THE IMPROVEMENT OF THE VALUE DISTRIBUTION ON
\[f + a(f')^n \]

SHANPENG ZENG 1, YAN YANG 1, AND YUESHENG WU 2∗

Abstract. Let \(f(z) \) be a transcendental meromorphic function in the plane and let \(a(\neq 0), b \) be two finite complex numbers. Then for positive integer \(n \geq 3 \), we have \((n - 1)T(r, f') \leq 3N(r, f) + 4N(r, \frac{1}{f + a(f')^n - b}) + S(r, f)\).

1. Introduction and main results

Let \(f \) be a nonconstant meromorphic function in the whole complex plane \(\mathbb{C} \). We will use the standard notations of Nevanlinna’s value distribution theory such that \(T(r, f), N(r, f), N(r, f), m(r, f) \) and so on, as found in [1].

It is interesting to combine the function and it’s derivative. In 1959, Hayman prove the following theorem.

Theorem A. [2] Let \(f(z) \) be transcendental meromorphic function in the plane, a finite non-zero complex number and let \(n \geq 5 \) be a positive integer. Then \(f' + af^n \) assumes every finite complex number infinitely often.

In 1979, Mues [3] show that for case \(n = 3 \) or 4, Theorem A is not right.

In 1994, Ye Yasheng studied the value distribution of \(f + a(f')^n \) which is similar to Theorem A, and get the following results.

139
Theorem B. [4] Let \(f(z) \) be a transcendental meromorphic function in the plane and let \(a(\neq 0), b \) be two finite complex numbers. Then for positive integer \(n \geq 3 \), we have

\[
(n - 1)T(r, f') \leq 4N(r, f) + 9N(r, \frac{1}{f + a(f)^n - b}) + S(r, f).
\]

In 2008, M. L. Fang and Lawrence Zaclman improved Theorem B.

Theorem C. [5] Let \(f(z) \) be a transcendental meromorphic function in the plane and let \(a(\neq 0), b \) be two finite complex numbers. Then for positive integer \(n \geq 3 \), we have

\[
(n - 1)T(r, f') \leq 3N(r, f) + 4N(r, \frac{1}{f + a(f)^n - b}) + S(r, f').
\]

There is a natural question: "Can we replace \(N(r, \frac{1}{f + a(f)^n - b}) \) by \(N(r, \frac{1}{f + a(f)^n - b}) \) in Theorem C?" In this paper, we will do this work and get a stronger inequality as following.

Theorem 1.1. Let \(f(z) \) be a transcendental meromorphic function in the plane and let \(a(\neq 0), b \) be two finite complex numbers. Then for positive integer \(n \geq 3 \), we have

\[
(n - 1)T(r, f') \leq 3N(r, f) + 4N(r, \frac{1}{f + a(f)^n - b}) + S(r, f).
\]

2. **Some Lemmas**

Lemma 2.1. [6] Let \(f(z) \) be a meromorphic function in the plane. For positive integer \(k, f^{((k+1))} \neq 0 \). Then

\[
m(r, \frac{f^{(k)}}{f}) = S(r, f^{(k)}).
\]

Before we give Lemma 2.2, we first define a differential polynomial. A differential polynomial \(P \) of \(f \) is defined by

\[
P(z) = \sum_{t=1}^{n} \phi_t(z)
\]

where

\[
\phi_t(z) = \alpha_t(z) \prod_{j=0}^{k} (f^{(j)}(z))^{S_{tj}},
\]
\(\alpha_t \neq 0 \), the \(S_{ij} \) are non-negative integers and \(T(r, \alpha_t) = S(r, f) \) for all \(t \). Let

\[
\overline{d}(P) = \max_{1 \leq t \leq n} \sum_{j=0}^{k} S_{tj} \quad \text{and} \quad \underline{d}(P) = \min_{1 \leq t \leq n} \sum_{j=0}^{k} S_{tj}.
\]

Then \(\overline{d}(P) \) is the degree of \(P \), while \(\underline{d}(P) \) is the minimal degree of the constituent differential monomials. If \(\underline{d}(P) = \overline{d}(P) \), \(P \) is said to be homogeneous, and inhomogeneous otherwise.

Lemma 2.2. [7] Let \(f(z) \) be a transcendental meromorphic function in the plane, \(P \) a nonconstant differential polynomials in \(f \) such that \(\overline{d}(P) \geq 2 \) and let

\[
Q = \max_{1 \leq t \leq n} \left\{ \sum_{j=1}^{k} jS_{tj} \right\}.
\]

Then

\[
d(P)T(r, f) \leq (Q + 1)N(r, \frac{1}{f}) + \overline{N}(r, f) + \overline{N}(r, \frac{1}{P - 1}) + S(r, f).
\]

Proof. In fact the conclusion of Lemma 2.2 is not the last conclusion of [7]. At the last part of proof of Theorem 1 from [7], if we omit the inequality of \(\overline{N}(r, f) \leq T(r, f) \) and remain the term \(\overline{N}(r, f) \), then we can get the conclusion of Lemma 2.2. \(\Box \)

Lemma 2.3. Let \(f(z) \) be a transcendental meromorphic function in the plane and let \(a(\neq 0) \) be a finite number. Then

\[
(n + 1)T(r, f) \leq 2\overline{N}(r, \frac{1}{f}) + \overline{N}(r, f) + \overline{N}(r, \frac{1}{f^{n-1} - a}) + S(r, f).
\]

Proof. In fact, the conclusion of Lemma 2.3 had been proved by S.Z.Ye ([8]). But now we give a shorter proof. From Nevanlinna Theory, we know that ‘1’ in the term of \(P - 1 \) of Lemma 2.2 is not essential. It can be replace by any finite number \(a(\neq 0) \). Hence, let \(P = f^n f' \). In this case, \(Q = 1 \) and \(\underline{d}(P) = n + 1 \). Then we can get Lemma 2.3 immediately from Lemma 2.2. \(\Box \)

3. Proof of Theorem

Proof. Let

\[
g = f + a(f')^n - b, \quad \phi = \frac{g'}{g}.
\]

If \(\phi \equiv 0 \), then \(g' \equiv 0 \), that is to say

\[
f'[1 + na(f')^{n-2} f''] \equiv 0.
\]
From the equality above, we can obtain that \(f \) is entire function in \(\mathbb{C} \). If there exists \(z_0 \) such that \(f'(z_0) \neq 0 \), then there also exists \(D_\delta(z_0) \) (which is a neighborhood of \(z_0 \) with radius \(\delta > 0 \)) such that \(f'(z) \neq 0 \) in \(D_\delta(z_0) \). Then from the equality we can get \(1 + na(f')^{n-2}f'' \equiv 0 \) in \(D_\delta(z_0) \). Hence by Uniqueness Theorem, we can obtain
\[
1 + na(f')^{n-2}f'' \equiv 0 \text{ in the plane } \mathbb{C}.
\]

If there exists \(z_0 \) such that \(1 + na(f'(z_0))^{n-2}f''(z_0) \neq 0 \), then there also exists \(D_\delta(z_0) \) (which is a neighborhood of \(z_0 \) with radius \(\delta > 0 \)) such that \(1 + na(f'(z_0))^{n-2}f''(z_0) \neq 0 \) in \(D_\delta(z_0) \). Then from the equality we can get \(f'(z) \equiv 0 \) in \(D_\delta(z_0) \). Hence by Uniqueness Theorem, we can obtain \(f'(z) \equiv 0 \) in the plane \(\mathbb{C} \).

Then \(f'(z) \equiv 0 \) or \(1 + na(f')^{n-2}f'' \equiv 0 \). Hence \(f \) is constant or a polynomial with degree 2, a contradiction with \(f \) is transcendental. Hence \(\phi \neq 0 \).

From Nevanlinna theory and (3.1), we can obtain \(T(r, g') \leq O(T(r, f')) \). Together with Lemma 2.1, we can get
\[
(3.2) \quad m(r, \phi) = S(r, f').
\]

From (3.1), we can obtain
\[
(3.3) \quad f'[1 + na(f')^{n-2}f''] = \phi[f + a(f')^n - b].
\]

\(f'(z_0) = 0 \Rightarrow [1 + na(f')^{n-2}f''](z_0) = 1 \neq 0 \) and \([1 + na(f')^{n-2}f''](z_0) = 0 \Rightarrow f'(z_0) \neq 0 \) (otherwise \(f'(z_0) = 0 \), then \([1 + na(f')^{n-2}f''](z_0) = 1 \), a contradiction).

Hence zeros of \(f \) is different with all zeros of \(1 + na(f')^{n-2}f'' \). And from (3.3) we can get that the zeros of \(f \) and \(1 + na(f')^{n-2}f'' \) is either from the zeros of \(\phi \) or \(f + a(f')^n - b \).

By Nevanlinna First Fundamental Theory and (3.3) and (3.2), we can get
\[
\begin{align*}
\overline{N}(r, \frac{1}{f'}) + \overline{N}(r, \frac{1}{(f')^{n-2}f'' + \frac{1}{na}}) & \leq \overline{N}(r, \frac{1}{\phi}) + \overline{N}(r, \frac{1}{f + a(f')^n - b}) \\
& \leq N(r, \frac{1}{\phi}) + \overline{N}(r, \frac{1}{f + a(f')^n - b}) \\
& \leq T(r, \phi) + \overline{N}(r, \frac{1}{f + a(f')^n - b}) + S(r, f') \\
& = N(r, \phi) + \overline{N}(r, \frac{1}{f + a(f')^n - b}) + S(r, f').
\end{align*}
\]

(3.4)
Since \(g = f + a(f')^n - b \), \(\phi = \frac{f'}{g} \), it is easy to see that the poles of \(\phi \) are either from the pole of \(g' \) or the zeros of \(g \), and the multiplicity of the pole of \(\phi \) is simple. Hence

\[
N(r, \phi) \leq \overline{N}(r, g') + \overline{N}(r, \frac{1}{g}) = \overline{N}(r, g) + \overline{N}(r, \frac{1}{g}) = \overline{N}(r, f) + \overline{N}(r, \frac{1}{f + a(f')^n - b})).
\]

(3.5)

From (3.4) and (3.5), we can get

\[
N(r, \frac{1}{f'}) + \overline{N}(r, \frac{1}{(f')^n f'' - \frac{1}{na}}) \leq 2\overline{N}(r, f) + 2\overline{N}(r, \frac{1}{f + a(f')^n - b}) + S(r, f').
\]

(3.6)

Let \(g = f' \) and \(m = n - 2 \). By Lemma 2.3 we can get

\[
(m + 1)T(r, g) \leq 2\overline{N}(r, \frac{1}{g}) + \overline{N}(r, g) + \overline{N}(r, \frac{1}{(g)^n - 2g' - \frac{1}{na}}) + S(r, g).
\]

(3.7)

By putting \(g = f' \) and \(m = n - 2 \) into (3.7), we can get

\[
(n - 1)T(r, f') \leq 2\overline{N}(r, \frac{1}{f'}) + \overline{N}(r, f') + \overline{N}(r, \frac{1}{(f')^n - 2f'' - \frac{1}{na}}) + S(r, f').
\]

(3.8)

Together with (3.6) and (3.8), we have

\[
(n - 1)T(r, f') \leq 2\overline{N}(r, \frac{1}{f'}) + \overline{N}(r, f') + \overline{N}(r, \frac{1}{(f')^n - 2f'' - \frac{1}{na}}) + S(r, f')
\]

\[
\leq 2[\overline{N}(r, \frac{1}{f'}) + \overline{N}(r, \frac{1}{(f')^n - 2f'' - \frac{1}{na}})] + \overline{N}(r, f') + S(r, f')
\]

\[
= 2[\overline{N}(r, f) + 2\overline{N}(r, \frac{1}{(f')^n - 2f'' - \frac{1}{na}})] + \overline{N}(r, f) + S(r, f')
\]

\[
\leq 2[\overline{N}(r, f) + 2\overline{N}(r, \frac{1}{f + a(f')^n - b})] + \overline{N}(r, f) + S(r, f')
\]

\[
= 3\overline{N}(r, f) + 4\overline{N}(r, \frac{1}{f + a(f')^n - b}) + S(r, f').
\]

Hence, Theorem 1.1 has been proved completely. \(\square \)

Acknowledgement: The author would like to express sincere thanks to the referee for helpful comments and suggestion.

References

