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SOME NOISELESS CODING THEOREM CONNECTED WITH

HAVRDA AND CHARVAT AND TSALLIS’S ENTROPY

SATISH KUMAR 1 AND RAJESH KUMAR 2

Abstract. A new measure Lβ
α, called average code word length of order α and

type β has been defined and its relationship with a result of generalized Havrda and
Charvat and Tsallis’s entropy has been discussed. Using Lβ

α, some coding theorem
for discrete noiseless channel has been proved.

1. Introduction

Let ∆n = {P = (p1, p2, . . . , pN) , pi ≥ 0,
∑

pi = 1}, N ≥ 2 be the set of all finite

discrete probability distributions, for any probability distribution (p1, p2, . . . , pN) =

P ∈ ∆n.

Shannon [23] defined entropy as:

(1.1) H (P ) = −∑
pi log pi.

Throughout this paper,
∑

will stand for
∑n

i=1 unless otherwise stated and loga-

rithms are taken to the base D (D > 1).

Let a finite set of N input symbols

X = {x1, x2, . . . , xN}
be encoded using alphabet of D symbols, then it has been shown by Feinstien [5] that

there is uniquely decipherable instantaneous code with length n1, n2, . . . , nN if and
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only if

(1.2)
∑

D−ni ≤ 1

where D is the size of code alphabet.

If

(1.3) L =
∑

nipi

is the average codeword length then for a code which satisfies (1.2) it has also been

shown by Feinstien [5], that

(1.4) L ≥ H (P )

with equality if and only if

(1.5) ni = − logD pi for i = 1, 2, . . . , N

and that by suitable encoded into words of long sequences, the average length can be

made arbitrary close to H (P ). This is Shannon’s noiseless coding theorem.

By considering Renyi’s [20] entropy, a coding theorem and analogous to the above

noiseless coding theorem has been established by Campbell [4] and the authors ob-

tained bounds for it in terms of Hα (P ) = 1
1−α

logD

∑
Pα

I , α > 0 (α 6= 1) . Kieffer

[13] defined a class rules and showed Hα (P ) is the best decision rule for deciding

which of the two sources can be coded with expected cost of sequences of length n

when n → ∞, where the cost of encoding a sequence is assumed to be a function

of length only. Further Jelinek [9] showed that coding with respect to Campbell [4]

mean length is useful in minimizing the problem of buffer overflow which occurs when

the source symbol are being produced at a fixed rate and the code words are stored

temporarily in a finite buffer.

Hooda and Bhaker [8] consider the following generalization of Campbell [4] mean

length:

Lβ (t) =
1

t
logD

{∑
pβ

i D−tni

∑
pβ

i

}
, β ≥ 1

and proved

Hβ
α (P ) ≤ Lβ (t) < Hβ

α (P ) + 1, α > 0, α 6= 1, β ≥ 1

under the condition
∑

pβ−1
i D−ni ≤ ∑

pβ
i
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where Hβ
α (P ) is generalized entropy of order α = 1

1+t
and type β studied by Aczel

and Daroczy [1] and Kapur [10]. It may be seen that the mean codeword length (1.3)

had been generalized parametrically and their bounds had been studied in terms of

generalized measures of entropies. Here we give another generalization of (1.3) and

study its bounds in terms of generalized entropy of orderα and type β.

Longo [15], Gurdial and Pessoa [6], Singh, Kumar and Tuteja [24], Parkash and

Sharma [18], Hooda and Bhaker [8], Khan, Bhat and Pirzada [12], Arndt [2], Baig

and Ahmad [3], Kerridge [11], Kraft [14], Mc-Millan [16], Pirzada and Bhat [19], Roy

[21] and Satish Kumar [22] have studied generalized coding theorems by consider-

ing different generalized measure of (1.1) and (1.3) under condition (1.2) of unique

decipherability.

In this paper we study some coding theorems by considering a new function de-

pending on parameters α and β. Our motivation for studying this new function is

that it generalizes some entropy function already existing in literature Havrda and

Charvat [7] and Tsallis [25] entropy which is used in physics.

2. Coding Theorem

In this section, we define information measure as

(2.1) Hβ
α (P ) =

1

α− 1

[
1−

∑
pαβ

i∑
pβ

i

]
,

where α > 0 ( 6= 1), β > 0, pi > 0,
∑

pi = 1, i = 1, 2, . . . , N .

(i) When β = 1, (2.1) reduces to Havrda and Charvat [7] and Tsallis’s [25] entropy

i.e.,

(2.2) Hα (P ) =
1

α− 1

[
1−∑

pα
i

]
.

(ii) When β = 1, α → 1 then (2.1) reduces to Shannon’s [23] entropy

(2.3) H (P ) = −∑
pi log pi.

(iii) When α → 1 then (2.1) reduces to Mathur and Mitter’s [17] entropy for the β-

power distribution, i.e.,

(2.4) Hβ (P ) = −
∑

pβ
i log pβ

i∑
pβ

i

.
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Definition 2.1. The mean length Lβ
α with respect to information measure is defined

as

(2.5) Lβ
α =

1

α− 1


1−





∑
pβ

i

(
1

∑
pβ

i

) 1
α

D−ni(α−1
α )





α
 ,

where α > 0 ( 6= 1), β > 0, pi > 0,
∑

pi = 1, i = 1, 2, . . . , N .

(i) When β = 1, Then (2.5) reduces to new mean codeword length, i.e.,

(2.6) Lα =
1

α− 1

[
1−

{∑
piD

−ni(α−1
α )

}α]
.

(ii) When β = 1, α → 1, then (2.5) reduces to mean code length defined by Shannon

[23], i.e.,

L =
∑

nipi.

We establish a result, that in a sense, provides a characterization of Hβ
α (P ) under

the condition of unique decipherability.

Theorem 2.1. For all integers D > 1

(2.7) Lβ
α ≥ Hβ

α (P )

under the condition (1.2) equality holds if and only if

(2.8) ni = − logD

(
pαβ

i∑
pαβ

i

)
.

Proof. We use Holder’s inequality

(2.9)
∑

xiyi ≥
(∑

xp
i

) 1
p

(∑
yq

i

) 1
q

for all xi ≥ 0, yi ≥ 0, i = 1, 2, . . . , N when P < 1 ( 6=1) and p−1 + q−1 = 1, with

equality if and only if there exists a positive number c such that

(2.10) xp
i = cyq

i .

Setting

xi = p
αβ

α−1

i

(
1

∑
pβ

i

) 1
α−1

D−ni ,

yi = p
αβ
1−α

i

(
1

∑
pβ

i

) 1
1−α

,

p = α−1
α

and q = 1 − α in (2.9) and using (1.2) we obtain the result (2.7) after

simplification for 1
α−1

> 0 as α > 1.
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The equality holds if and only if D−ni =
pαβ

i∑
pαβ

i

, i = 1, 2, . . . , N which is equivalent to

ni = − logD(
pαβ

i

Σpαβ
i

), i = 1, 2, . . . , N.

¤

Theorem 2.2. For every code with lengths {ni}, i = 1, 2, . . . , N , Lβ
α can be made to

satisfy

(2.11) Lβ
α < Hβ

α (P ) D1−α +
1

α− 1

[
1−D1−α

]
.

Proof. Let ni be the positive integer satisfying, the inequalities

(2.12) − logD

(
pαβ

i∑
pαβ

i

)
≤ ni < − logD

(
pαβ

i∑
pαβ

i

)
+ 1.

Consider the intervals

(2.13) δi =

[
− logD

(
pαβ

i∑
pαβ

i

)
, − logD

(
pαβ

i∑
pαβ

i

)
+ 1

]

of length 1. In every δi, there lies exactly one positive number ni such that

(2.14) 0 < − logD

(
pαβ

i∑
pαβ

i

)
≤ ni < − logD

(
pαβ

i∑
pαβ

i

)
+ 1.

It can be shown that the sequence {ni}, i = 1, 2, . . . , N thus defined, satisfies (1.2).

From (2.14) we have

ni < − logD

(
pαβ

i∑
pαβ

i

)
+ 1

⇒ D−ni >

(
pαβ

i∑
pαβ

i

)
D−1

(2.15) ⇒ D−ni(α−1
α ) >

(
pαβ

i∑
pαβ

i

)
α−1

α D
1−α

α ,

multiplying both sides of (2.15) by pβ
i

(
1∑
pβ

i

) 1
α

, summing over i = 1, 2, . . . , N and

simplification for 1
α−1

as α > 1, gives (2.11). ¤

Theorem 2.3. For every code with length {ni}, i = 1, 2, . . . , N of Theorem 2.1, Lβ
α

can be made to satisfy

(2.16) Lβ
α ≥ Hβ

α (P ) > Hβ
α (P ) D +

1

α− 1
(1−D) .
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Proof. Suppose

(2.17) n̄i = − logD

(
Pαβ

i∑
pαβ

i

)
.

Clearly n̄i and n̄i + 1 satisfy ‘equality’ in Holder’s inequality (2.9). Moreover, n̄i

satisfies Kraft’s inequality (1.2). Suppose ni is the unique integer between n̄i and

n̄i + 1, then obviously, ni satisfies (1.2).

Since α > 0 ( 6= 1), we have

∑

pβ
i

(
1

∑
pβ

i

) 1
α

D−ni
(α−1)

α




α

≤

∑

pβ
i

(
1

∑
pβ

i

) 1
α

D−n̄i
(α−1)

α




α

< D


∑

pβ
i

(
1

∑
pβ

i

) 1
α

D−n̄i
(α−1)

α




α

.

(2.18)

Hence, since 
∑

pβ
i

(
1

∑
pβ

i

) 1
α

D−n̄i
(α−1)

α




α

=

∑
pαβ

i∑
pβ

i

,

(2.18) becomes

∑

pβ
i

(
1

∑
pβ

i

) 1
α

D−ni
(α−1)

α




α

≤
∑

pαβ
i∑
pβ

i

< D

(∑
pαβ

i∑
pβ

i

)

which gives (2.16). ¤
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