
Kragujevac Journal of Mathematics

Volume 35 Number 1 (2011), Pages 119–138.
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Abstract. In this paper we present a genetic algorithm (GA) for solving NP-hard
Multiple Warehouse Layout Problem (MLWLP). New encoding scheme with ap-
propriate objective functions is implemented. Specific representation and modified
genetic operators keep individuals correct and help in restoring good genetic mate-
rial and avoiding premature convergence in suboptimal solutions. The algorithm is
tested on instances generated to simulate real life problems. Experimental results
show that the algorithm reaches most of optimal solutions for problems containing
up to 40 item types. The algorithm is successfully tested on large scale problem
instances that can not be handled by CPLEX solver due to memory limits.

1. Introduction

The goal of layout problem is to determine locations required for several depart-

ments in a given physical space. In practice, these layout problems are often solved

by intuition using the capabilities of a human designer. However, in situations when

we need fast and effective solutions for large scale input data, a human is at a dis-

advantage compared to a computer. Increasing needs for fast and effective solutions,

especially in situations with very limited space, motivate a number of researches to

investigate this problem in order to find solutions to reduce operational costs.

Warehouse layout is one of the main issues of warehousing, which is a key compo-

nent of most logistical systems. Effective warehouse planning may help in reducing
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material handling cost and increasing productivity as well. Therefore, it plays an

important role in making the best strategy to manage the warehouse. The goal of

the Warehouse Layout Problem (WLP) is to determine locations of items in a stor-

age system by taking into account certain constraints. In practice, there exist two

types of the WLP: single-level WLP (SLWLP) and multiple-level WLP (MLWLP).

In the SLWLP, item transportation costs are directly related to the positions of cells

(cells that are closer to an I/O port assume lower transportation costs for items). In

the MLWLP, the priority of cells in different levels is item type-dependent and the

closeness of the cell has to be considered both horizontally and vertically.

The earliest work on multiple-level layout problems is presented in [1]. The authors

investigated the problem of relative location of facilities in a multiple- floor building.

They proposed a heuristic solution procedure, based on the CRAFT heuristic [2]

Notable works in solving the MLWLP can be found in [3] and [4]. In [3], the

authors developed a genetic algorithm approach by using the multiple storage areas

in different levels of a warehouse. At each level, the same set of cells is used to store

several item types (according to the inventory requirement), in order to minimize

total transportation cost in a planning period. An integer programming model was

proposed, due to the similarity with the NP-hard problem described in [5]. In [4],

the authors extended their previous work and proposed two hybridizations of the GA

and the path relinking strategy. The first hybrid method integrated path relinking as

one of the evolution operations in the GA, and the second one applied path relinking

when the GA was trapped in a local optimum.

Recent contribution in solving MLWLP [6] is presented by the same authors as

in [4]. The authors investigated a new variant of the MLWLP, named the Multi-

Level Warehouse Layout Problem with Adjacency Constraints (MLWLPAC). In the

MLWLPAC it is required that the same item type is located in adjacent cells, while

horizontal and vertical unit travel costs are product dependent. They proposed an

integer programming model for the formulation of the MLWLPAC and developed

several tabu search techniques for solving it.

Similar problem was investigated in [7], where different types of items needed to

be placed in a multi-level warehouse and the monthly demand of each item type and

horizontal distance travelled by clamp track are treated as fuzzy variables. Another

recent contribution in this field is a study by Önüt et al. in [8]. The authors used

a particle swarm optimization algorithm to manage multiple-level warehouse shelf
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configuration in order to minimize annual carrying costs. A detailed survey of various

contributions of warehousing systems is out of scope of this paper and can be found

in [9].

1.1. PROBLEM DESCRIPTION

In the variant of the MLWLP considered in this paper, we have the following

assumptions. The warehouse has multiple-level storage space, divided in cells with

one elevator to transport items from the ground to other levels. It is assumed that the

elevator has enough capacity, which means that the vertical transportation operation

is always available. Each level is divided into cells of the same dimension. The number

of cells on different levels may vary. There is only one I/O port on the ground, placed

at the same vertical location as the elevator. Different item types need to be stored

in the multiple-level warehouse. Each item type has its own monthly demand and

inventory volume, vertical unit transportation cost (i.e. the cost to move one unit of

the item between the ground and other level) and horizontal unit transportation cost

(i.e. the cost to move one unit of the item 1m in horizontal distance). Each item

must be assigned to exactly one cell. A cell may store more than one item type. The

objective is to minimize the total vertical and horizontal transportation cost.

1.2. MATHEMATICAL FORMULATION

In this paper, the formulation of the MLWLP from [3] is used. Suppose that J, L,Kl

represent the total number of item types, levels and cells available on the l− th level,

respectively. The notation of the problem parameters is given in Table 1. Binary

variables xjlk ∈ {0, 1} are introduced, taking the value of 1 if the j-th item type is

assigned to the k-th cell of the level l, 0 otherwise.

The arrangement of the item types (the solution of the problem) is considered

feasible if: (i) each item type is assigned to exactly one cell and (ii) no cell capacity

is violated.

Using the above notation, the problem can be represented as following integer-

programming formulation [3]:

(1.1) min
J∑

j=1

L∑

l=1

Kl∑

k=1

Qj(DlkC
h
j + Cv

jl)xjlk
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j ∈ {1, 2, ..., J} item types
l ∈ {1, 2, ..., L} levels

k ∈ {1, 2, ..., Kl} available cells for the l-th level
Qj monthly demand of the item type j
Sj inventory requirement of the item type j
Ch

j horizontal unit transportation cost of the item type j
Cv

jl vertical unit transportation cost
of the item type j to the level l

A storage capacity of a cell (same for all cells)
Dlk horizontal distance from the cell k on

the level l to the I/O port or eleveator

Table 1. List of parameters for the MLWLP

subject to

(1.2)
L∑

l=1

Kl∑

k=1

xjlk = 1, for j = 1, 2, ..., J

(1.3)
J∑

j=1

Sjxjlk ≤ A, for l = 1, 2, ..., L, k = 1, 2, ..., Kl

(1.4) xjlk ∈ {0, 1}, for all j, l, k.

The objective function (1.1) minimizes the total horizontal and vertical transporta-

tion cost of all item types. Constraints (1.2) provide that each item type must be

assigned exactly to one cell in the warehouse. By constraints (1.3) capacity violation

in cells is prevented. Binary nature of variables xjlk is determined by (1.4). The

MLWLP is proved to be NP-hard, since it is equivalent to the problem SPi from [5]

when number of levels set to L = 1.

Example 1.1. Suppose that we have 5 item types (J = 5), two levels (L = 2) and 3

cells for each level (K1 = K2 = 3). Let capacity of each cell be equal to 16 (A = 16).

For each item type, monthly demands, inventory requirements, horizontal costs and

vertical costs for both levels (L1 and L2), are given in Table 2. Horizontal distances

from the cells to the I/O port are given in Table 3.
If item types are denoted as 1, 2, 3, 4 and 5 and levels as Level I and Level II, one

solution is given in Table 4. We see that the first cells from both levels are left empty,

while in second cell of the first level two item types (3 and 5) are placed. This is not
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Item Mon. demand Inv. req. H. cost V. cost L1 V. cost L2

1 136 16 13.258073 1.672291 5.205750
2 32 16 13.470847 3.398790 6.218008
3 127 7 13.816301 8.647548 13.281618
4 15 11 12.972679 2.108475 2.963847
5 72 7 12.028499 3.081751 8.347578

Table 2. Input data for simple example

Level Cell1 Cell2 Cell3

1 4 2 3
2 4 2 3

Table 3. Horizontal distances

Cell1 Cell2 Cell3
Level I 3,5 2
Level II 1 4

Table 4. One solution of the problem

a requirement violation, since the sum of inventory requirements of these two item

types is 14 (7 + 7), which is less than the cell capacity (16).

Transportation costs for each item type are calculated as follows. For item type 1:

136 ∗ (2 ∗ 13.258073 + 5.205750) = 4314.177856, for item type 2: 32 ∗ (3 ∗ 13.470847 +

3.39879) = 1401.962592, for item type 3: 127∗(2∗13.816301+8.647548) = 4607.57905,

for item type 4: 15 ∗ (3 ∗ 12.972679 + 2.963847) = 628.22826 and for item type 5:

72 ∗ (2 ∗ 12.028499 + 3.081751) = 1953.989928. The overall cost (objective value) is

equal to 12905.93769. This solution is verified as optimal by CPLEX.

2. Genetic Algorithm for Solving MLWLP

GAs are complex and adaptive algorithms that are often used for solving robust

optimization problems. They work over a population of individuals, where each popu-

lation is a subset of the total search space and each individual represents one solution

of the problem. Fitness value is assigned to each individual, indicating its relative

quality in the population. From generation to generation GA tries to produce the

improvement of every solution’s quality, as well as better average fitness of the whole
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population. It is obtained by using genetic operators: selection, crossover and muta-

tion. Detailed description of GA is out of this paper’s scope and can be found in [10]

and [11]. Some recent works in GA on various optimization problems show that GAs

often produce high quality solutions in a reasonable computational time [12], [13] and

[14].

The basic scheme of GA can be represented as: [15]:

Input Data();

Population Init()

while not Finish() do

for i:=1 to Npop do

obj[i] := Objective Function(i);

endfor

Fitness Function();

Selection();

Crossover();

Mutation();

endwhile

Output Data();

Npop denotes the number of individuals in a population and obj[i] is the objective

value of the i-th individual.

2.1. REPRESENTATION AND OBJECTIVE FUNCTION

Proposed GA implementation uses the binary representation of individuals. The

genetic code of an individual consists of J genes (J is the number of item types to

be arranged into cells). Each gene corresponds to one item type and consists of c
√

ng

bits, where ng is the total number of cells and c is a constant with an appropriate

value.

For each item type the array of cells is sorted in ascending order, according to

distance to that specific item. Suppose that first ”1” in a gene (looking from left to

right) is located at the p-th bit (note that in each gene the numeration of bits starts

from 0). That means that the current item is assigned to its p-th nearest cell. In

the situation when all bits in a gene are equal to 0, the c
√

ng-th cell is chosen. If
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the chosen cell doesn’t have enough capacity for the item, we take the next cell with

sufficient capacity from the sorted array.

The idea of introducing the sorted array of cells for each item comes from the

observation that in optimal solutions the indices of ”closer” cells appear often in the

optimal solution, while the indices of ”far away” cells are rare. We should also note

that optimal solutions usually do not involve allocation of each item to its nearest

cell.

By sorting the array of cells (for each item) in non-decreasing order of distances, it

is ensured that closer cells have higher priority. In this way our search is directed to

”closer” cells, while the ”far away” ones are considered with smaller probability.

Arranging the array of cells is performed for each item type. This may require

additional CPU time, but notice that this action is performed only once at the be-

ginning of the algorithm. If the total number of cells is ng and total number of item

types is J , the running-time complexity of this step is O(Jng log ng). Although the

total running time is slightly longer, our experiments show that this strategy can

significantly improve the quality of solutions.

Calculating of the objective function of an individual is as follows. For each item

type, the array of cells is arranged in nondecreasing order with respect to distances

to the current cell. We take the gene that corresponds to the current item type and

find the index p of the first appearance of bit ”1”. The found index p indicates that

the current item type is assigned to its p-th nearest cell. In the case that this cell

has insufficient capacity, we take the next one with enough capacity from the sorted

array of cells.

After the assigning procedure has been performed, the objective value is simply

evaluated by summing the costs for each item type.

Example 2.1. Using the same input data as in Example 1.1, the genetic code

010|110|001|000|010

indicates that the first item is assigned to the second nearest cell (cell 2 on Level II),

the second one to its nearest cell (cell 2 on Level I) and the third item to the third

nearest cell (cell 3 on Level I). The gene corresponding to the fourth item contains

three zeros, which means that the item is assigned to the fourth nearest cell (cell 3 on

Level II). The fifth item is attempting to be assigned to the second nearest cell (cell

2 on Level II), but that cell is full, because it already contains item type 1 (inventory
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requirement for that item type is equal to cell capacity - 16). So, we are trying to place

the fifth item to the next cell (the third nearest), which is cell 3 on Level I. This cell is

not empty (it contains item type 3 with the inventory requirement 7) and by assigning

the fifth item this cell, the inventory requirement will not be violated. Finally, on the

first level cell 1 is empty, cell 2 contains item type 2 and cell 3 contains two item types

(3 and 5). On the second level first cell is empty, the second cell contains item type

1 and the third cell item type 4. The total cost of this assignment is 15095.59274.

The optimal solution presented in Example 1.1 is encoded as

011|001|111|001|100. The first item type is assigned to the second nearest cell (cell

2 on Level II) and the second and the fourth item types to the third nearest cells

(cells 3 on the Level I and Level II, respectively). The third and the fifth item

types are assigned to the cell 2 on Level I, which is the nearest to both item types.

Note that the representation of optimal solution may not be unique. For example,

010|001|100|001|101 also corresponds to the same (optimal) solution.

2.2. GENETIC OPERATORS

The algorithm uses fine-grained tournament selection (FGTS) [16] that is an im-

provement of standard tournament selection. It is used in cases when the average

tournament size Ftour is desired to be fractional. The FGTS realizes two types of

tournaments: the first type is held k1 times and its size is [Ftour] + 1. The second

type is realized k2 times with [Ftour] participants. In our implementation, Ftour is set

to 5.4. For example, if the FGTS is applied to Nnonel = 50 non-elitist individuals,

tournaments are held k1 = 20 and k2 = 30 times with sizes 6 and 5 respectively. The

running time for the FGTS operator is O(Nnonel ∗Ftour). In our GA implementation,

Ftour and Nnonel are considered to be constant (not depending on a problem size),

which gives a constant time complexity.

Standard one-point crossover operator is implemented in the proposed GA. It ex-

changes whole genes of parent-individuals after randomly chosen crossover point,

producing two individuals-offspring. The crossover is performed with the probability

pcross = 0.85.

Offspring generated by a crossover operator are subject to mutation with frozen

bits. The mutation operator is realized by changing a randomly selected gene in the

genetic code. The probability of mutation GAprob depends on starting probability
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parameter StartP (in our case, StartP = 1.4) and the number of bits representing

each gene, as it is shown by the formula:

(2.1) GAprob =
StartP

c
√

ng

,

where ng is the total number of cells, and c is constant(in our case c = 3).

During the GA execution it may happen that (almost) all individuals in the pop-

ulation have the same bit value on certain position. These bits are called frozen. If

the number of frozen bits is nf , the search space becomes 2nf times smaller and the

possibility of premature convergence rapidly increases [17]. Selection and crossover

operators can not change any frozen bit value and basic mutation rate is often insuf-

ficiently small to restore lost subregions of the search space. However, if we increase

basic mutation rate significantly, genetic algorithm becomes random search. For this

reason, basic mutation rates are increased only on frozen bits, by multiplying the

basic mutation rate by the coefficient called frozen factor. In our case, the frozen

factor is set to 5.5.

2.3. OTHER GA ASPECTS

The initial population consists of 150 individuals. Each gene of an individual is

randomly generated with uniform probability. One-third of the population is replaced

in every generation (Nnonel = 50), except the best 100 individuals that directly pass

to the next generation. These elite individuals preserve highly fitted genes of the

population. Their objective values are calculated only in the first generation. The

applied encoding scheme excludes the appearance of incorrect individuals in the initial

population.

If an individual with the same genetic code repeats in the population, its objective

value is set to zero. The selection operator disables duplicated individuals from

entering the next generation. This strategy helps to preserve the diversity of genetic

material and to keep the algorithm away from the local optima trap. Individuals with

the same objective value, but different genetic codes may dominate in the population

after certain number of iterations. If their codes are similar, it may cause a premature

convergence of the GA. For this reason, we have limited the appearance of these

individuals to some constant Nrv to number 40.

Note that proposed GA concept is quite different from other evolutionary -based

approaches dealing with the same variant of MLWLP. In the GA methods described
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in [4], both proposed approaches use path relinking as a main strategy for achieving

good quality solutions and diversity of genetic material. In the first approach, path

relinking is used as a crossover operator, while in second one local search uses path

relinking to avoid premature convergence in suboptimal solutions.

The main idea of the GA proposed in this paper is the use of effective representation

of individuals and problem-specific objective function. The key aspects of the GA

concept are good initial assignment and good searching strategy, based on a principle

that item types should generally be assigned to ”closer” cells. Genetic operators,

adequate to the considered problem, are chosen and implemented in such a way to

keep the efficiency of the algorithm. The increase of mutation rate on frozen bits and

several other GA aspects mentioned above keep the diversibility of genetic material

and prevent the GA to finish in local optimum.

Computational results presented in Chapter 3. show that our GA approach achieves

high-quality solution. This indicates that local search could not significantly improve

the solutions obtained by evolutionary based method, so that any local search would

unnecessary increase the execution time of the algorithm. Direct application of genetic

operators to the individuals and the absence of local search makes the proposed GA

very fast, even for large scale instances, which is proved by computational results, as

it can bee seen from Chapter 3.

3. Computational Results

In this section we present and discuss computational results of the proposed GA

method. The GA implementation was coded in C programming language. All tests

were carried out on the Intel Core 2 Quad Q9400 @2.66 GHz with 8 GB RAM. In

order to provide optimal solutions for small size problem instances, an integer linear

programming model for the MLWLP was tested on CPLEX optimization package

version 10.1(www.ibm.com/software/integration/optimization/cplex-optimizer/).

Since instances from [3] were unavailable to us, we have generated instances in

the same way, based on the characteristics of the real problems. Input and output

parameters of the algorithm for generating instances are given in Table 5 and Table

6, respectively. In the first and the second column (of Tables 5 and 6) parameter

names and description are given. In the last column of Table 5 input values of the

parameters are presented. The last column of the Table 6 shows the way of calculating

the output values.
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Parameter Description Value
nj number of items for small instances: 10-40

for large instances: 100-400
nl number of levels 2-5
A cell capacity (same for all cells, A = 16)
α controls the perc. of cells with

same distance
α ∈ [0, 1]

β controll parameter β ∈ [0.5, 1]
parafloor[l] for each level l, controlling pa-

rameter
{1, 1.5, 2.0, 2.6, 3.1}

Table 5. Input parameters for generating an instance

Parameter Description Value
70% of item types: less than
A/2

s[j] inventory requirement 20% of item types: belongs
to [A/2, A)
10% of item types: equal to
A

kl[l] array of no. of cells on the level l 1.5
∑nj

j=1 s[j]/A/nl
ng total number of cells

∑nl
m=1 kl[m]

q[j] monthly demand q[j] ∈ (0.25 ∗ s[j], 35 ∗ s[j])
ch[j] horizontal unit cost [10,15]

d[l][k] hor. dist. from cells to I/O port [2, 2α · kl[1]].
d[l][k] = d[1][k], l = 2..nl

cv[j][l] vertical unit cost (0, β ∗ ch[j] ∗ d[1][kl[1]] ∗
parafloor[l])

Table 6. Output parameters of generating an instance

Tables 7-11 provide results of the GA approach for small-size problem instances

(J ≤ 40, L ≤ 5), while Tables 12-13 contain results obtained on large instances

(100 ≤ J ≤ 400 ). For each combination of number of item types and levels, the

GA was benchmarked on five instances (for small dimensions) and two instances (for

large dimensions), varying the parameter α. For each problem instance, the GA was

run 20 times. GA results in Tables 7-13 are presented as follows. In the first three

columns, number of item types, levels and parameter α are given. The next column

- opt contains the optimal solution of the current instance, obtained by CPLEX. In
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Tables 12-13, the column opt is omitted, since on these large-scale instances CPLEX

stops without generating any solution, due to memory limit.

The best GA value is given in the column GAbest, with mark opt in cases when GA

reached optimal solution known in advance. Average time needed to detect the best

GA value is given in t column, while ttot represents average total time (in seconds)

needed for finishing the GA. On average, the GA stopped after gen generations. The

solution quality in all 20 executions (i = 1, 2, . . . , 20) is evaluated as a percentage

gap named agap = 1
20

∑20
i=1 gapi, where gapi = 100 ∗ soli−Opt.sol

Opt.sol
is evaluated with

respect to the optimal solution Opt.sol, or the best-known solution Best.sol, i.e.

gapi = 100 ∗ soli−Best.sol
Best.sol

in cases where no optimal solution is found (soli represents

the GA solution obtained in the i-th execution). Standard deviation of the average

gap σ =
√

1
20

∑20
i=1(gapi − agap)2 is also presented.

Computational experiments show that for most small instances less than 500 gener-

ations were enough for GA to find the best/optimal solution. In several cases, better

solutions were found when the algorithm used up to 5000 generations. However,

considering that the algorithm is very fast, the usage of more generations is not a

disadvantage of the GA. For the large-scale instances, the maximal number of 5000

generations is set as a stopping criterion. Algorithm also stops if the best individ-

ual or the best objective value remains unchanged through Nrep = 2000 successive

generations respectively.

It is evident from Tables 7-11 that the GA quickly reaches all optimal solutions

for the instances with up to 30 item types, with the exception of three instances.

The column agap shows that for all problems with up to 20 item types (except one),

the GA reaches optimal solution in each of 20 runs (in these cases, the value agap

is equal to 0). For instances with 35 and 40 item types, the GA reaches 15 out of

40 optimal solutions. In order to investigate the dependance of instances’ nature

and behavior of the algorithm, the GA was tested on five instances for the same

combination of item types and levels, differing in parameter α. As we can see from

Tables 7-11, the algorithm is slightly better for instances with smaller value of α. The

results indicate that instances with smaller percentage of cells of the same distance are

slightly ”easier” to solve. This could be explained by the fact that greater percentage

of cells of the same distance increases the searching space. Therefore, the probability

to find optimal solution decreases. From Tables 7-11, it can be seen that GA has

found optimal solution for 112 out of 140 instances.
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It L α opt GA t(sec) ttot(sec) gen agap(%) σ(%)
10 2 0.2 21062.300 opt 0.001 0.391 2001 0.000 0.000
10 3 0.2 22324.209 opt 0.001 0.412 2003 0.000 0.000
10 4 0.2 22389.975 opt <0.001 0.4025 2001 0.000 0.000
10 5 0.2 22473.226 opt <0.001 0.413 2003 0.000 0.000
15 2 0.2 31144.125 opt 0.001 0.5245 2001 0.000 0.000
15 3 0.2 28124.821 opt <0.001 0.534 2001 0.000 0.000
15 4 0.2 29878.762 opt 0.002 0.5115 2017 0.000 0.000
15 5 0.2 35417.046 opt 0.002 0.4565 2010 0.000 0.000
20 2 0.2 35156.605 opt <0.001 0.6085 2001 0.000 0.000
20 3 0.2 35682.763 opt <0.001 0.569 2001 0.000 0.000
20 4 0.2 35470.801 opt 0.007 0.5595 2036 0.000 0.000
20 5 0.2 49135.649 opt 0.005 0.5735 2028 0.000 0.000
25 2 0.2 43962.444 opt <0.001 0.7345 2001 0.000 0.000
25 3 0.2 41779.067 opt <0.001 0.733 2001 0.000 0.000
25 4 0.2 40814.643 opt 0.035 0.7245 2100 0.000 0.000
25 5 0.2 57930.108 opt 0.022 0.6775 2070 0.000 0.000
30 2 0.2 58000.906 opt <0.001 0.867 2001 0.000 0.000
30 3 0.2 51355.355 opt <0.001 0.8515 2001 0.000 0.000
30 4 0.2 47189.872 opt 0.002 0.836 2009 0.000 0.000
30 5 0.2 49518.000 opt 0.011 0.8475 2030 0.000 0.000
35 2 0.2 81913.009 opt 0.198 1.143 2396 0.063 1.185
35 3 0.2 59878.908 opt 0.001 0.9285 2001 0.000 0.000
35 4 0.2 57463.357 opt 0.012 0.9095 2028 0.000 0.000
35 5 0.2 60809.130 opt 0.141 1.042 2311 0.000 0.000
40 2 0.2 69045.672 69241.59 1.226 2.156 4108 0.637 0.475
40 3 0.2 67769.640 opt 0.045 1.069 2084 0.000 0.000
40 4 0.2 62302.340 opt 0.012 1.039 2026 0.000 0.000
40 5 0.2 64254.562 opt 0.002 1.004 2004 0.000 0.000

Table 7. GA results on small instances

Although the comparison with other works can not be fairly done due to the ab-

sence of common instances, we can roughly compare the number of achieved optimal

solutions with results achieved in [4], which is the most respectable available work in

this field and also is the improvement of the algorithm described in [3]. In [4], for the

instances with same dimension, only 67 out of 109 instances was resolved in optimal

way, with the remark that for 31 instances the authors could not determine if the

solution was optimal. Even if we take into account all of these instances, we get the

number 98, which is again less than total number of optimal solutions obtained by

the proposed GA (112). In order to make more fair comparison, we consider the fact
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It L α opt GA t(sec) ttot(sec) gen agap(%) σ(%)
10 2 0.4 19557.819 opt <0.001 0.42 2001 0.000 0.000
10 3 0.4 21909.177 opt 0.0015 0.4595 2012 0.000 0.000
10 4 0.4 22817.544 opt <0.001 0.4075 2001 0.000 0.000
10 5 0.4 22659.069 opt 0.0005 0.422 2002 0.000 0.000
15 2 0.4 25757.229 opt 0.001 0.528 2006 0.000 0.000
15 3 0.4 23617.064 opt 0.002 0.5325 2008 0.000 0.000
15 4 0.4 38256.884 opt <0.001 0.5055 2001 0.000 0.000
15 5 0.4 35376.107 opt 0.0015 0.4735 2007 0.000 0.000
20 2 0.4 55555.543 opt 0.199 0.808 2634 0.115 0.785
20 3 0.4 60265.259 opt 0.03 0.6205 2102 0.000 0.000
20 4 0.4 46134.169 opt <0.001 0.6165 2001 0.000 0.000
20 5 0.4 44392.355 opt 0.069 0.653 2230 0.000 0.000
25 2 0.4 71392.762 opt 0.4235 1.1365 3224 0.040 0.339
25 3 0.4 41933.354 opt 0.34 1.054 2936 0.101 0.485
25 4 0.4 51442.910 opt 0.1985 0.8705 2592 0.121 0.834
25 5 0.4 41413.674 opt 0.001 0.697 2005 0.000 0.000
30 2 0.4 64887.959 opt 0.1945 0.9935 2477 0.026 0.500
30 3 0.4 76866.714 opt 0.8455 1.55 3896 0.645 1.802
30 4 0.4 59766.960 opt 0.229 1.025 2563 0.075 0.409
30 5 0.4 56562.637 opt 0.0055 0.787 2012 0.000 0.000
35 2 0.4 174532.680 181193.5 1.603 2.14 4573 5.667 4.363
35 3 0.4 111466.958 113420.3 1.0765 1.8515 4062 3.436 3.743
35 4 0.4 104516.722 105969.8 0.9275 1.68 3721 3.511 2.267
35 5 0.4 74214.030 opt 0.235 1.114 2528 0.042 0.291
40 2 0.4 219995.719 232370.3 1.919 2.47 4825 6.710 2.813
40 3 0.4 93736.417 95508.09 1.749 2.3465 4636 2.542 1.401
40 4 0.4 84640.983 opt 0.2195 1.188 2451 0.025 0.171
40 5 0.4 95826.195 97222.24 1.1745 2.095 3862 2.802 3.162

Table 8. GA results on small instances

that in paper [4], all instances were created with parameter α = 0.8. Even in this

case, our algorithm has found 19 optimal solutions which is probably better result

(by multiplying 19 with 5), or at least very similar to the result given in [4].

In the case of large-scale instances (100 ≤ J ≤ 400), optimal solutions could not

be achieved by CPLEX due to memory limits. On the other hand, the GA succeeds

to find the solutions in a reasonable CPU time. For the hardest instances, the total

time that the GA needs to finish is up to 50 seconds. Results presented in Tables

12-13 clearly indicate that our approach can be successfully applied on large-scale
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It L α opt GA t(sec) ttot(sec) gen agap(%) σ(%)
10 2 0.5 22858.064 opt <0.001 0.3965 2003 0.000 0.000
10 3 0.5 22699.255 opt <0.001 0.4245 2001 0.000 0.000
10 4 0.5 20987.273 opt <0.001 0.3885 2001 0.000 0.000
10 5 0.5 23005.107 opt 0.0035 0.4055 2009 0.000 0.000
15 2 0.5 31823.601 opt 0.015 0.5235 2064 0.000 0.000
15 3 0.5 40242.188 opt 0.004 0.5425 2024 0.000 0.000
15 4 0.5 30581.509 opt 0.0015 0.504 2006 0.000 0.000
15 5 0.5 29707.789 opt 0.002 0.4985 2020 0.000 0.000
20 2 0.5 45827.498 opt 0.0235 0.607 2074 0.000 0.000
20 3 0.5 44979.495 opt 0.009 0.5845 2035 0.000 0.000
20 4 0.5 37847.175 opt 0.003 0.5495 2013 0.000 0.000
20 5 0.5 34516.110 opt 0.0035 0.6095 2018 0.000 0.000
25 2 0.5 75767.557 opt 0.229 0.94 2644 0.171 0.189
25 3 0.5 104124.987 opt 0.014 0.6995 2039 0.000 0.000
25 4 0.5 87364.522 opt 0.2515 0.929 2719 0.485 1.330
25 5 0.5 56509.162 opt 0.005 0.6675 2015 0.000 0.000
30 2 0.5 52880.940 opt 0.328 1.16 2779 0.000 0.000
30 3 0.5 76567.909 opt 0.1355 0.98 2318 0.000 0.000
30 4 0.5 47069.236 opt 0.001 0.8165 2005 0.000 0.000
30 5 0.5 46630.487 opt 0.0215 0.8365 2053 0.000 0.000
35 2 0.5 126942.675 opt 0.059 0.9995 2124 0.000 0.000
35 3 0.5 62448.599 62647.81 0.7395 1.66 3598 0.485 1.882
35 4 0.5 59084.842 opt 0.356 1.228 2824 0.189 0.610
35 5 0.5 59641.176 59641.47 0.6285 1.483 3301 0.156 0.656
40 2 0.5 132694.076 133420.5 1.7805 2.4525 4764 0.968 1.472
40 3 0.5 120387.723 120963.6 1.0425 2.016 3985 1.277 2.483
40 4 0.5 90775.440 91027.21 1.052 1.8945 3776 0.756 2.061
40 5 0.5 64575.800 opt 0.2695 1.261 2539 0.321 0.675

Table 9. GA results on small instances

problems, in cases where exact methods fail. Rather small values of average gap and

σ indicate the reliability of the proposed algorithm.

The GA concept cannot prove optimality and adequate finishing criteria that will

fine-tune the solution quality does not exist. Therefore, as the columns ttot in Tables

7-13 show, our algorithm runs through additional ttot-t time (until finishing criteria

is satisfied), although it already reached its best solution. After all, the total running

time of the GA is reasonably short, for both in small and large instances in respect

to the problems’ dimensions.
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It L α opt GA t(sec) ttot(sec) gen agap(%) σ(%)
10 2 0.6 30918.312 opt <0.001 0.396 2004 0.000 0.000
10 3 0.6 22218.821 opt <0.001 0.422 2003 0.000 0.000
10 4 0.6 26122.856 opt <0.001 0.374 2001 0.000 0.000
10 5 0.6 25758.652 opt 0.001 0.3785 2005 0.000 0.000
15 2 0.6 33228.058 opt 0.006 0.4805 2033 0.000 0.000
15 3 0.6 34761.061 opt <0.001 0.478 2003 0.000 0.000
15 4 0.6 33129.275 opt 0.0025 0.468 2010 0.000 0.000
15 5 0.6 36192.384 opt 0.0055 0.4785 2031 0.000 0.000
20 2 0.6 86095.674 opt 0.0995 0.639 2364 0.000 0.000
20 3 0.6 64981.423 opt 0.0235 0.5655 2090 0.000 0.000
20 4 0.6 40920.641 opt <0.001 0.538 2009 0.000 0.000
20 5 0.6 40293.497 opt 0.059 0.6195 2199 0.000 0.000
25 2 0.6 71542.272 opt 0.3455 1.0255 3019 0.257 1.123
25 3 0.6 81936.291 opt 0.1335 0.814 2387 0.007 0.133
25 4 0.6 52059.420 opt 0.182 0.87 2522 0.003 0.061
25 5 0.6 51936.508 opt 0.0395 0.693 2122 0.000 0.000
30 2 0.6 212119.726 212354.2 0.7695 1.537 3710 1.403 4.552
30 3 0.6 76593.419 opt 0.363 1.161 2907 0.016 0.006
30 4 0.6 60721.997 opt 0.076 0.8515 2189 0.000 0.000
30 5 0.6 84895.245 opt 0.865 1.5595 3938 0.719 3.677
35 2 0.6 154200.141 158622.7 1.623 2.1715 4701 4.202 3.175
35 3 0.6 125140.117 126929.9 0.9825 1.807 3949 1.711 1.490
35 4 0.6 93518.430 93857.1 0.705 1.5345 3436 1.667 1.961
35 5 0.6 85915.122 opt 0.5495 1.4255 3200 0.178 0.895
40 2 0.6 132187.999 132959.2 1.4485 2.137 4368 1.041 1.126
40 3 0.6 75738.350 75915.98 1.3375 2.131 4240 1.232 3.837
40 4 0.6 74256.025 opt 1.226 1.966 4076 0.992 1.783
40 5 0.6 130371.240 132187 1.8105 2.5175 4733 2.768 2.769

Table 10. GA results on small instances

4. Conclusions

In this paper, we describe the GA metaheuristic for solving the MLWLP based on

the binary encoding. New encoding scheme is used, which gives suitable representa-

tion of an individual. By arranging the cells in the array sorted in the increasing order

of their distances for each item type, we direct the GA to promising search regions.

Effective objective function is based on identifying the indices of the first non zero

bits in each gene and searching through the sorted array of cells to find appropriate

assignments. The implemented FGTS and one-point crossover operator shows to be
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It L α opt GA t(sec) ttot(sec) gen agap(%) σ(%)
10 2 0.8 19224.563 opt <0.001 0.3855 2001 0.000 0.000
10 3 0.8 25336.800 opt <0.001 0.3745 2001 0.000 0.000
10 4 0.8 22321.650 opt <0.001 0.394 2001 0.000 0.000
10 5 0.8 23153.774 opt 0.0025 0.378 2015 0.000 0.000
15 2 0.8 38487.696 opt 0.0155 0.4445 2084 0.000 0.000
15 3 0.8 27029.930 opt 0.001 0.4505 2011 0.000 0.000
15 4 0.8 24769.594 opt 0.004 0.426 2025 0.000 0.000
15 5 0.8 24279.717 opt 0.005 0.437 2034 0.000 0.000
20 2 0.8 39261.904 opt 0.0045 0.5875 2019 0.000 0.000
20 3 0.8 59359.668 opt 0.017 0.5545 2060 0.000 0.000
20 4 0.8 38962.218 opt 0.0225 0.576 2084 0.000 0.000
20 5 0.8 37114.598 opt 0.0025 0.576 2010 0.000 0.000
25 2 0.8 79158.018 79369.41 0.187 0.799 2601 0.359 0.521
25 3 0.8 122439.500 opt 0.3675 1.038 3082 0.578 2.123
25 4 0.8 63208.601 opt 0.043 0.733 2121 0.000 0.000
25 5 0.8 39551.933 opt 0.0375 0.6205 2114 0.000 0.000
30 2 0.8 62563.537 opt 0.858 1.5105 4075 0.921 3.239
30 3 0.8 122539.976 122804.9 1.051 1.733 4334 0.310 0.868
30 4 0.8 74068.193 opt 0.6645 1.3 3810 0.488 3.984
30 5 0.8 74408.722 opt 0.5095 1.204 3358 0.092 0.595
35 2 0.8 85351.410 86283.69 1.351 1.943 4565 1.996 1.877
35 3 0.8 154474.559 opt 0.961 1.7745 3813 1.178 2.539
35 4 0.8 116061.308 116626.2 1.412 1.9895 4700 1.908 5.879
35 5 0.8 85853.758 85855.08 0.8025 1.5495 3705 0.793 1.666
40 2 0.8 338547.775 349660.2 2.076 2.529 4846 4.815 4.284
40 3 0.8 144358.864 148026.2 1.815 2.416 4708 3.274 2.022
40 4 0.8 196334.483 197342.4 1.183 1.9495 4192 0.690 0.601
40 5 0.8 92246.284 92311.57 1.2095 1.9855 4080 0.738 3.102

Table 11. GA results on small instances

appropriate in the proposed GA concept. The idea of mutation with frozen bits and

several other strategies are used to help in increasing the diversity of genetic material

and avoiding premature convergence.

According to computational results on small and large-scale test instances, the

applied GA approach proves to be successful. The achievement of the optimal solution

for 112 of total of 140 small instances and rather small average gaps for others, indicate

that the GA approach can be reliably used for solving the MLWLP. Considering

the fact that there are no common test instances available, rough comparisons with

other methods are carried out, showing that the proposed GA gives more optimal
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It L α GA t(sec) ttot(sec) gen agap(%) σ(%)
100 2 0.5 886029.67 5.779 7.310 4764 1.017 2.200
100 3 0.5 599825.17 4.231 6.531 4525 1.806 2.882
100 4 0.5 545607.15 5.191 6.743 4885 0.996 2.503
100 5 0.5 531832.02 5.883 6.992 4903 0.896 2.281
150 2 0.5 2497848.77 9.472 11.764 4691 1.070 2.120
150 3 0.5 1736344.65 8.579 11.450 4710 0.863 1.630
150 4 0.5 1627720.06 9.120 11.328 4818 0.665 1.297
150 5 0.5 958259.04 7.966 10.897 4779 0.885 2.147
200 2 0.5 3407078.25 14.719 18.548 4859 0.819 1.678
200 3 0.5 3044631.21 13.458 17.047 4758 0.338 0.929
200 4 0.5 1736508.16 11.262 16.341 4473 0.489 1.260
200 5 0.5 1649873.13 14.303 16.831 4884 0.979 2.115
250 2 0.5 8007271.66 19.032 24.474 4808 0.369 0.835
250 3 0.5 3561326.29 19.530 25.112 4885 0.828 1.377
250 4 0.5 4182619.77 17.344 22.128 4674 0.667 1.408
250 5 0.5 2626602.19 17.685 22.626 4819 0.443 0.933
300 2 0.5 13488441.57 23.381 31.022 4710 0.396 0.811
300 3 0.5 5687478.20 20.840 29.413 4393 0.335 0.729
300 4 0.5 3879476.68 20.975 31.050 4555 0.652 1.200
300 5 0.5 5080521.97 21.912 29.009 4692 0.396 0.983
350 2 0.5 11303227.28 33.169 42.345 4850 0.345 0.643
350 3 0.5 7092958.06 26.606 38.839 4471 0.344 0.785
350 4 0.5 4571192.03 26.144 37.935 4614 0.629 0.660
350 5 0.5 5908626.74 26.579 35.847 4683 0.666 1.085
400 2 0.5 12951254.84 35.930 51.168 4687 0.285 0.373
400 3 0.5 14815517.70 36.696 47.462 4802 0.258 0.534
400 4 0.5 7055304.14 31.713 45.953 4453 0.268 0.702
400 5 0.5 4741152.81 32.813 47.175 4613 0.463 0.730

Table 12. GA results on large instances

solutions for smaller instances and seems to work better on large-scale instances. In

cases of large-scale problem instances, when CPLEX solver can not provide optimal

solutions due to memory limits, the GA quickly finds solutions. This indicates that

our approach can be applied on real-life situations when exact methods can not be

used.

The GA implementation described in this paper can be extended in several ways.

It would be interesting to compare obtained results with other metaheuristics on the

same instances and to hybridize the GA with other exact or heuristic approaches.
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It L α GA t(sec) ttot(sec) gen agap(%) σ(%)
100 2 0.8 2121400.17 4.444 6.638 4525 1.140 2.752
100 3 0.8 635835.65 4.835 6.859 4563 2.176 3.839
100 4 0.8 360014.75 4.411 6.396 4420 0.572 1.660
100 5 0.8 627278.24 5.440 7.132 4765 1.028 2.208
150 2 0.8 4324473.12 8.553 11.653 4596 0.607 1.577
150 3 0.8 2330456.23 8.494 11.663 4620 0.641 1.340
150 4 0.8 1803497.57 8.070 11.292 4600 1.745 2.881
150 5 0.8 1495425.95 6.146 10.028 4325 1.513 2.535
200 2 0.8 6363820.94 14.059 17.820 4642 0.640 0.959
200 3 0.8 3253969.22 13.344 17.788 4673 0.449 1.044
200 4 0.8 3471624.50 11.544 16.360 4537 0.665 1.512
200 5 0.8 3797900.27 13.496 17.259 4905 0.730 1.713
250 2 0.8 12477844.33 20.883 25.663 4992 0.454 0.943
250 3 0.8 6077753.05 17.956 24.764 4894 0.880 1.607
250 4 0.8 4191459.92 16.996 23.675 4661 0.484 1.097
250 5 0.8 4494294.91 17.568 23.261 4874 0.854 1.395
300 2 0.8 23368751.78 23.695 31.974 4737 0.271 0.744
300 3 0.8 9532127.78 23.421 30.853 4648 0.720 1.042
300 4 0.8 7966096.83 23.597 30.977 4730 0.462 1.032
300 5 0.8 6924902.50 23.047 28.765 4693 0.638 1.188
350 2 0.8 17019324.08 28.491 41.080 4619 0.529 0.678
350 3 0.8 13459788.95 29.341 38.953 4743 0.318 0.913
350 4 0.8 9987551.66 28.352 37.978 4594 0.413 0.835
350 5 0.8 9232550.61 25.990 36.754 4630 0.724 0.990
400 2 0.8 30567646.34 41.026 51.654 4836 0.414 0.858
400 3 0.8 20004110.91 39.730 49.479 4891 0.203 0.621
400 4 0.8 11911918.60 33.581 44.790 4500 0.584 0.844
400 5 0.8 10116167.30 28.413 42.687 4375 0.370 0.796

Table 13. GA results on large instances
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