KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 35 NUMBER 3 (2011), PAGES 359–368.

SIGNED TOTAL k-DOMATIC NUMBERS OF DIGRAPHS

MARYAM ATAPOUR ¹, SEYED MAHMOUD SHEIKHOLESLAMI ¹ AND LUTZ VOLKMANN ²

ABSTRACT. Let D be a finite and simple digraph with vertex set V(D), and let $f: V(D) \to \{-1, 1\}$ be a two-valued function. If $k \geq 1$ is an integer and $\sum_{x \in N^-(v)} f(x) \geq k$ for each $v \in V(D)$, where $N^-(v)$ consists of all vertices of Dfrom which arcs go into v, then f is a signed total k-dominating function on D. A set $\{f_1, f_2, \ldots, f_d\}$ of distinct signed total k-dominating functions of D with the property that $\sum_{i=1}^d f_i(v) \leq 1$, for each $v \in V(D)$, is called a signed total k-dominating family (of functions) of D. The maximum number of functions in a signed total k-dominating family of D is the signed total k-domatic number of D, denoted by $d_{kS}^t(D)$. In this note we initiate the study of the signed total k-domatic numbers of digraphs and present some sharp upper bounds for this parameter.

1. INTRODUCTION

In this paper, D is a finite and simple digraph with vertex set V = V(D) and arc set A = A(D). Its underlying graph is denoted G(D). We write $\deg_D^+(v) = \deg^+(v)$ for the outdegree of a vertex v and $\deg_D^-(v) = \deg^-(v)$ for its indegree. The minimum and maximum indegree are $\delta^-(D)$ and $\Delta^-(D)$, respectively. The sets $N^+(v) = \{x \mid (v, x) \in A(D)\}$ and $N^-(v) = \{x \mid (x, v) \in A(D)\}$ are called the outset and inset of the vertex v. Likewise, $N^+[v] = N^+(v) \cup \{v\}$ and $N^-[v] = N^-(v) \cup \{v\}$. If $X \subseteq V(D)$, then D[X] is the subdigraph induced by X. For an arc $(x, y) \in A(D)$, the vertex y is an outer neighbor of x and x is an inner neighbor of y. Note that for any digraph D with

Key words and phrases. Digraph, signed total k-domatic number, signed total k-dominating function, signed total k-domination number.

²⁰¹⁰ Mathematics Subject Classification. 05C69. Received: August 23, 2011.

m arcs,

(1.1)
$$\sum_{u \in V(D)} \deg^{-}(u) = \sum_{u \in V(D)} \deg^{+}(u) = m.$$

Consult [3] and [4] for notation and terminology which are not defined here.

For a real-valued function $f: V(D) \longrightarrow \mathbf{R}$ the weight of f is $w(f) = \sum_{v \in V(D)} f(v)$, and for $S \subseteq V(D)$, we define $f(S) = \sum_{v \in S} f(v)$, so w(f) = f(V(D)). If $k \ge 1$ is an integer, then the signed total k-dominating function is defined as a function $f: V(D) \longrightarrow \{-1, 1\}$ such that $f(N^-(v)) = \sum_{x \in N^-(v)} f(x) \ge k$ for every $v \in V(D)$. The signed total k-domination number for a digraph D is

 $\gamma_{kS}^t(D) = \min\{w(f) \mid f \text{ is a signed total } k \text{-dominating function of } D\}.$

A $\gamma_{kS}^t(D)$ -function is a signed total k-dominating function on D of weight $\gamma_{kS}^t(D)$. As the assumption $\delta^-(D) \ge k$ is necessary, we always assume that when we discuss $\gamma_{kS}^t(D)$, all digraphs involved satisfy $\delta^-(D) \ge k$ and thus $n(D) \ge k + 1$.

The signed total k-domination number of digraphs was introduced by Sheikholeslami and Volkmann [7]. When k = 1, the signed total k-domination number $\gamma_{kS}^t(D)$ is the usual signed total domination number $\gamma_S^t(D)$, which was introduced by Sheikholeslami in [6].

A set $\{f_1, f_2, \ldots, f_d\}$ of distinct signed total k-dominating functions on D with the property that $\sum_{i=1}^d f_i(v) \leq 1$ for each $v \in V(D)$, is called a signed total k-dominating family on D. The maximum number of functions in a signed total k-dominating family on D is the signed total k-domatic number of D, denoted by $d_{kS}^t(D)$. The signed total k-domatic number is well-defined and $d_{kS}^t(D) \geq 1$ for all digraphs D in which $d_D^-(v) \geq k$ for all $v \in V$, since the set consisting of any one STkD function forms a STkD family of D. A $d_{kS}^t(D)$ -family of a digraph D is a STkD family containing $d_{kS}^t(D)$ STkD functions. When k = 1, the signed total k-domatic number of a digraph D is the usual signed total domatic number $d_{st}(D)$, which was introduced by Favaron and Sheikholeslami [1].

In this paper we initiate the study of the signed total k-domatic number of digraphs, and we present different bounds on $d_{kS}^t(D)$. Some of our results are extensions of wellknown properties of the signed total domatic number $d_{st}(D) = d_{1S}^t(D)$ of digraphs (see for example [1]) as well as the signed total k-domatic number of graphs G (see for example [2, 5]). We make use of the following results and observations in this paper.

Observation 1.1. Let D be a digraph of order n. Then $\gamma_{kS}^t(D) = n$ if and only if $k \leq \delta^-(D) \leq k+1$ and for each $v \in V(D)$ there exists a vertex $u \in N^+(v)$ such that $\deg^-(u) = k$ or $\deg^-(u) = k+1$.

Proof. If $k \leq \delta^{-}(D) \leq k+1$ and for each $v \in V(D)$ there exists a vertex $u \in N^{+}(v)$ such that deg⁻(u) = k or deg⁻(u) = k+1, then trivially $\gamma_{kS}^{t}(D) = n$.

Conversely, assume that $\gamma_{kS}^t(D) = n$. By assumption $k \leq \delta^-(D)$. Let, to the contrary, $\delta^-(D) > k+1$ or there exists a vertex $v \in V(D)$ such that deg⁻ $(u) \geq k+2$ for each $u \in N^+(v)$. If $\delta^-(D) > k+1$, define $f: V(D) \to \{-1, 1\}$ by f(v) = -1 for some fixed v and f(x) = 1 for $x \in V(D) \setminus \{v\}$. Obviously, f is a signed total k-dominating function of D with weight less than n, a contradiction. Thus $k \leq \delta^-(D) \leq k+1$. Now let $v \in V(D)$ and deg⁻ $(u) \geq k+2$ for each $u \in N^+(v)$. Define $f: V(D) \to \{-1, 1\}$ by f(v) = -1 and f(x) = 1 for $x \in V(D) \setminus \{v\}$. Again, f is a signed total k-dominating function of D, a contradiction. This completes the proof.

Observation 1.2. Let $k \ge 1$ be an integer, and let D be a digraph with $\delta^{-}(D) \ge k$. If for every vertex $v \in V(D)$ the set $N^{+}(v)$ contains a vertex x such that $\deg^{-}(x) \le k+1$, then $d_{kS}^{t}(D) = 1$.

Proof. Assume that $N^+(v)$ contains a vertex x_v such that $\deg^-(x_v) \le k+1$ for every vertex $v \in V(D)$, and let f be a signed total k-dominating function on D. Since $\deg^-(x_v) \le k+1$, we deduce that f(v) = 1. Hence f(v) = 1 for each $v \in V(D)$ and thus $d_{kS}^t(D) = 1$.

Observation 1.3. The signed total k-domatic number of a digraph is an odd integer.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a signed total k-dominating family on D such that $d = d_{kS}^t(D)$. Suppose to the contrary that $d_{kS}^t(D)$ is an even integer. If $x \in V(D)$ is an arbitrary vertex, then $\sum_{i=1}^d f_i(x) \leq 1$. On the left-hand side of this inequality a sum of an even number of odd summands occurs. Therefore it is an even number and we obtain $\sum_{i=1}^d f_i(x) \leq 0$ for each $x \in V(G)$. If v is an arbitrary vertex, then it follows that

$$d \cdot k = \sum_{i=1}^{d} k \le \sum_{i=1}^{d} \sum_{x \in N^{-}(v)} f_i(x) = \sum_{x \in N^{-}(v)} \sum_{i=1}^{d} f_i(x) \le 0.$$

which is a contradiction, and the proof is complete.

2. Properties and upper bounds

In this section we present basic properties of the signed total k-domatic number, and we find some sharp upper bounds for this parameter.

Theorem 2.1. Let D be a digraph and $v \in V(D)$. Then

$$d_{kS}^{t}(D) \leq \begin{cases} \frac{\deg^{-}(v)}{k} & \text{if } \deg^{-}(v) \equiv k \pmod{2} \\ \frac{\deg^{-}(v)}{k+1} & \text{if } \deg^{-}(v) \equiv k+1 \pmod{2}. \end{cases}$$

Moreover, if the equality holds, then for each function f_i of a STkD family $\{f_1, f_2, \ldots, f_d\}$ and for every $u \in N^-(v)$, $\sum_{u \in N^-(v)} f_i(u) = k$ if deg⁻ $(v) \equiv k \pmod{2}$, $\sum_{u \in N^-(v)} f_i(u) = k + 1$ if deg⁻ $(v) \equiv k + 1 \pmod{2}$ and $\sum_{i=1}^d f_i(u) = 1$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a STkD family of D such that $d = d_{kS}^t(D)$. If deg⁻ $(v) \equiv k \pmod{2}$, then

$$d = \sum_{i=1}^{d} 1 \le \sum_{i=1}^{d} \frac{1}{k} \sum_{u \in N^{-}(v)} f_{i}(u)$$

= $\frac{1}{k} \sum_{u \in N^{-}(v)} \sum_{i=1}^{d} f_{i}(u) \le \frac{1}{k} \sum_{u \in N^{-}(v)} 1$
= $\frac{\deg^{-}(v)}{k}$.

Similarly, if deg⁻ $(v) \equiv k + 1 \pmod{2}$, then

$$d = \sum_{i=1}^{d} 1 \le \sum_{i=1}^{d} \frac{1}{k+1} \sum_{u \in N^{-}(v)} f_{i}(u)$$

= $\frac{1}{k+1} \sum_{u \in N^{-}(v)} \sum_{i=1}^{d} f_{i}(u) \le \frac{1}{k+1} \sum_{u \in N^{-}(v)} 1$
= $\frac{\deg^{-}(v)}{k+1}$.

If $d_{kS}^t(D) = \frac{\deg^-(v)}{k}$ when $\deg^-(v) \equiv k \pmod{2}$ or $d_{kS}^t(D) = \frac{\deg^-(v)}{k+1}$ when $\deg^-(v) \equiv k+1 \pmod{2}$, then the two inequalities occurring in the proof of each corresponding case become equalities, which gives the properties given in the statement. \Box

Corollary 2.1. Let D be a digraph and $1 \le k \le \delta^{-}(D)$. Then

$$d_{kS}^{t}(D) \leq \begin{cases} \frac{\delta^{-}(D)}{k}, & \text{if } \delta^{-}(D) \equiv k \pmod{2}, \\ \frac{\delta^{-}(D)}{k+1}, & \text{if } \delta^{-}(D) \equiv k+1 \pmod{2}. \end{cases}$$

Corollary 2.2. Let $k \ge 1$ be an integer, and let D be a (k+2)-integular digraph of order n. If $k \ge 2$ or k = 1 and $n \not\equiv 0 \pmod{3}$, then $d_{kS}^t(D) = 1$.

Proof. By Corollary 2.1, $d_{kS}^t(D) \leq \frac{k+2}{k}$. If $k \geq 2$, then it follows from Observation 1.3 that $d_{kS}^t(D) = 1$. Now let k = 1. Then $d_{kS}^t(D) = 1$ or $d_{kS}^t(D) = 3$ by Observation 1.3. Suppose to the contrary that $d_{kS}^t(D) = 3$. Let f belong to a signed total kdominating family on D of order 3. By Theorem 2.1, we have $\sum_{x \in N^-(v)} f(x) = 1$ for every $v \in V(D)$. This implies that

$$n = \sum_{v \in V(D)} \sum_{x \in N^{-}(v)} f(x) = \sum_{x \in N^{-}(v)} \sum_{v \in V(D)} f(x) = 3w(f).$$

Since w(f) is an integer, 3 is a divisor of n which contradicts the hypotheses $n \neq 0 \pmod{3}$, and the proof is complete.

Corollary 2.3. Let $k \ge 1$ be an integer, and let D be a (k+3)-integular digraph of order n. Then $d_{kS}^t(D) = 1$.

Proof. By Corollary 2.1, $d_{kS}^t(D) \leq \frac{k+3}{k+1}$. Therefore Observation 1.3 implies that $d_{kS}^t(D) = 1$.

Theorem 2.2. Let $k \ge 1$ be an integer, and let D be an r-integular digraph of order n such that $r \ge k$. If r < 3k, then $d_{kS}^t(D) = 1$, and if $r \ge 3k$ and (n, r) = 1, then

$$d_{kS}^{t}(D) < \begin{cases} \frac{r}{k}, & \text{if } r \equiv k \pmod{2}, \\ \frac{r}{k+1}, & \text{if } r \equiv k+1 \pmod{2} \end{cases}$$

Proof. If r < 3k, then it follows from Corollary 2.1 that $d_{kS}^t(D) \leq \frac{r}{k} < 3$. Therefore Observation 1.3 implies that $d_{kS}^t(D) = 1$.

Now assume that $r \geq 3k$ and (n,r) = 1. First let $r = \delta^{-}(D) \equiv k \pmod{2}$ (if $\delta^{-}(D) \equiv k + 1 \pmod{2}$, then the proof is similar). Suppose to the contrary that $d_{kS}^t(D) \geq \frac{\delta^{-}(D)}{k}$. Then by Corollary 2.1, $d_{kS}^t(D) = \frac{\delta^{-}(D)}{k}$. Let f belong to a signed total k-dominating family on D of order $\frac{\delta^{-}(D)}{k}$. By Theorem 2.1, we have $\sum_{x \in N^{-}(v)} f(x) = k$ for every $v \in V(D)$. This implies that

$$nk = \sum_{v \in V(D)} \sum_{x \in N^{-}(v)} f(x) = \sum_{x \in N^{-}(v)} \sum_{v \in V(D)} f(x) = rw(f).$$

Since w(f) is an integer and (n, r) = 1, the number r is a divisor of k. It follows from $k \leq \delta^{-}(D) = r$ that k = r, a contradiction to the hypothesis that $r \geq 3k$. \Box

Theorem 2.3. Let D be a digraph with $\delta^{-}(D) \geq k$, and let $\Delta = \Delta(G(D))$ be the maximum degree of G(D). Then

$$d_{kS}^{t}(D) \leq \begin{cases} \frac{\Delta}{2k}, & \text{if } \delta^{-}(D) \equiv k \pmod{2}, \\ \frac{\Delta}{2(k+1)}, & \text{if } \delta^{-}(D) \equiv k+1 \pmod{2} \end{cases}$$

Proof. First of all, we show that $\delta^{-}(D) \leq \Delta/2$. Suppose to the contrary that $\delta^{-}(D) > \Delta/2$. Then $\Delta^{+}(D) \leq \Delta - \delta^{-}(D) < \Delta/2$, and (1.1) leads to the contradiction

$$\frac{\Delta \cdot |V(D)|}{2} < \sum_{u \in V(D)} \deg^{-}(u) = \sum_{u \in V(D)} \deg^{+}(u) < \frac{\Delta \cdot |V(D)|}{2}$$

Applying Corollary 2.1, we deduce the desired result.

Let D be a digraph. By D^{-1} we denote the digraph obtained by reversing all the arcs of D. A digraph without directed cycles of length 2 is called an *oriented graph*. An oriented graph D is a *tournament* when either $(x, y) \in A(D)$ or $(y, x) \in A(D)$ for each pair of distinct vertices $x, y \in V(D)$.

Theorem 2.4. For every oriented graph D of order n and $1 \le k \le \min\{\delta^{-}(D), \delta^{-}(D^{-1})\},\$

(2.1)
$$d_{kS}^t(D) + d_{kS}^t(D^{-1}) \le \frac{n-1}{k}$$

with equality if and only if D is an r-regular tournament of order n = 2r + 1 and k = r.

Proof. Since $\delta^{-}(D) + \delta^{-}(D^{-1}) \leq n - 1$, Corollary 2.1 implies that

$$d_{kS}^t(D) + d_{kS}^t(D^{-1}) \le \frac{\delta^-(D)}{k} + \frac{\delta^-(D^{-1})}{k} \le \frac{n-1}{k}$$

If D is an r-regular tournament of order n = 2r + 1 and k = r, then D^{-1} is also an r-regular tournament, and it follows from Observation 1.2 that

$$d_{kS}^t(D) + d_{kS}^t(D^{-1}) = 2 = \frac{2r}{k} = \frac{n-1}{k}.$$

If D is not a tournament or D is a non-regular tournament, then $\delta^-(D) + \delta^-(D^{-1}) \le n-2$ and hence we deduce from Corollary 2.1 that

$$d_{kS}^t(D) + d_{kS}^t(D^{-1}) \le \frac{n-2}{k}.$$

If D is an r-regular tournament, then n = 2r + 1. If k < r < 3k, then Theorem 2.2 leads to

$$2 = d_{kS}^t(D) + d_{kS}^t(D^{-1}) < \frac{n-1}{k}$$

Finally, assume that $r \ge 3k$. We observe that (n, r) = (2r+1, r) = 1. Using Theorem 2.2, we deduce that

$$d_{kS}^t(D) + d_{kS}^t(D^{-1}) < \frac{\delta^{-}(D)}{k} + \frac{\delta^{-}(D^{-1})}{k} = \frac{n-1}{k},$$

and the proof is complete.

Theorem 2.5. Let D be a digraph of order n and $\delta^{-}(D) \geq k > 0$. Then $\gamma_{kS}^{t}(D) \cdot d_{kS}^{t}(D) \leq n$. Moreover if $\gamma_{kS}^{t}(D) \cdot d_{kS}^{t}(D) = n$, then for each $d = d_{kS}^{t}(D)$ -family $\{f_{1}, f_{2}, \ldots, f_{d}\}$ of D each function f_{i} is a $\gamma_{kS}^{t}(D)$ -function and $\sum_{i=1}^{d} f_{i}(v) = 1$ for all $v \in V$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a STkD family of D such that $d = d_{kS}^t(D)$ and let $v \in V$. Then

$$d \cdot \gamma_{kS}^t(D) = \sum_{i=1}^d \gamma_{kS}^t(D)$$

$$\leq \sum_{i=1}^d \sum_{v \in V} f_i(v)$$

$$= \sum_{v \in V} \sum_{i=1}^d f_i(v)$$

$$\leq \sum_{v \in V} 1$$

$$= n.$$

If $\gamma_{kS}^t(D) \cdot d_{kS}^t(D) = n$, then the two inequalities occurring in the proof become equalities. Hence for the $d_{kS}^t(D)$ -family $\{f_1, f_2, \ldots, f_d\}$ of D and for each i, $\sum_{v \in V} f_i(v) = \gamma_{kS}^t(D)$, thus each function f_i is a $\gamma_{kS}^t(D)$ -function, and $\sum_{i=1}^d f_i(v) = 1$ for all v.

Corollary 2.4. If D is a digraph of order n, then $\gamma_{kS}^t(D) + d_{kS}^t(D) \le n+1$.

Proof. By Theorem 2.5,

(2.2)
$$\gamma_{kS}^{t}(D) + d_{kS}^{t}(D) \le d_{kS}^{t}(D) + \frac{n}{d_{kS}^{t}(D)}$$

Using the fact that the function g(x) = x + n/x is decreasing for $1 \le x \le \sqrt{n}$ and increasing for $\sqrt{n} \le x \le n$, this inequality leads to the desired bound immediately.

Corollary 2.5. Let D be a digraph of order $n \ge 3$. If $2 \le \gamma_{kS}^t(D) \le n-1$, then

$$\gamma_{kS}^t(D) + d_{kS}^t(D) \le n.$$

Proof. Theorem 2.5 implies that

(2.3)
$$\gamma_{kS}^t(D) + d_{kS}^t(D) \le \gamma_{kS}^t(D) + \frac{n}{\gamma_{kS}^t(D)}$$

If we define $x = \gamma_{kS}^t(D)$ and g(x) = x + n/x for x > 0, then because $2 \le \gamma_{kS}^t(D) \le n - 1$, we have to determine the maximum of the function g on the interval $I : 2 \le x \le n - 1$. It is easy to see that

$$\begin{aligned} \max_{x \in I} \{g(x)\} &= \max\{g(2), g(n-1)\} \\ &= \max\{2 + \frac{n}{2}, n - 1 + \frac{n}{n-1}\} \\ &= n - 1 + \frac{n}{n-1} < n + 1, \end{aligned}$$

and we obtain $\gamma_{kS}^t(D) + d_{kS}^t(D) \leq n$. This completes the proof.

Corollary 2.6. Let D be a digraph of order n and let $k \ge 1$ be an integer. If $\min\{\gamma_{kS}^t(D), d_{kS}^t(D)\} \ge 2$, then

$$\gamma_{kS}^t(D) + d_{kS}^t(D) \le \frac{n}{2} + 2.$$

Proof. Since $\min\{\gamma_{kS}^t(D), d_{kS}^t(D)\} \ge 2$, it follows by Theorem 2.5 that $2 \le d_{kS}^t(D) \le \frac{n}{2}$. By (2.2) and the fact that the maximum of g(x) = x + n/x on the interval $2 \le x \le n/2$ is g(2) = g(n/2), we see that

$$\gamma_{kS}^t(D) + d_{kS}^t(D) \le d_{kS}^t(D) + \frac{n}{d_{kS}^t(D)} \le \frac{n}{2} + 2.$$

Observation 1.2 shows that Corollary 2.6 is no longer true if $\min\{\gamma_{kS}^t(D), d_{kS}^t(D)\} = 1.$

3. Signed total k-domatic number of graphs

The signed total k-dominating function of a graph G is defined in [8] as a function $f: V(G) \longrightarrow \{-1, 1\}$ such that $\sum_{x \in N_G(v)} f(x) \ge k$ for all $v \in V(G)$. The sum $\sum_{x \in V(G)} f(x)$ is the weight w(f) of f. The minimum of weights w(f), taken over all signed total k-dominating functions f on G is called the signed total k-domination number of G, denoted by $\gamma_{kS}^t(G)$. The special case k = 1 was defined and investigated in [10].

A set $\{f_1, f_2, \ldots, f_d\}$ of distinct signed total k-dominating functions on G with the property that $\sum_{i=1}^d f_i(v) \leq 1$ for each $v \in V(G)$, is called a *signed total k-dominating* family on G. The maximum number of functions in a signed total k-dominating family on G is the *signed total k-domatic number* of G, denoted by $d_{kS}^t(G)$. This parameter was introduced by Khodkar and Sheikholeslami in [5]. In the case k = 1, we write $d_{st}(G)$ instead of $d_{1S}^t(G)$ which was introduced by Henning [2].

The associated digraph D(G) of a graph G is the digraph obtained from G when each edge e of G is replaced by two oppositely oriented arcs with the same ends as e. Since $N_{D(G)}^{-}(v) = N_{G}(v)$ for each vertex $v \in V(G) = V(D(G))$, the following useful observation is valid.

Observation 3.1. If D(G) is the associated digraph of a graph G, then $\gamma_{kS}^t(D(G)) = \gamma_{kS}^t(G)$ and $d_{kS}^t(D(G)) = d_{kS}^t(D)$.

There are a lot of interesting applications of Observation 3.1, as for example the following results. Using Observation 1.3, we obtain the first one.

Corollary 3.1. (Henning [2]) The signed total domatic number $d_{st}(G)$ of a graph G is an odd integer.

Since $\delta^{-}(D(G)) = \delta(G)$, the next result follows from Observation 3.1 and Corollary 2.1.

Corollary 3.2. (Khodkar and Sheikholeslami [5]) If G is a graph with minimum degree $\delta(G) \geq k$, then

$$d_{kS}^{t}(G) \leq \begin{cases} \frac{\delta(G)}{k}, & \text{if } \delta(G) \equiv k \pmod{2}, \\ \frac{\delta(G)}{k+1}, & \text{if } \delta(G) \equiv k+1 \pmod{2} \end{cases}$$

The case k = 1 in Corollary 3.2 can be found in [2].

In view of Observation 3.1 and Corollary 2.4, we obtain the next result immediately.

Corollary 3.3. (Khodkar and Sheikholeslami [5]) If G is a graph of order n, then

$$\gamma_{kS}^t(G) + d_{kS}^t(G) \le n + 1.$$

References

- [1] O. Favaron and S. M. Sheikholeslami, *Signed total domatic numbers of directed graphs*, submitted.
- [2] M. A. Henning, On the signed total domatic number of a graph, Ars Combin. 79 (2006), 277–288.
- [3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
- [4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, editors, Domination in Graphs, Advanced Topics, Marcel Dekker, Inc., New York (1998).
- [5] A. Khodkar and S. M. Sheikholeslami, Signed total k-domatic numbers of graphs, J. Korean Math. Soc. 48 (2011), 551–563.
- [6] S. M. Sheikholeslami, Signed total domination numbers of directed graphs, Util. Math. 85 (2011), 273–279.
- [7] S. M. Sheikholeslami and L. Volkmann, The signed total k-domination numbers of directed graphs, Annals Math. Sci. Univ. Ovid. 18 (2010), 241–252.
- [8] C. P. Wang, The signed k-domination numbers in graphs, Ars Combin. (to appear).
- [9] D. B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.
- [10] B. Zelinka, Signed total domination number of a graph, Czechoslovak Math. J. 51 (2001), 225– 229.

¹ DEPARTMENT OF MATHEMATICS,

Azarbaijan University of Tarbiat Moallem, I. R. Iran

E-mail address: s.m.sheikholeslami@azaruniv.edu

² LEHRSTUHL II FÜR MATHEMATIK, RWTH AACHEN UNIVERSITY, GERMANY *E-mail address*: volkm@math2.rwth-aachen.de

368