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THE x? SEQUENCE SPACES DEFINED BY A MODULUS
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ABSTRACT. In this paper we introduce the following sequence spaces
. 1
{wex®s P—tim, S0 oo afi f (((m + )t )77 ) =0}

1
and {m €A supy Yo o S aptf (\xmn|m+”) < oo} where f is a modulus
function and A is a nonnegative four dimensional matrix. We establish the inclusion
theorems between these spaces and also general properties are discussed.

1. INTRODUCTION

Throughout w, y and A denote the classes of all, gai and analytic scalar valued
single sequences, respectively.
We write w? for the set of all complex sequences (Z,,, ), where m,n € N, the set of

2 is a linear space under the coordinate wise addition and

positive integers. Then, w
scalar multiplication.
Some initial work on double sequence spaces is found in Bromwich [4]. Later on,
they were investigated by Hardy [5], Moricz [9], Moricz and Rhoades [10], Basarir
and Solankan [2], Tripathy [17], Turkmenoglu [19], and many others.
Let us define the following sets of double sequences:

M, (t) == {(mmn) cw?: sup |Tmn|™ < oo},

m,neEN

Cp(t) := {(mmn) cw’:p— lim |Zp, —I"™ =1 for somel € (C} ,

m,n—00
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GOP (t) = {(-Tmn) < ’LU2 :p — hm ‘xmn‘tmn e 1} ,

m,n—
L, (t) = { Tnn) Z Z |:L‘mn|t’"” < oo}
m=1 n=1
Cop (£) 1= C, (1) (Y Mu () and  Copp (t) = Cop (&) (| M (¢

where t = (tmn) is the sequence of strictly positive reals t,,, for all m,n € N and
p — lim,, oo denotes the limit in the Pringsheim’s sense. In the case t,,, = 1 for
all m,n € N; M, (¢), C,(t), Cop (), Lu(t), Cpp(t) and Copp () reduce to the sets
My, Cp, Cop, Lu, Cpp and Copp, respectively. Now, we may summarize the knowledge
given in some document related to the double sequence spaces. Gokhan and Colak
[21,22] have proved that M, (¢) and C, (¢), Cy, (t) are complete paranormed spaces
of double sequences and gave the a—, f—,y— duals of the spaces M, (t) and Cy, (¢).
Quite recently, in her PhD thesis, Zelter [23] has essentially studied both the the-
ory of topological double sequence spaces and the theory of summability of double
sequences. Mursaleen and Edely [24] have recently introduced the statistical con-
vergence and Cauchy for double sequences and given the relation between statistical
convergent and strongly Cesaro summable double sequences. Nextly, Mursaleen [25]
and Mursaleen and Edely [26] have defined the almost strong regularity of matrices
for double sequences and applied these matrices to establish a core theorem and in-
troduced the M —core for double sequences and determined those four dimensional
matrices transforming every bounded double sequences x = (i) into one whose core
is a subset of the M —core of x. More recently, Altay and Basar [27] have defined
the spaces BS, BS (t), C§,, €8, C8, and BV of double sequences consisting of all
double series whose sequence of partial sums are in the spaces M, M, (¢), C,, Cpp,
C, and L£,, respectively, and also have examined some properties of those sequence
spaces and determined the a— duals of the spaces BS, BV, €8, and the g (¥) —
duals of the spaces €8, and €S8, of double series. Quite recently Bagar and Sever [28]
have introduced the Banach space £, of double sequences corresponding to the well-
known space /, of single sequences and have examined some properties of the space
L,. Quite recently Subramanian and Misra [29] have studied the space x3, (p, ¢, v)
of double sequences and have given some inclusion relations.

Spaces are strongly summable sequences was discussed by Kuttner [31], Maddox

[32], and others. The class of sequences which are strongly Cesaro summable with
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respect to a modulus was introduced by Maddox [8] as an extension of the definition
of strongly Cesaro summable sequences. Connor [33] further extended this definition
to a definition of strong A— summability with respect to a modulus where A = (a,, 1)
is a nonnegative regular matrix and established some connections between strong A—
summability, strong A— summability with respect to a modulus, and A— statistical
convergence. In [34] the notion of convergence of double sequences was presented
by A. Pringsheim. Also, in [35]-[38], and [39] the four dimensional matrix trans-
formation (Az),, = >°0° > 07 ai"Tm, was studied extensively by Robison and
Hamilton. In their work and throughout this paper, the four dimensional matrices
and double sequences have real-valued entries unless specified otherwise. In this paper
we extend a few results known in the literature for ordinary (single) sequence spaces
to multiply sequence spaces. This will be accomplished by presenting the following
sequence spaces: {x eX?iP—limygey oo (> aptf <((m +n)! |xmn\)#+n) = O}
and
{x €N supy > oo Do ap) f (|xmn|ﬁ) < oo} where f is a modulus function
and A is a nonnegative four dimensional matrix. Other implications,general proper-
ties and variations will also be presented.

We need the following inequality in the sequel of the paper. For a,b > 0 and
0 <p<1, we have

(1.1) (a+0b)P <aP + 1",

The double series Zf;j,n:l Tmn 18 called convergent if and only if the double sequence

(8mn) is convergent, where s,,, = Y /"", 2;5(m,n € N) (see [1]).

1/m+n

A sequence x = (x,,,)is said to be double analytic if sup,,,, |Tmn| < oo. The

vector space of all double analytic sequences will be denoted by A2. A sequence

2 = () is called double gai sequence if ((m + n)! [z, [) ™"

— 0 as m,n — oo.
The double gai sequences will be denoted by x?. Let ¢ = {all finite sequences}.
Consider a double sequence x = (z;;). The (m,n)" section x[™" of the sequence
is defined by xmnl = > ity for all myn € N; where 3y denotes the double
sequence whose only non zero term is a ﬁ in the (3, j)th place for each 7,7 € N.
An FK-space (or a metric space) X is said to have AK property if (S,,) is a

Schauder basis for X. Or equivalently z™™ — 2.
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An FDK-space is a double sequence space endowed with a complete metrizable;
locally convex topology under which the coordinate mappings = = (xx) — (Tmn)
(m,n € N) are also continuous.

Orlicz [13] used the idea of Orlicz function to construct the space (L*). Lin-
denstrauss and Tzafriri [7] investigated Orlicz sequence spaces in more detail, and
they proved that every Orlicz sequence space £y, contains a subspace isomorphic to
l, (1 <p < o0). Subsequently, different classes of sequence spaces were defined by
Parashar and Choudhary [14], Mursaleen et al. [11], Bektas and Altin [3], Tripathy
et al. [18], Rao and Subramanian [15], and many others. The Orlicz sequence spaces
are the special cases of Orlicz spaces studied in [6].

Recalling [13] and [6], an Orlicz function is a function M : [0,00) — [0, 00) which
is continuous, non-decreasing, and convex with M (0) = 0, M (z) > 0, for x > 0 and
M (x) — oo as ¢ — oco. If convexity of Orlicz function M is replaced by subadditivity
of M, then this function is called modulus function, defined by Nakano [12] and further
discussed by Ruckle [16] and Maddox [8], and many others.

An Orlicz function M is said to satisfy the Ay— condition for all values of w if there
exists a constant K > 0 such that M (2u) < KM (u) (u > 0). The Ay— condition is
equivalent to M (fu) < KM (u), for all values of u and for ¢ > 1.

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to construct Orlicz

sequence space
||
ly=<x€wW: g M < o0, for some p >0, .
p
k=1

The space £); with the norm

||x||:inf{p>0: E M<@> Sl},
p
k=1

becomes a Banach space which is called an Orlicz sequence space. For M (t) =
t? (1 < p < o0), the spaces {); coincide with the classical sequence space £,,.
If X is a sequence space, we give the following definitions:
(i) X/: the continuous dual of X;
(il) X {a = (amn)
(i) X? = {a = (amn) : D 5 netUmnTmn s convergent, for each z € X };
(iv) X7 = { = (Amn) @ SUP,,, > 1 2%5 | QT | < 00, for each z € X};
(v) let X be an FK-space D ¢; then X7 = {f(Syn) 1 f € X' };

2 =1 | Gmn@mn| < 00, for each z € X };
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Lmtn — oo, for each z € X}.

(vi) X° = {a = (@mn) : SUDp | Crmn T

X XP X7 are called a— (or Kéthe-Toeplitz) dual of X, 3— (or generalized-Kothe-
Toeplitz) dual of X, v— dual of X, §—dual of X respectively. X is defined by Gupta
and Kamptan [20]. It is clear that X* C X# and X® C X”, but X? C X" does not
hold, since the sequence of partial sums of a double convergent series need not to be
bounded.

The notion of difference sequence spaces (for single sequences) was introduced by

Kizmaz [30] as follows
Z(A) ={zx=(x) e w: (Axy) € Z}

for Z = ¢, ¢y and {,, where Axy = xp — xp, for all k € N.

Here ¢, ¢y and /., denote the classes of convergent, null and bounded scalar valued
single sequences respectively. The difference space bv, of the classical space £, is
introduced and studied in the case 1 < p < oo by Bagar and Altay in [42] and in the
case 0 < p < 1 by Altay and Basar in [43]. The spaces ¢ (A), ¢ (A), £ (A) and bu,

are Banach spaces normed by

s 1/p
|z = [z1] + supg>1 |Azg| and |z, = (Z kalp> ,(1<p<o0).
k=1

Later on the notion was further investigated by many others. We now introduce the

following difference double sequence spaces defined by
Z(A) = {z = (Tpmn) €W : (Apy,) € Z}

_ A2 2 _ _
where Z = A » X and Axmn - (xmn - ajanrl) - ($m+1n - xm+1n+1) = Tmn — Tmn+1 —

Tmain + Tmiiny1 for all m;n € N.

2. DEFINITIONS AND PRELIMINARIES

X3 and A3, denote the Pringscheims sense of double Orlicz space of gai sequences

and Pringscheims sense of double Orlicz space of bounded sequences respectively.

Definition 2.1. A modulus function was introduced by Nakano [12]. We recall that
a modulus f is a function from [0, c0) — [0, 00), such that

(1) f(x) =0 if and only if x = 0;

(2) f(z+y) < fx)+f(y), forall >0,y >0

(3) f is increasing;
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(4) f is continuous from the right at 0. Since |f (z) — f(y)| < f(Jz —yl), it

follows from here that f is continuous on [0, 00).

Definition 2.2. Let p,q be semi norms on a vector space X. Then p is said to be
stronger than ¢ if whenever (z,,,) is a sequence such that p (z,,,) — 0, then also

q (Tmn) — 0. If each is stronger than the others, the p and ¢ are said to be equivalent.

Lemma 2.1. Let p and q be semi norms on a linear space X. Then p is stronger
than q if and only if there exists a constant M such that q(x) < Mp(z) for allx € X.

Definition 2.3. A sequence F is said to be solid or normal if (@, ®mn) € F whenever

(mn) € E and for all sequences of scalars (o) with |a,,| < 1, for all m,n € N.

Definition 2.4. A sequence space F is said to be monotone if it contains the canonical

pre-images of all its step spaces.

Remark 2.1. From the two above definitions it is clear that a sequence space F is

solid implies that F is monotone.

Definition 2.5. A set E is said to be convergence free if (y,,,) € E whenever (z,,,) €

E and x,,, = 0 implies that y,,, = 0.

By the gai of a double sequence we mean the gai on the Pringsheim sense that
is, a double sequence x = (z,,) has Pringsheim limit 0 (denoted by P — limx = 0)
such that ((m + n)! |xmn|)m%r" — 0, whenever m,n — oo. We shall denote the space
of all P— gai sequences by x2. The double sequence z is analytic if there exists a
positive number M such that |x]k|ﬂﬁ < M for all j and k. We will denote the set of
all analytic double sequences by A2

Throughout this paper we shall examine our sequence spaces using the following

type of transformation:

Definition 2.6. Let A = (aﬁ?) denotes a four dimensional summability method that
maps the complex double sequences x into the double sequence Ax where the k, {—
th term of Az is as follows:
[ee] (e e}
(Ax),, = Z Z apy Tomn
m=1 n=1

such transformation is said to be nonnegative if a}))" is nonnegative.
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The notion of regularity for two dimensional matrix transformations was presented
by Silverman [40] and Toeplitz [41]. Following Silverman and Toeplitz, Robison and
Hamilton presented the following four dimensional analog of regularity for double
sequences in which they both added an additional assumption of boundedness. This
assumption was made because a double sequence which is P— convergent is not

necessarily bounded.

Definition 2.7. The four dimensional matrix A is said to be RH-regular if it maps

every bounded P—gai sequence into a P—gai sequence with the same P—limit.

In addition to this definition, Robison and Hamilton also presented the following

Silverman-Toeplitz type multidimensional characterization of regularity in [39] and
135].

Theorem 2.1. The four dimensional matriz A is RH-reqular if and only if

RH,: P— lllgrgl ap;" =0 for each m and n;

RH, : P—limiia@” =1;
kit m=1 n=1

RH;3 : P — lkr? Z_l lay)*| = 0 for each n;
RH, : P — 11131; lag)*| = 0 for each m;

RHj : Z Zaﬂ}” is P — convergent; and

m=1 n=1

RHg : there exist positive numbers M and N such that Z lagy| < M.

m,n>N

Definition 2.8. A double sequence (z,,,) of complex numbers is said to be strongly

A— summable to 0, if P —limg, > apy ((m+n)! |z, — 0\)#71 = 0.

Let o be a one to one mapping of the set of positive integers into itself such that
o™(n) = o(c™ !(n)), m =1,2,3,.... A continuous linear functional ¢ on A? is said

to be an invariant mean or a o-mean if and only if

(1) ¢(x) > 0 when the sequence x = (x,,,,) has x,,, > 0 for all m,n.
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11 1
11 ... 1

(2) ¢(e) =1 wheree=| . . . .| and
11 ...1

(3) ¢({$a(m),o(n)}) = ¢({xmn}) for all x € A2

For certain kinds of mappings o, every invariant mean ¢ extends the limit functional
on the space C of all real convergent sequences in the sense that ¢(x) = limz for all
x € C consequently C' C V,, where V, is the set of double analytic sequences all of
those 0— means are equal.

If 2 = (2n), set Tz = (Tx)V/m+" = (Zo(m),o(n))- It can be shown that

V, = {JJ e A?: lim tmn(xn)l/" = Le uniformly inn, L =0 — lim(mmn)l/m+"}

m—00
where

(2 + Ty + ...+ T,/ mHn
m—+1

(2.1) tn () =

we say that a double analytic sequence = (2,,) is 0— convergent if and only if
zeV,.

Definition 2.9. A double analytic sequence z = (z,,,) of real numbers is said to be

o— convergent to zero provided that

1 & .
P —1im — " zgm ) om(e | =0,

pa pq m=1 n=1

uniformly in (k, ¢).

In this case we write o9 — limx = 0. We shall also denote the set of all double o—
convergent sequences by V2. Clearly V2 C A%

One can see that in contrast to the case for single sequences, a P— convergent
double sequence need not be o— convergent. But, it is easy to see that every bounded
P— convergent double sequence is convergent. In addition, if we let o (m) = m + 1,
and o (n) = n+ 1 in then 0— convergence of double sequences reduces to the almost
convergence of double sequences.

The following definition is a combination of strongly A— summable to zero, modulus

function, and o— convergent.
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Definition 2.10. Let f be a modulus, A = (a}}") be a nonnegative RH-regular

11 ...1
11 ...1
summability matrix method and e = | .
11 ...1
We now define the following sequence spaces
X* (4, f)

{x = P_hmzz a) £ (0™ (k) + 0™ (0)! [omag on(0)|) T = 0}’
=0
AQ(A,f):{gz:EA2 SUPZZ (agps") |x0.m k)an(){)mwfwwo<oo}.

m=0 n=0

m=0 n=0
If f(z) = x then the sequence spaces defined above reduce to the following:

X* (4)

1
= {x ex?: P— hmz Z ap;") (k) + o™ (0)! |$am(k),an(z)’) TR — 0} :
m=0 n=0
1
A?(A) {az e AN sup Z Z |a:am (k),0m f)D ORI QNP oo} )

Some well-known spaces are defined by specializing A and f. For example, if
A=

(C,1,1), the sequence spaces defined above reduce to x? (f) and A% (f) as follows

1
(O)! |omw.om(e)]) TEFTO = O} )
m=0 n=0
| k1 )
A? € A*:sup — o) .gn(p | ) TTEFTE <
(f) {w sup Mmozgf(\ﬂﬁ ®.o0)|) o0
As a final illustration, let A = (C,1,1) and f (z) = 2, we obtain the following spaces:
| k1 )
X = {x ex’:P— hrznﬁ ((O’m (k) + o™ (0))! ’xo—m(k%o-n(g)‘)m = 0}
m=0 n=0
and
k—1 (-1

1
o™ (k)4+o™ (£
ke K }xam(’“)ﬂ”(f)l et < OO}'
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3. MAIN RESuULTS

In this section we shall establish some general properties for the above sequence

spaces.
Theorem 3.1. x? (A, f) and A* (A, f) are linear spaces over the complex filed C.

Proof. We shall establish the linearity of x* (A, f) only. The other cases can be treated
in a similar manner. Let x and y be elements in x? (4, f). For A and p in C there
exist integers M, and N, such that |A\| < M, and || < N,. From the conditions (2)
and (3) of Definition 2.1, we granted the following

Z (GZZ”) f ((am (k‘) +o" (f))! |/\.’E0m(k),gn(z) + HYom (k),om (6) Dm
m=0 n=0
<M, Z Z (ap®) £ ((a™ (k) + o™ (0))! |xam(k)7an(£)|)m
m=0 n=0
TN @) £ (0™ (R) 4 0" () g gm0 ) T
m=0 n=0

for all k and ¢. Since x and y are x? (A, f), we have Az + py € x*(A, f). Thus
X% (A, f) is a linear space. This completes the proof. O

Theorem 3.2. x* (A, f) is a complete linear topological spaces with the paranorm

g(@) = Sup Z Z (apy") f (‘xam(k),a”(f)‘)m :

m=0 n=0
Proof. For each z € x*(A, f),g(z) exists. Clearly g () = 0, g(—x) = g(z) and
g(z+y) <g(z)+g(y). We now show that the scalar multiplication is continuous.

Now observe the following

g(Az) = sup Z Z apg’) ‘)\xa'm (k),om (£ )D 7 <(1+[A)g(x)

m=0 n=0
where [|)\|W} denotes the integer part of |)\|m In addition observe
that ¢ (x) and A approach to 0 implies g (Ax) approaches to 0. For fixed A, if z
approaches to 0 then g (Az) approaches to 0. We now show that fixed z,g (\z)
approaches to 0 whenever \ approaches to 0. Let z € x? (A, f), thus

Pt >3 @) 1 (07 () + 0" O) oniy o) TTT) =0

m=0 n=0
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If [\|7 @7 @ < 1 and M € N we have

0 n=0
<D D (@S (((a’” (k) + o™ (f))u|%m(,€)pnw|)m)
m<M n<M
t Z Z (aid") (((Um (F) + 0" ()X |2gm x),0m(0) )W) .
m>M n>M

(3'1) Z Z (ag}n) / (((Um (k> +o" (5))! ’xo'm(k)7o'n(£) Dm> <

m=0 n=0

[NRNe

for k,¢ > N. Also for each (k,¢) with 1 <k < N, 1</¢< N, and since

o0

m=0 n=0

there exists an integer M}, o such that

S @ (0" )+ 0" () [y once]) T ) < £

m>Mk ¢ n>Mk ¢

>3 @) £ (0 () + 0" (0)! [zmamn ) T ) < oo,

49

Taking M = infi<p<n (or) 1<e<nv { M}, we have for each (k,¢) with 1 <k < N or

1<(<N
—_— €
2 2 (k) ( " (k) + 0" (O) [Zomqp.onn|) O “”) <5
m>M n>M
Also from (?7?), for k,¢ > N we have
ﬁ E
IIPIC ( " (k) + 0™ (D) [Eom .m0 ]) T ‘“) <5

m>M n>M

Thus M is an integer independent of (k, ¢) such that

32 3 S (@) £ (0 ) + 0" () [rmgoni]) I ) <

m>M n>M
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Further for \)\|ff’”<">l+a"<‘> < 1 and for all (k, )

Z Z age") ( (k) 4+ o™ (0))! \)\asgm(k)gn(gﬂ)m)

m=0 n=0

<3 S @ £ (0™ ) + 0™ (D) gy nio ) )

m>M n>M
+ 3D (e f (((a’” (k) + " (0))! \A%m(,ﬁ)yan(@)bm)_
m<M n<M
For each (k,¢) and by the continuity of f as A — 0 we have the following

S @) £ (@ )+ 0" () Namg.onio) T )

m<M n<M

Now choose § < 1 such that \)\|0m<">1+f’”(f> < ¢ implies
e €
(3.3) > (e ( " (k) + " (O)! | Az gmry on(e)]) O “)) <3
m<M n<M

It follows that

Z Z ai") ( " (k) 40" (0))! ’)\%m(k),on(z)})m> <e

m=0 n=0
for all (k,¢). Thus g (Ax) — 0 as A — 0. Therefore x? (4, f) is a paranormed linear
topological space.

Now let us show that x? (A, f) is complete with respect to its paranorm topologies.
Let (z%,,) be a cauchy sequence in x* (A, f). Then, we write g (2% —2') — 0 as
s,t — 00, to mean, as s,t — oo for all (k, ()

(3.4)

oo 0

1
Z Z ag’) ( (k) + " (0)! ‘mi—m(k),an(e) — xfﬂ"(k:),aﬂ(é)‘) crm(k)Jro"(Z)) 0.

m=0 n=0

Thus for each fixed m and n as s,t — co. We are granted
f ((m +n)! |xfm - xi,m‘) -0

is a cauchy sequence in C for each fixed m and n. Since C is complete

and so (x5,,,)

we have x¥  — Ty, as s — oo for each (mn). Now from (2.9), we have for ¢ > 0

there exists a natural number N such that

Z Z (amd") f (((Um (k) + o™ (0)! }fcim(k),an(e) - xf‘f’”(k),o’”(@)‘)m) <€

m=0n=0 and s,t>N
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for (k, (). Since for any fixed natural number M, we have from (2.10)
1

Z Z (age") f (((Um (k) + o™ (0))! ‘xim(k),gn(z) - xffm(k),on(e)‘) orite (e)) <€
m<M n<M and s,t>N
for all (k,£), by letting ¢ — oo in the above expression we obtain

1
YD (@ (((Um (k) + 0" (O) [#5my.0m(0) = Tompyono)]) O “)) <e.
m<M n<M and s>N

Since M is arbitrary, by letting M — co we obtain

R T
Z Z agg") ( ™ (k) 4 0" (O) |25 k) o () — Tomk)om(0)]) "m"“”""“’) <e

m=0 n=0
for all (k,¢). Thus g (2z° —z) — 0 as s — oo. Also (z°) being a sequence in x? (4, f)
by definition of x? (A, f) for each s with

I S
Z Z Q') ( " (k) + 0" (O @5m .o — Tommyono)]) ”m(’“)+""<“> —0

m=0 n=0

as (k,0) — oo thus z € x? (4, f). This completes the proof. O

Theorem 3.3. Let A = (a}’) be nonnegative matriz such that

o o0
sup E g (ap") < o0
ke =

m=0 n=0

and let f be a modulus, then x* (A, f) C A% (A, f).

Proof. Let © € x*(A, f). Then by Definition 2.1 of (2) and (3) of the modulus

function we granted the following

ZZ agy") ( ™ (k) + o™ () | zom (k),om M)W)

m=0 n=0
<33 (@™ )+ 0 (O [zamrone — O T ) + £ () DS (e
m=0 n=0 m=0 n=0

There exists an integer NN, such that |0] < N,. Thus we have

Z Z agy") ( (k) + o (0)! |xgm(k)7gn(e)|)m)

m=0 n=0
<> > f (((0’” (k) + 0™ (O)! [Zom(wy.on(e) — O]) 7™ *"”“’) +N,f (1 Z Z (k")
m=0 n=0 m=0 n=0

Since supgy Y oo oo (af) < oo and x € x* (A4, f), we are granted x € A* (A, f)
and this completes the proof. 0
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Theorem 3.4. Let A = (a}’) be nonnegative matriz such that

o o
sup E g (ap") < o0
ke =

m=0 n=0

and let f be a modulus, then A? (A) C A* (A, f).
Proof. Let x € A*(A), so that

Sup D> @i [romp .o

1
o™ (k)+o™(£) < 0.

m=0 n=0
Let € > 0 and choose § with 0 < § < 1 such that f (t) < e for 0 <t <. Consider,
ol - 1
> S (oo )
m=0 n=0
-y > o ([zomr om0 |7 )
m=0

1
n=0 and |[zym (1),an ()| 7 B TD <6

oo oo L
+ E E ag" f (!xgm(k),an(e)’"m““”””“)> .
=0 1
" n=0 and |Iam(k>,o.n(g) | oM (k)+o™(€) >
Then
(3.5)
oo oo L oo 00
E mn oM (k)+om (f) E E mn
CLM f <‘l’0'm(k),o'n(f) (k)+ ()) S € a/ke .

1
n=0 and |Ia"”(k),o-”(é) | o™ (k)+o™(€) S(S

1
For !xgm(k)ﬂn(@{"m““)*"”“) > 0 we use the fact that

1
NN Cid Qe O] RN
|%m(k),a"(e)|m < ‘xa b (Z()S‘ - < |1+ ‘xa (). (2;‘

where [t] denoted the integer part of ¢ and from conditions (2) and (3) of Definition

2.1, modulus function we have

| T D)

1 X gm on
f (|$am(k),a"(é) ”m(’“”“"m) < |1+ 22 .0n10 £(1)

J

1
om on
|Zom @),on ()] OO

J

<2f(1)
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Hence

Z S s ([empenn| )

n 0 and |xmn\ m"'“ >0

1
‘ T R+ (0)

mn
Gpp ‘%m(k),anw)

m=0 n=0

which together with inequality (3.5) yields the following

Z Za (\xg )UW)‘W>

m=0 n=0
o0 oo 1
Z Z kf + — Z Za/k n |$o-m(k. on g)la (k)+o™ ()
m=0 n=0 m=0 n=0
since supgy > oo > oo (ap) < oo and x € A% (A) we are granted that x € A (A, f)
and this completes the proof. 0

Definition 3.1. Let f be modulus a}j"— a nonnegative RH-regular summability
matrix method. Let p = (pmn) be a sequence of positive real numbers with 0 <
Pmn < SUPPmn = G and D = max (1,2G_1). Then for am,, bym, € N, the set of
complex numbers for all m,n € N, we have

@+ bun| 7 < D { |75+ by 77 |

Let (X, q) be a semi normed space over the field C of complex numbers with the semi

norm ¢. We define the following sequence spaces:

x> (A, f,p,q)

- — 1
=rex’: P=im> 3 (o ") | (0 (@™ (k) + 0™ (0)! [gm g 0m0 ) T )|
=0.

Pmn

A* (A, f.p.q)

=z e A sup Z Z ay) [ ( |xgm (k),om z)D "m““)i"n“))rm < 00.

m=0 n=0
Theorem 3.5. Let f1 and fy be two modulus. Then x* (A, f1,p,q) (x* (4, f2,p,q) C
X2 (A7 fl + f27p7 q)

Proof. The proof is easy so omitted. 0J

Remark 3.1. Let f be a modulus ¢; and ¢» be two seminorm on X, we have
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(1) X2 (A7 f?pv ql) ﬂXQ (A7 f7p7 QQ) g X2 (A7 f7p7 q1 + 92)
(2) If g1 is stronger than gy then x* (A, f,p,q1) € X* (4, f,p, ¢2).

(3) If q1 is equivalent to q2 then X2 (AJ f7p7 QI) = X2 (AJ f7p7 QQ)

Theorem 3.6. Let 0 < ppup < T for all m,n € N and let {g:’n—‘z} be bounded. Then
X (A, f,r,9) C X2 (A, f,p,9).

Proof. Let
(36) T C X2 (A, f; r q) :
SO (@) [ (a (@™ ) + 0™ () [rgm sy o) ) |
m=0 n=0
Let
B ton =2 > (@) [f (q (o™ (k) + o™ (0))! |%m(k),an(e)|)m)]%n,

we have Yin = Pomn/Tmn- SINCE D < T, We have 0 < 4y < 10 Let 0 <y < Y-

Then
_{ tony  if (b > 1)

Y =0, i (b < 1)
0 i (b > 1)
(3.8) Umn = { by I (o < 1)

tn = Ump + U, Tm0 = w)me 4 v)mn,

Now, it follows that
(3.9) U < Uy, < by, v < wl

Since t)mr = y)mn + p)me - we have t)mr < ¢, +v),.. Thus,

mn

>3 @) [£ (4 (07 ) + 0" @) o) ) ]

Tmn

= i i (axe") [f (q (0™ (k) + 0™ (0))! |mam(k)7an(e)|)m)]

Pmn /"'mn

i (ars") [f (q ((o™ (k) + o™ (¢))! |x0m(k)7an(£){)m>%"]

<3 @) [1 (407 )+ 7 O fromronca) )|
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> (@ [f (q (0™ (k) + o™ ()| gm k). 0n 0 Dmﬂp
m=0 n=0
<22 ai) [f (q (0™ (k) + ™ (0))! ‘xam(k),o"(é)bm)rmn.
m=0 n=0
But
P— %17;0; (agd") :f (q ((6™ (k) + o™ (0))! \%m(k),w)‘)m>: -

Therefore we have

7 Pmn

P—lim >3 (@) |1 (a (07 (8) + 0™ () [zgmpy.on0)) 7@ )| = 0.

m=0 n=0
Hence
(3.10) ze X (A f,p.q).
From (?7?) and (?7) we get x € x* (A, f,r,q) Cx € x> (A, f,p,q). O

Theorem 3.7. The space x* (A, f,p,q) is solid and such are monotones.

Proof. Let © = (2mn) € X2 (A, f,p,q) and (q,,) be a sequence of scalars such that,
|atmn| < 1 for all m,n € N. Then

Z Z (ary") f (q ((o™ (k) + o™ (0))! ‘amnx(,m(k),a"(f)‘)mﬂ

Pmn

Pmn

< Z Z (ae") :f (q ((Um (k) + o™ (O)! ‘%m(k),gn(z)‘)mﬂ N,

Pmn

i i (arg") :f (q ((e™ (k) + o™ (0))! \amnxam(k),gn(@‘)m)}

Pmn

< Z Z (ak") :f (q (0™ (k) + o™ (0))! ‘%m(k),an(e)‘)mﬂ N,

for all m,n € N. This completes the proof. O
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