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ON SCALAR AND TOTAL SCALAR CURVATURES

OF RIEMANN-CARTAN MANIFOLDS

SERGEY STEPANOV 1, IRINA TSYGANOK 2, AND JOSEF MIKEŠ 3

Abstract. The concept of the Riemann–Cartan manifold was introduced by E. Car-
tan. The Riemann–Cartan manifold is a triple (M, g, ∇̄), where (M, g) is a Riemann
n-dimensional (n ≥ 2) manifold with linear connection ∇̄ having nonzero torsion
S̄ such that ∇̄g = 0. In our paper, we have considered scalar and total scalar
curvatures of the Riemann–Cartan manifold (M, g, ∇̄) and proved some formulas
connecting these curvatures with scalar and total scalar curvatures of the Riemann-
ian (M, g). In particular we have analyzed these formulas for the case of Weitzenbök
manifolds. And in an inference we have proved some vanishing theorems.

1. Introduction

1.1. A brief history of metrically-affine spaces. The beginning of metrically-

affine spaces (manifolds) theory was marked by E. Cartan in 1923–1925, who sug-

gested using an asymmetric linear connection ∇̄ having the metric property ∇̄g = 0

(see [6], [7] and [8]). His theory was called Einstein–Cartan theory of gravity (ECT)

(see [33]).

The notion of absolute parallelism or teleparallelism was introduced by Einstein

in 1928 and 1930 when he tried to unify gravitation and electromagnetism. The

new variant of a gravitational theory is formulated on the Weitzenböck space-time,

characterized by the vanishing curvature tensor (absolute parallelism) R̄ = 0 and by

the non-zero torsion tensor S̄ (see [1] and [36]).
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More than thirty years after the event T. Kibble and D. Sciama have found a

connection between the torsion S̄ of the connection ∇̄ and the spin tensor S of matter

(see [17] and [30]). Subsequently, other physical applications of ECT were found (see

[24] and [27]).

The Einstein–Cartan theory was generalized by omitting the metric property of

the linear connection ∇̄, i.e., the nonmetricity tensor Q = ∇̄g 6= 0. The new theory

was called the metrically-affine gauge theory of gravity (MAG) (see [15]).

1.2. A geometrical aspect of brief history of metrically-affine spaces. The

idea of E. Cartan was reflected in the well-known books in differential geometry of

the first half of the last century (see [10], [11], [28] and [29]). Now, there are hundreds

works published in the frameworks of ECT and MAG, and moreover, the published

results are of applied physical character (see [16] and [25]).

For a long time, among all forms metrically-affine space, only quarter-symmetric

metric spaces and the semi-symmetric metric spaces were considered in differential

geometry (see, for example, [22] and [37]).

The development of geometry of metrically-affine spaces “in the large” was stopped

at the results of K. Yano, S. Bochner and S. Goldberg obtained in the middle of

the last century. In their works, in the frameworks of RCT, they proved “vanish-

ing theorems” for pseudo-Killing and pseudo-harmonic vector fields and tensors on

compact Riemann-Cartan manifolds with positive-definite metric tensor g and the

torsion tensor S̄ such that trace S̄ = 0 (see [3], [13] and [38]). Y. Kubo, N. Rani and

N. Prakash have generalized their results by introducing in consideration compact

Riemann–Cartan manifolds with boundary (see [20] and [26]). The following works

are closely connected with this topic [21] and [35].

2. Riemann–Cartan manifolds

2.1. Definition and trivial properties of the Riemann-Cartan manifold.

A Riemann–Cartan manifold is a triple (M, g, ∇̄), where (M, g) is a Riemannian

n-dimensional (n ≥ 2) manifold with linear connection ∇̄ having nonzero torsion S̄

such that ∇̄g = 0 (see [33]), i.e. ∇̄ is a nonsymmetric metric connection on (M, g).

The deformation tensor T defined by T = ∇̄ − ∇, where ∇ is the Levi-Civita

connection on (M, g) has the following properties (see [38]):

(i) T is uniquely defined,
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(ii) S̄(X, Y ) = 1/2 (T (X, Y )− T (Y, X)),

(iii) T ∈ C∞TM ⊗ Λ2M since ∇̄g = 0 ⇔ g(T (X, Y ), Z) = −g(T (X,Z), Y ),

(iv) g(T (Y, Z), X) = g(S(X,Y ), Z) + g(S(X,Z), Y ) + g(S(Y, Z), X),

(v) trace T = 2 · trace S̄

for any vector fields X,Y, Z ∈ C∞TM .

Let R̄ be the curvature tensor of a nonsymmetric metric connection ∇̄. Then the

covariant tensor R̄b defined by the formula R̄b(X, Y, Z, V ) = g(R̄(X,Y )V, Z) is a

smooth section of the tensor bundle Λ2M ⊗ Λ2M (see [38]).

2.2. Examples of Riemann-Cartan manifolds. Firstly, we shall consider a Eu-

clidian sphere S
◦

2 = {S2 \ north pole} of radius R excluding the north pole and

with the standard Riemannian metric g11 = R2 cos2 ϕ, g22 = R2, g12 = g21 = 0

where x1 = ϑ, x2 = ϕ denote the standard spherical coordinates of S
◦

2. Then

X1 = {(R cos ϕ)−1, 0}, X2 = {0, R−1} are vectors of standard orthogonal basis of

all vector fields on S
◦

2. There is a nonsymmetric metric connection ∇̄ with coeffi-

cients Γ̄1
21 = − tan ϕ and other Γ̄α

βγ = 0 such that ∇̄XαXβ = 0 where α, β, γ = 1, 2.

For this connection ∇̄ the curvature tensor R̄ = 0 and the torsion tensor S̄ has

components S̄1
12 = tan ϕ, S̄2

12 = 0 (see [7]). Therefore, S
◦

2 with g and ∇̄ is an exam-

ple of a Riemann–Cartan manifold (M, g, ∇̄). In addition, if R̄ = 0, then we call the

connection ∇̄ as Weitzenbock or teleparallel connection (see, for example, [1] and [36]).

Secondary, we shall consider a homogeneous Riemannian manifold (M, g) as the

connected Riemannian manifold (M, g) whose isometry group is transitive. By the

Ambrose–Singer theorem, a complete connected Riemannian manifold (M, g) is ho-

mogeneous if and only if a tensor field T ∈ C∞TM ⊗ Λ2M satisfies ∇̄R = 0 and

∇̄T = 0 for the connection ∇̄ = ∇ + T . In this case, ∇̄g = 0 and, therefore, a

homogeneous Riemannian manifold is an example of the Riemann–Cartan manifold

(M, g, ∇̄) (see [34]).

Thirdly, we shall consider almost Hermitian manifold (see [19]) which is defined as

the triple (M, g, J), where the pair (M, g) is a Riemannian 2m-dimensional manifold

with almost complex structure J ∈ C∞(TM ⊗ T ∗M) compatible with the metric g,

i.e. J2 = IdM and g(J, J) = g. In this case, ∇̄g = 0 for the connection ∇̄ = ∇+∇J ,

and, therefore, an almost Hermitian manifold (M, g, J), together with the connection

∇̄ = ∇+∇J , is an example of the Riemann–Cartan manifold (M, g, ∇̄).
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The classification of almost Hermitian manifolds is well known (see [14]), it is

based on the pointwise U(m)-irreducible decomposition of the tensor ∇Ω, where

Ω(X, Y ) = g(X, JY ). Almost semi-Kählerian manifold (see [14]) is isolated by the

condition trace∇J = 0 and it is an example of Riemann–Cartan manifolds of class

Ω1 ⊕ Ω3. Almost Kählerian manifold (see [14]) is isolated by the condition dΩ = 0

and it is an example of Riemann-Cartan manifolds of class Ω2⊕Ω3. Nearly Kählerian

manifold (see [14]) is isolated by the condition dΩ = 3∇Ω and it is example of

Riemann–Cartan manifolds of class Ω1.

2.3. The first classification of Riemann–Cartan manifolds. It is well-known

that the torsion tensor S̄ ∈ C∞Λ2M ⊗ TM . In turn, the following point-wise

O(q)-irreducible decomposition holds (see [4])

Λ2M ⊗ T ∗M ∼= Ω1(M)⊗ Ω2(M)⊗ Ω3(M).

Here, q = g(x) for an arbitrary point x ∈ M . In this case, the orthogonal projections

on the components of this decomposition are defined by the following relations (see

[4]):

(1)S̄b(X,Y, Z) = 1/3
(
S̄b(X, Y, Z) + S̄b(Y, Z, X) + S̄b(Z,X, Y )

)
,

(2)S̄b(X,Y, Z) = g(X, Z)θ(Y )− g(X,Y )θ(Z),
(3)S̄b(X,Y, Z) =

(
S̄b(X,Y, Z)− (1)S̄b(Y, Z, X)− (2)S̄b(Z, X, Y )

)
,

for any vector fields X, Y, Z ∈ C∞TM . In these identities, we have supposed that

S̄b(X,Y, Z) = g
(
S̄(X, Y ), Z

)
and θ := 1

n−1
trace S̄.

We say that a Riemann–Cartan manifold (M, g, ∇̄) as well as its connection ∇̄
belong to the class Ωα or Ωα ⊕ Ωβ for α, β = 1, 2, 3 and α < β if the tensor field S̄b

is a section of corresponding tensor bundle Ωα(M) or Ωα(M)⊕Ωβ(M) (see also [5]).

Obviously, the Riemann–Cartan manifold (M, g, ∇̄) belongs to the class Ω1 if and

only if its torsion tensor satisfies the property S̄b ∈ C∞Λ3M . In particular this class

includes spaces of semi-simple groups (see [11, 38]). Moreover the class Ω2 of the

Riemann–Cartan manifolds (M, g, ∇̄) consists of semi-symmetric Riemann–Cartan

manifolds (see [2, 9, 22, 23, 31]).

All these classes of Riemann–Cartan manifolds are presented in the following dia-

gram. Remark that any one can find physical interpretations of all classes of Riem-

ann–Cartan manifolds in the paper [5].
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2.4. The second classification of Riemann–Cartan manifolds. Pursuant to the

Sec. 2.3 we conclude that deformation tensor T b ∈ C∞(TM ⊗ Λ2M). In turn, the

following pointwise O(q)-irreducible decomposition holds (see [4])

Λ2M ⊗ T ∗M ∼= Ψ1(M)⊕Ψ2(M)⊕Ψ3(M),

where the orthogonal projections on the components of this decomposition are defined

by the following relations:

(1)T b(X,Y, Z) = 1/3
(
T b(X,Y, Z) + T b(Y, Z,X) + T b(Z, X, Y )

)
,

(2)T b(X,Y, Z) = g(X, Z)ω(Y )− g(X,Y )ω(Z),
(3)T b(X,Y, Z) =

(
T b(X, Y, Z)− (1)T b(Y, Z, X)− (2)T b(Z, X, Y )

)
,

for T b(X, Y, Z) = g
(
S̄(X, Y ), Z

)
, ω =

1

n− 1
trace T and any vector fields X,Y, Z ∈

C∞TM .

We say (see [34]) that a Riemann–Cartan manifold (M, g, ∇̄) as well as its connec-

tion ∇̄ belong to the class Ψα or Ψα ⊕ Ψβ for α, β = 1, 2, 3 and α < β if the tensor

field T b is a section of corresponding tensor bundle Ψα(M) or Ψα(M)⊕Ψβ(M).

Obviously, the spaces Λ2M ⊗T ∗M and T ∗⊗Λ2M , as well as their irreducible com-

ponents, are isomorphic. Therefore these two classifications are equivalent. Moreover,

corresponding classes of Riemann–Cartan manifolds from these two classifications co-

incide.

2.5. Green’s theorem for the Riemann–Cartan manifolds. Let (M, g) be a

compact Riemannian manifold. We may also assume that (M, g) is orientable; if

(M, g) is not orientable then we take an orientable twofold covering space of (M, g).

The classical Green’s theorem
∫
(div X) dV = 0 has the form

∫
(trace∇X) dV = 0 for

an arbitrary smooth vector field X and the volume element dV of the Riemannian

manifold (M, g) (see [38]).
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Since the dependence ∇̄ = ∇+ T holds on a Riemann–Cartan manifold (M, g, ∇̄),

it follows that trace ∇̄X = trace∇X+2(trace S̄)X. Whence, by the Green’s theorem,

we deduce the Green’s theorem
∫

M
(trace ∇̄X − 2(trace S̄)X) dV = 0

for an arbitrary compact Riemann-Cartan manifold (M, g, ∇̄).

Remark. S. Goldberg, K. Yano and S. Bochner, and also Y. Kubo, N. Rani and

N. Prakash (see [3], [13], [20], [26] and [38]) proved their “vanishing theorem” on com-

pact oriented Riemann-Cartan manifolds under the condition that div X = trace ∇̄X.

In this case Green’s theorem has the form
∫
(trace ∇̄X) dV = 0. These Riemann-

Cartan manifolds belong to the class Ω1 ⊕ Ω3.

3. Scalar and total scalar curvatures

of Riemann-Cartan manifolds

3.1. Definitions of scalar and total scalar curvatures of the Riemann-Cartan

manifold. Let (M, g, ∇̄) be a Riemann-Cartan manifold with positive-define metric g

and the curvature tensor R̄. The covariant curvature tensor R̄b is a smooth section

of the tensor bundle Λ2M ⊗ Λ2M , therefore the scalar curvature s̄ = s̄(x) of the

Riemann–Cartan manifold (M, g, ∇̄) may be defined by the formula (see also [32])

s̄(x) =
n∑

i,j=1

g(R̄(ei, ej)ej, ei)

as an analogy to the scalar curvature s(x) =
n∑

i,j=1
g(R(ei, ej)ej, ei) of the Riemannian

manifold (M, g) for an arbitrary orthonormal basis {e1, e2, . . . , en} of TxM .

It is well known that the nonsymmetric tensor Ric(X,Y ) defined as the trace of

the map Zx → R̄(Zx, Xx)Yx for any Zx, Yx, Xx ∈ TxM is a Ricci tensor (see [18]) of

the nonsymmetric linear connection ∇̄. Therefore we can write the following identity

s̄(x) =
n∑

i=1
Ric(ei, ei). In particular, for the Weitzenböck connection ∇̄ we have the

following identity s̄ = 0 (see [1] and [36]).

The dependence between the scalar curvatures s and s̄ is described in the following

formula (see [32])

(3.1) s̄ = s−
∥∥∥(1)T

∥∥∥
2 − n− 2

2

∥∥∥(2)T
∥∥∥
2
+

1

2

∥∥∥(3)T
∥∥∥
2 − 2 div(trace T )#.

By the formulas (iv) and (v) of Sec. 2 we can rewrite the formula (3.1) in the form

(3.2) s̄ = s−
∥∥∥(1)S̄

∥∥∥
2 − 2(n− 2)

∥∥∥(2)S̄
∥∥∥
2
+ 2

∥∥∥(3)S̄
∥∥∥
2 − 4 div(trace S̄)#.
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In particular, for the Weitzenböck connection ∇̄ we have the formula

s =
∥∥∥(1)S̄

∥∥∥
2
+ 2(n− 2)

∥∥∥(2)S̄
∥∥∥
2 − 2

∥∥∥(3)S̄
∥∥∥
2
+ 4 div(trace S̄)#.

Let (M, g, ∇̄) be a compact Riemann–Cartan manifold. We define its complete

scalar curvature as the number s̄(M) =
∫
M s̄ dV analogously to the total scalar cur-

vature s(M) =
∫
M s dV of a Riemannian manifold. From the formula (3.1) we deduce

the dependence between the total scalar curvatures s(M) and s̄(M) in the following

integral formula

s̄(M) = s(M)−
∫

M

(∥∥∥(1)S̄
∥∥∥
2
+ 2(n− 2)

∥∥∥(2)S̄
∥∥∥
2 − 2

∥∥∥(3)S̄
∥∥∥
2)

dV.

In particular, for the Weitzenböck connection we have the integral formula

s(M) =
∫

M

(∥∥∥(1)S̄
∥∥∥
2
+ 2(n− 2)

∥∥∥(2)S̄
∥∥∥
2 − 2

∥∥∥(3)S̄
∥∥∥
2)

dV.

3.2. Algebraic conditions on scalar and total scalar curvatures for some

classes of Riemann-Cartan manifolds and vanishes theorems. Firstly, con-

sider a Riemann–Cartan manifold (M, g, ∇̄) of the class Ω3 which is characterized

by the conditions (1)S̄ = (2)S̄ = 0. For these conditions the identity (3.2) rewrite as

s̄ = s + 2
∥∥∥(3)S̄

∥∥∥
2
. Hence we have s̄ ≥ s, where equality is possible only if ∇̄ = ∇.

The following theorem holds (see also [32]).

Theorem 3.1. The scalar curvatures s̄ and s of the metric connection ∇̄ and of the

Levi-Civita connection ∇ of an n-dimensional Riemann–Cartan manifold (M, g, ∇̄)

of the class Ω3 satisfy the inequality s̄ ≥ s. The equality s̄ = s is possible only if

∇̄ = ∇.

Obviously that for any Riemann–Cartan manifold (M, g, ∇̄) of the class Ω3 with

Weitzenböck connection ∇̄ the following identity s = −2
∥∥∥(3)S̄

∥∥∥
2

holds. Therefore we

can formulate the first corollary.

Corollary 3.1. The torsion tensor S̄ of the metric connection ∇̄ and scalar curva-

tures s of the Levi-Civita connection ∇ of an n-dimensional Riemann-Cartan man-

ifold (M, g, ∇̄) of the class Ω3 satisfy the identity s = −2 ‖(3)S̄‖2. There exist no

Weitzenböck connections of the class Ω3 on a Riemannian manifold with s > 0.

Knowing the definition of the scalar curvature s̄ and taking account of the positive

definiteness of the metric g, we can prove the following corollary (see also [32]).
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Corollary 3.2. On compact oriented Riemannian manifold (M, g) with positive semi-

definite (resp. positive-definite) scalar curvature s, there is no nonsymmetric metric

connection ∇̄ of class Ω3 with negative-definite (resp. negative semi-definite) qua-

dratic form Ric(X, X) for the Ricci tensor Ric of the connection ∇̄ and any smooth

vector field X.

Secondary, we consider a Riemann-Cartan manifold (M, g, ∇̄) of the class Ω1. In

this case the following theorem holds.

Theorem 3.2. The scalar curvatures s̄ and s of the metric connection ∇̄ and of the

Levi-Civita connection ∇ of an n-dimensional Riemannian-Cartan manifold (M, g, ∇̄)

of the class Ω1 satisfy the inequality s̄ ≤ s. The equality s̄ = s is possible only if

∇̄ = ∇.

For the proof we remark that the class Ω1 characterized by the conditions (2)S̄ =
(3)S̄ = 0 that is equal to S̄b ∈ C∞Λ3M . For these conditions the identity (3.2) may

be rewritten as s̄ = s −
∥∥∥(1)S̄

∥∥∥2. Hence we have s̄ ≤ s, and equality is possible only

if ∇̄ = ∇.

Obviously that for any Riemann-Cartan manifold (M, g, ∇̄) of the class Ω1 with

Weitzenböck connection ∇̄ the following identity s =
∥∥∥(1)S̄

∥∥∥2 holds. Therefore we can

formulate the third corollary.

Corollary 3.3. The torsion tensor S̄ of the metric connection ∇̄ and scalar curva-

tures s of the Levi-Civita connection ∇ of an n-dimensional Riemann-Cartan mani-

fold (M, g, ∇̄) of the class Ω1 satisfy the identity s = ‖(1)S̄ ‖2. Therefore there are no

Weitzenböck connections of the class Ω1 on a Riemannian manifold with s < 0.

Using the definition of the scalar curvature s̄ and taking account of the positive

definiteness of the metric g, we can prove the following the forth corollary.

Corollary 3.4. On compact oriented Riemannian manifold (M, g) with negative-

semidefinite (resp. negative-definite) scalar curvature s, there is no non-symmetric

metric connection ∇̄ of class Ω1 with positive-definite (resp. positive-semidefinite)

quadratic form Ric(X, X) for the Ricci tensor Ric of the connection ∇̄ and any

smooth vector field X.



ON SCALAR AND TOTAL SCALAR CURVATURES 299

Thirdly, consider a compact Riemann–Cartan manifold (M, g, ∇̄) of the class

Ω1 ⊕ Ω2, we have the following integral formula

s̄(M) = s(M)−
∫

M

(∥∥∥(1)S̄
∥∥∥
2
+ 2(n− 2)

∥∥∥(2)S̄
∥∥∥
2)

dV.

For n = 2, equality is possible only if S̄ = (3)S̄. Then the following theorem is true

(see also [32]).

Theorem 3.3. The total scalar curvatures s(M) and s̄(M) of Riemannian (M, g)

compact manifold and a compact Riemann–Cartan manifold (M, g, ∇̄) of class Ω1⊕Ω2

are related by the inequality s̄(M) ≤ s(M). For dim M ≥ 3, the equality is possible if

the metric connection ∇̄ coincides with the Levi-Civita connection ∇ of the metric g,

for n = 2, if ∇̄ is a semi-symmetric connection.

Obviously that for any Riemann–Cartan manifold (M, g, ∇̄) with the Weitzenböck

connection ∇̄ of the class Ω1 ⊕ Ω2 the identity

s(M) =
∫

M

(∥∥∥(1)S̄
∥∥∥
2
+ 2(n− 2)

∥∥∥(2)S̄
∥∥∥
2)

dV

holds. Now we can formulate the corollary.

Corollary 3.5. There are not Weitzenböck connections ∇̄ of the class Ω1 ⊕Ω2 on a

compact Riemannian manifold with s(M) ≤ 0.

Regarding the definition of the scalar curvature s̄ and taking account of the positive

definiteness of the metric g, we can prove the following corollary (see also [32]).

Corollary 3.6. On a compact Riemannian manifold (M, g) with negative semi-

definite (resp. negative-definite) scalar curvature s, there is no nonsymmetric metric

connection ∇̄ of class Ω1⊕Ω2 with positive-definite (resp. positive semi-definite) qua-

dratic form Ric(X, X) for the Ricci tensor Ric of the connection ∇̄ and any smooth

vector field X.
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