣xsσm(k),σn(`) − xtσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
< ε
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for (k, `). Since for any fixed natural number M , we have from (2.10)∑
m≤M

∑
n≤M and s,t>N

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣xsσm(k),σn(`) − xtσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
< ε

for all (k, `), by letting t→∞ in the above expression we obtain∑
m≤M

∑
n≤M and s>N

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣xsσm(k),σn(`) − xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
< ε.

Since M is arbitrary, by letting M →∞ we obtain
∞∑
m=0

∞∑
n=0

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣xsσm(k),σn(`) − xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
< ε

for all (k, `). Thus g (xs − x)→ 0 as s→∞. Also (xs) being a sequence in χ2 (A, f)

by definition of χ2 (A, f) for each s with
∞∑
m=0

∞∑
n=0

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣xsσm(k),σn(`) − xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
→ 0

as (k, `)→∞ thus x ∈ χ2 (A, f). This completes the proof. �

Theorem 3.3. Let A = (amnk` ) be nonnegative matrix such that

sup
k`

∞∑
m=0

∞∑
n=0

(amnk` ) <∞

and let f be a modulus, then χ2 (A, f) ⊂ Λ2 (A, f).

Proof. Let x ∈ χ2 (A, f). Then by Definition 2.1 of (2) and (3) of the modulus

function we granted the following
∞∑
m=0

∞∑
n=0

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
≤
∞∑
m=0

∞∑
n=0

f
((

(σm (k) + σn (`))!
∣∣xσm(k),σn(`) − 0

∣∣) 1
σm(k)+σn(`)

)
+ f (|0|)

∞∑
m=0

∞∑
n=0

(amnk` ) .

There exists an integer Np such that |0| ≤ Np. Thus we have
∞∑
m=0

∞∑
n=0

(amnk` ) f
((

(σm (k) + σn (`))!
∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)
≤
∞∑
m=0

∞∑
n=0

f
((

(σm (k) + σn (`))!
∣∣xσm(k),σn(`) − 0

∣∣) 1
σm(k)+σn(`)

)
+Npf (1)

∞∑
m=0

∞∑
n=0

(amnk` ) .

Since supk`
∑∞

m=0

∑∞
n=0 (amnk` ) < ∞ and x ∈ χ2 (A, f), we are granted x ∈ Λ2 (A, f)

and this completes the proof. �



52 N. SUBRAMANIAN, U. MISRA, AND V. RAKOČEVIĆ

Theorem 3.4. Let A = (amnk` ) be nonnegative matrix such that

sup
k`

∞∑
m=0

∞∑
n=0

(amnk` ) <∞

and let f be a modulus, then Λ2 (A) ⊂ Λ2 (A, f).

Proof. Let x ∈ Λ2 (A), so that

sup
k,`

∞∑
m=0

∞∑
n=0

amnk`
∣∣xσm(k),σn(`)

∣∣ 1
σm(k)+σn(`) <∞.

Let ε > 0 and choose δ with 0 < δ < 1 such that f (t) < ε for 0 ≤ t ≤ δ. Consider,

∞∑
m=0

∞∑
n=0

amnk` f
(∣∣xσm(k),σn(`)

∣∣ 1
σm(k)+σn(`)

)
=
∞∑
m=0

∞∑
n=0 and |xσm(k),σn(`)|

1
σm(k)+σn(`)≤δ

amnk` f
(∣∣xσm(k),σn(`)

∣∣ 1
σm(k)+σn(`)

)

+
∞∑
m=0

∞∑
n=0 and |xσm(k),σn(`)|

1
σm(k)+σn(`)>δ

amnk` f
(∣∣xσm(k),σn(`)

∣∣ 1
σm(k)+σn(`)

)
.

Then

(3.5)
∞∑
m=0

∞∑
n=0 and |xσm(k),σn(`)|

1
σm(k)+σn(`)≤δ

amnk` f
(∣∣xσm(k),σn(`)

∣∣ 1
σm(k)+σn(`)

)
≤ ε

∞∑
m=0

∞∑
n=0

amnk` .

For
∣∣xσm(k),σn(`)

∣∣ 1
σm(k)+σn(`) > δ we use the fact that

∣∣xσm(k),σn(`)

∣∣ 1
σm(k)+σn(`) <

∣∣xσm(k),σn(`)

∣∣ 1
σm(k)+σn(`)

δ
<

1 +

∣∣xσm(k),σn(`)

∣∣ 1
σm(k)+σn(`)

δ


where [t] denoted the integer part of t and from conditions (2) and (3) of Definition

2.1, modulus function we have

f
(∣∣xσm(k),σn(`)

∣∣ 1
σm(k)+σn(`)

)
≤

1 +

∣∣xσm(k),σn(`)

∣∣ 1
σm(k)+σn(`)

δ

 f (1)

≤ 2f (1)

∣∣xσm(k),σn(`)

∣∣ 1
σm(k)+σn(`)

δ
.
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Hence
∞∑
m=0

∞∑
n=0 and |xmn|

1
m+n>δ

amnk` f
(∣∣xσm(k),σn(`)

∣∣ 1
σm(k)+σn(`)

)

≤2f (1)

δ

∞∑
m=0

∞∑
n=0

amnk`
∣∣xσm(k),σn(`)

∣∣ 1
σm(k)+σn(`)

which together with inequality (3.5) yields the following
∞∑
m=0

∞∑
n=0

amnk` f
(∣∣xσm(k),σn(`)

∣∣ 1
σm(k)+σn(`)

)
≤ε

∞∑
m=0

∞∑
n=0

amnk` +
2f (1)

δ

∞∑
m=0

∞∑
n=0

amnk`
∣∣xσm(k),σn(`)

∣∣ 1
σm(k)+σn(`)

since supk`
∑∞

m=0

∑∞
n=0 (amnk` ) <∞ and x ∈ Λ2 (A) we are granted that x ∈ Λ2 (A, f)

and this completes the proof. �

Definition 3.1. Let f be modulus amnk` − a nonnegative RH-regular summability

matrix method. Let p = (pmn) be a sequence of positive real numbers with 0 <

pmn < suppmn = G and D = max
(
1, 2G−1

)
. Then for amn, bmn ∈ N, the set of

complex numbers for all m,n ∈ N, we have

|amn + bmn|
1

m+n ≤ D
{
|amn|

1
m+n + |bmn|

1
m+n

}
.

Let (X, q) be a semi normed space over the field C of complex numbers with the semi

norm q. We define the following sequence spaces:

χ2 (A, f, p, q)

=x ∈ χ2 : P − lim
k`

∞∑
m=0

∞∑
n=0

(amnk` )
[
f
(
q
(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)]pmn
=0.

Λ2 (A, f, p, q)

=x ∈ Λ2 : sup
k`

∞∑
m=0

∞∑
n=0

(amnk` )
[
f
(
q
(∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)]pmn
<∞.

Theorem 3.5. Let f1 and f2 be two modulus. Then χ2 (A, f1, p, q)
⋂
χ2 (A, f2, p, q) ⊆

χ2 (A, f1 + f2, p, q).

Proof. The proof is easy so omitted. �

Remark 3.1. Let f be a modulus q1 and q2 be two seminorm on X, we have



54 N. SUBRAMANIAN, U. MISRA, AND V. RAKOČEVIĆ

(1) χ2 (A, f, p, q1)
⋂
χ2 (A, f, p, q2) ⊆ χ2 (A, f, p, q1 + q2).

(2) If q1 is stronger than q2 then χ2 (A, f, p, q1) ⊆ χ2 (A, f, p, q2).

(3) If q1 is equivalent to q2 then χ2 (A, f, p, q1) = χ2 (A, f, p, q2).

Theorem 3.6. Let 0 ≤ pmn ≤ rmn for all m,n ∈ N and let
{
qmn
pmn

}
be bounded. Then

χ2 (A, f, r, q) ⊂ χ2 (A, f, p, q).

Proof. Let

(3.6) x ∈ χ2 (A, f, r, q) ,

∞∑
m=0

∞∑
n=0

(amnk` )
[
f
(
q
(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)]rmn
.

Let

(3.7) tmn =
∞∑
m=0

∞∑
n=0

(amnk` )
[
f
(
q
(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)]rmn
,

we have γmn = pmn/rmn. Since pmn ≤ rmn, we have 0 ≤ γmn ≤ 1. Let 0 < γ < γmn.

Then

umn =

{
tmn, if (tmn ≥ 1)
0, if (tmn < 1)

,

(3.8) vmn =

{
0, if (tmn ≥ 1)
tmn, if (tmn < 1)

,

tmn = umn + vmn, tγmnmn = uγmnmn + vγmnmn .

Now, it follows that

(3.9) uγmnmn ≤ umn ≤ tmn, vγmnmn ≤ uγmn.

Since tγmnmn = uγmnmn + vγmnmn , we have tγmnmn ≤ tmn + vγmn. Thus,

∞∑
m=0

∞∑
n=0

(amnk` )
[
f
(
q
(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)rmn]γmn
≤
∞∑
m=0

∞∑
n=0

(amnk` )
[
f
(
q
(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)]rmn
,

∞∑
m=0

∞∑
n=0

(amnk` )
[
f
(
q
(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)rmn]pmn/rmn
≤
∞∑
m=0

∞∑
n=0

(amnk` )
[
f
(
q
(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)]rmn
,
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∞∑
m=0

∞∑
n=0

(amnk` )
[
f
(
q
(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)]pmn
≤
∞∑
m=0

∞∑
n=0

(amnk` )
[
f
(
q
(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)]rmn
.

But

P − lim
k`

∞∑
m=0

∞∑
n=0

(amnk` )
[
f
(
q
(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)]rmn
= 0.

Therefore we have

P − lim
k`

∞∑
m=0

∞∑
n=0

(amnk` )
[
f
(
q
(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)]pmn
= 0.

Hence

(3.10) x ∈ χ2 (A, f, p, q) .

From (??) and (??) we get x ∈ χ2 (A, f, r, q) ⊂ x ∈ χ2 (A, f, p, q). �

Theorem 3.7. The space χ2 (A, f, p, q) is solid and such are monotones.

Proof. Let x = (xmn) ∈ χ2 (A, f, p, q) and (αmn) be a sequence of scalars such that,

|αmn| ≤ 1 for all m,n ∈ N. Then
∞∑
m=0

∞∑
n=0

(amnk` )
[
f
(
q
(
(σm (k) + σn (`))!

∣∣αmnxσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)]pmn
≤
∞∑
m=0

∞∑
n=0

(amnk` )
[
f
(
q
(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)]pmn
N,

∞∑
m=0

∞∑
n=0

(amnk` )
[
f
(
q
(
(σm (k) + σn (`))!

∣∣αmnxσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)]pmn
≤
∞∑
m=0

∞∑
n=0

(amnk` )
[
f
(
q
(
(σm (k) + σn (`))!

∣∣xσm(k),σn(`)

∣∣) 1
σm(k)+σn(`)

)]pmn
N,

for all m,n ∈ N. This completes the proof. �
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