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A NEW PROOF OF THE SZEGED–WIENER THEOREM

H. KHODASHENAS 1, M. J. NADJAFI–ARANI 1, A. R. ASHRAFI 1,2, AND I. GUTMAN 3

Abstract. The Wiener index W (G) is the sum of distances between all pairs of
vertices of a connected graph G. For an edge e of G, connecting the vertices u and
v, the set of vertices lying closer to u than to v is denoted by Ne(u). The Szeged
index, Sz(G), is the sum of products |Nu(e)| × |Nv(e)| over all edges of G. A block
graph is a graph whose every block is a clique. The Szeged–Wiener theorem states
that Sz(G) = W (G) holds if and only if G is a block graph. A new proof of this
theorem if offered, by means of which some properties of block graphs could be
established.

1. Introduction

Throughout this article G stands for a simple connected graph with vertex and

edge sets V (G) and E(G), respectively. The distance between the vertices u and v of

the graph G (= the number of edges in a shortest path connecting u and v) [3] will

be denoted by d(u, v|G).

There is a large number of distance–based graph invariants that have attracted the

attention of, and that have been extensively studied by, mathematicians. Of these,

the Wiener index W (G) is the oldest [14], defined as the sum of distances between

all pairs of vertices of G:

W (G) =
∑

{x,y}⊆V (G)×V (G)

d(x, y|G).

The Wiener index has noteworthy applications in chemistry and the interested readers

are referred to the reviews [4, 5] and references therein for details.
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Suppose that G is a connected graph and e = uv ∈ E(G). Define:

Nu(e) = {x ∈ V (G) | d(x, u|G) < d(x, v|G)}
Nv(e) = {x ∈ V (G) | d(x, v|G) < d(x, u|G)}
N0(e) = {x ∈ V (G) | d(x, u|G) = d(x, v|G)}.

Define nu(e) to be the number of vertices of G lying closer to u than to v , and define

nv(e) analogously. Thus nu(e) = |Nu(e)| and nv(e) = |Nv(e)|. Notice that vertices

equidistant from both ends of the edge e = uv, i.e., the vertices belonging to N0(e),

are not counted in nu(e) and nv(e).

The Szeged index of G is defined as [8]

Sz(G) =
∑

e=uv∈E(G)

nu(e) nv(e).

Details of the theory of this distance–based graph invariant can be found in the

survey [9] as well as in the recent articles [15–17].

Lukovits [13] introduced an all-path version of the Wiener index, denoted by P (G).

To explain, we assume that V (G) = {1, 2, . . . , n}. Then

P (G) =
∑

i<j

∑

P∈πi,j

`(P )

where `(P ) denotes the length of the path P , i.e., the number of edges in P , and

where πi,j is the set of all path connecting the vertices i and j. Thus the summations

in the above formula embrace all paths contained in G.

In [13] some mathematical properties of P (G) were established, in particular its

extremal values. In the next section we present a ”path–edge” matrix aimed at

studying the Wiener and Szeged indices of graphs, simultaneously. This matrix is

defined in a similar way as the ”all-path” index of Lukovits.

Throughout this paper our notation is standard and taken mainly from the standard

textbooks of graph theory. Thus, Kn, Pn, and Cn denote the complete graph, path,

and cycle on n vertices, respectively.

2. Preliminaries

The block graphs are natural generalization of trees. They are the connected graphs

in which every block (i.e., every maximal 2-connected subgraph) is a clique. Of the

several known characterizations of block graphs [10] we mention the following:
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Lemma 2.1. Let G be a connected graph. The following conditions are equivalent:

(a) G is a block graph.

(b) For every four vertices u, v, x, y of G, the greatest two among d(u, v|G) +

d(x, y|G), d(u, x|G)+ d(v, y|G), and d(u, y|G)+ d(v, x|G) are always mutually

equal (the so-called ”four–point condition”) [11].

(c) G does not have induced subgraphs isomorphic to K4−e (the ”diamond graph”)

or Cn, n ≥ 4 [1].

In [6], Dobrynin and one of the present authors studied the structure of a connected

graph G with the property that Sz(G) = W (G). They conjectured that Sz(G) =

W (G) if and only if G is a block graph. A year later, the conjecture was proved by the

same authors [7]. In what follows we refer to it as the Szeged–Wiener theorem. Quite

recently, apparently unaware of the works [6, 7], Behtoei et al. [2] presented another

proof of the Szeged–Wiener theorem. In this paper, a third proof of this result will

be communicated, as well as a new characterization of block graphs.

Let G be a connected graph. A set Y =
{
P1, P2, . . . , P(n

2)

}
of shortest paths in

G, such that for every pair of vertices a, b ∈ V (G), a 6= b, there exists a unique

path P ∈ Y connecting vertices a and b, is called a complete set of shortest paths of

G (CSSP for short). In what follows, PG(u, v) denotes the set of all shortest paths

connecting vertices u and v of G and CSSP(G) denotes the set of all CSSP’s of G.

Define the matrix AY = [aij], as follows:

aij =





1 ej ∈ E(Pi)

0 ej 6∈ E(Pi)
.

Clearly, if Pi is a path connecting the vertices x and y then d(x, y|G) is the number

of non-zero entries in the i-th row of AY . Thus the sum of entries of the matrix AY

is equal to the Wiener index of G.

Lemma 2.2. Let e = uv ∈ E(G) and a and b be arbitrary vertices of G. If there

exists a path P ∈ PG(a, b), such that e ∈ E(P ), then one of the following is satisfied:

(i) a ∈ Nu(e) and b ∈ Nv(e),

(ii) a ∈ Nv(e) and b ∈ Nu(e).

Proof. Suppose that P is a shortest path containing the edge e = uv. Traverse the

path P from the source vertex a to the destination vertex b. If we traverse the vertex



168 H. KHODASHENAS, M. J. NADJAFI–ARANI, A. R. ASHRAFI, AND I. GUTMAN

u before v then d(a, v|G) = d(a, u|G) + d(u, v|G). This implies that a ∈ Nu(e) and

b ∈ Nv(e), proving claim (i). If the vertex v is before u then similarly a ∈ Nv(e) and

b ∈ Nu(e), as desired. ¤

The converse of Lemma 2.2 is not generally valid. To see this, it is enough to

consider the case G ∼= Cn for n ≥ 4.

In what follows, by PG(e) we denote the set of all shortest paths through the edge

e.

Corollary 2.1. For each edge e = uv of a connected graph G, |PG(e)| ≤ nu(e) nv(e).

Proof. Apply Lemma 2.2. ¤

3. Main results

Suppose that G is a connected graph, Y ∈ CSSP (G) and AY = [aij]. The sum of

entries of the j-th column of AY is the number of shortest paths containing ej. Thus,

for each j, 1 ≤ j ≤ |E(G)|, ∑

i

aij ≤ |PG(ej)|
and therefore

W (G) =
∑

j

∑

i

aij ≤
∑

j

nu(ej) nv(ej) = Sz(G).

This presents a new proof of the following result of Klavžar et al. [12]:

Theorem 3.1. For every connected graph G, W (G) ≤ Sz(G).

Theorem 3.2. Let G be a graph containing a non-complete block. Then the following

is satisfied:

(i) G has an induced subgraph isomorphic either to K4 − e or to Cn, n ≥ 4.

(ii) If G does not have an induced subgraph isomorphic to K4 − e, then in the

smallest induced cycle Cn, n ≥ 4, the following condition is satisfied:

∀x, y ∈ V (Cn) : d(x, y|Cn) = d(x, y|G).

Proof. The statement of Theorem 3.2 is a direct consequence of Lemma 2.1. In order

that this paper be self–contained, we nevertheless provide its proof.

(i) Suppose that B is a non-complete block graph and a and b are its two non-

adjacent vertices. Choose C to be the smallest cycle of B containing the vertices

a and b. Then C contains two paths P1 : a = x0, x1, . . . , xn = b and P2 : a =
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y0, y1, . . . , ym = b, m,n ≥ 2, such that V (P1) ∩ V (P2) = {a, b}. Since C has the

minimum size among the cycles of B containing a and b, a is not adjacent to xi’s and

yj’s, 1 < i ≤ n and 1 < j ≤ m. Suppose that the induced subgraph of G generated

by V (C) does not have an induced cycle Cn, n ≥ 4. We claim that G has an induced

subgraph isomorphic to K4 − e. If `(P1) = `(P2) = 2, then C has size 4 and since

C is not an induced cycle, x1 is adjacent to y1. But a and b are not adjacent, so

we find an induced subgraph isomorphic to K4 − e, as desired. Therefore, without

loss of generality we can assume that `(P1) > 2. Since G does not have an induced

cycle of size ≥ 4, x1 is again adjacent to y1. On the other hand, by assumption x1 is

adjacent to y2 or y1 is adjacent to x2. In each case, we will find an induced subgraph

isomorphic to K4 − e, which completes our argument.

(ii) Suppose that C is a smallest induced cycle such that for two vertices x, y ∈
V (C), d(x, y|G) < d(x, y|C). Choose Q to be a shortest path connecting x and y in

G. Using C and Q one can obtain a new cycle C ′ of size at least four, smaller than

C. By our assumption, C ′ is not an induced cycle. Applying an argument similar to

case (i), we obtain an induced subgraph isomorphic to K4 − e, a contradiction. ¤

Theorem 3.3. Let G be a connected graph. Then Sz(G) > W (G) holds if and only

if G has an induced subgraph isomorphic either to a cycle of size ≥ 4 or to K4 − e.

Proof. (⇒) Suppose that Sz(G) > W (G), Y ∈ CSSP (P ) and AY = [aij]. Then there

exists some j, such that
∑

i aij < nu(ej) nv(ej) , where ej = uv. This means that we

can choose a ∈ Nu(ej), b ∈ Nv(ej) such that ej 6∈ P(a,b), where P(a,b) is the unique

path of Y connecting a and b. We consider three separate cases as follows:

Case 1. a = u, b 6= v. Suppose that Q is a shortest path connecting b and v. Let x

be the first common vertex of P(a,b) and Q in traversing from v to b. Thus x ∈ Nv(ej).

Since ej = uv 6∈ P(a,b), x 6= v. So, d(x, v|G) ≥ 1, d(x, u|G) ≥ 2 and the size of the

cycle C containing x, u, and v is at least 4. Thus the block of G containing this cycle

is not complete. Then by Theorem 3.2, G has an induced subgraph isomorphic to

K4 − e or a cycle Cn, n ≥ 4.

Case 2. a 6= u, b = v. It is enough to apply a similar argument as that given in

the Case 1.

Case 3. a 6= u, b 6= v. Let Q1 and Q2 be the shortest paths connecting a, u

and b, v, respectively. Suppose that x ∈ V (Q1) ∩ V (Q2) and d(x, u|G) ≤ d(x, v|G).

Then d(b, u|G) ≤ d(b, x|G) + d(x, u|G) ≤ d(b, x|G) + d(x, v|G) = d(b, v|G). Thus
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b 6∈ Nv(ej), a contradiction. If x ∈ V (Q1) ∩ V (Q2) and d(x, u|G) > d(x, v|G) then

d(a, v|G) ≤ d(a, x|G)+d(x, v|G) < d(a, x|G)+d(x, u|G) = d(a, u|G) and so a ∈ Nv(ej)

and we arrive at another contradiction.

Therefore, V (Q1) ∩ V (Q2) = ∅. Suppose that x is the last common vertex of P(a,b)

and Q1 and y is the first common vertex of P(a,b) and Q2 when traversing the path

P(a,b) from a to b. By our assumption, d(x, y|G) ≥ 1. If x = u, then v 6∈ V (P(a,b))

whereas if y = v, then x 6= u. In each case, a similar argument as in Cases 1 or 2,

shows that G contains an induced subgraph isomorphic to either K4 − e or to Cn,

n ≥ 4. Therefore, we may assume that x 6= u and y 6= v. Consider the cycle C

containing x, u, v, and y. Since the size of C is at least 4, and x, v are not adjacent,

the block B containing C is not complete and by Theorem 3.2, G has an induced

subgraph isomorphic to K4 − e or to Cn, n ≥ 4.

(⇐) Y ∈ CSSP (G). We first assume that G has an induced subgraph H isomorphic

either to a cycle of size ≥ 4 or to K4 − e. It is enough to show that there exists a j

such that
∑

i aij < nu(ej) nv(ej).

We first assume that H ∼= K4 − e. Suppose that V (H) = {v1, v2, v3, v4} such that

v1 and v3 are not adjacent. Without loss of generality, we can assume that Pr : v1v2v3

is an element of Y connecting v1 and v3. Suppose that ej = v1v4. Then v1 ∈ Nv1(ej)

and v3 ∈ Nv4(ej). Thus arj = 0 and so
∑

i aij < nv1(ej) nv4(ej), as desired.

If G does not have an induced subgraph isomorphic to K4−e, then G has an induced

cycle Cn, n ≥ 4. Let C : v1, v2, . . . , vn+1 = v1 be an induced cycle of minimum size.

Then by Theorem 3.2 (ii), for each vertex x, y ∈ C, d(x, y|C) = d(x, y|G).

We separately consider two cases, namely when n is odd and n is even.

If n is odd, then we assume that t = (n + 1)/2 and ej = v1v2. By Lemma 2.2,

vt ∈ Nv2(ej) and vt+2 ∈ Nv1(ej). Since C has a minimum size, d(vt, vt+2) = 2 and

`(vt · · · v2v1 · · · vt+2) has minimum length 3. Thus ej is outside the shortest path

Pr : vtvt+1vt+2. Therefore, arj = 0 and
∑

i aij < nv1(ej)nv2(ej), as desired.

If n is even, then by choosing the edge vtvt+1, t = n/2+1 and by a similar argument

as above, we see that vt ∈ Nv2(ej) and vt+1 ∈ Nv1(ej). So,
∑

i aij < nv1(ej) nv4(ej),

which completes our argument. ¤

Corollary 3.1 ( [6, Corollary 3]). If G is a connected non-acyclic bipartite graph,

then W (G) < Sz(G).

Corollary 3.2. For any (connected) graph G, the following conditions are equivalent:
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(a) W (G) = Sz(G).

(b) G does not have induced subgraphs isomorphic to K4 − e or Cn, n ≥ 4.

(c) G is a block graph.

Proof. Apply Theorems 3.1–3.3. ¤

Corollary 3.3 (Wiener [14]). For every tree T , the equality W (T ) = Sz(T ) holds.
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