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TRACE THEOREMS IN HARMONIC FUNCTION SPACES ON

(Rn+1
+ )m, MULTIPLIERS THEOREMS AND RELATED PROBLEMS

MILOŠ ARSENOVIĆ 1 AND ROMI F. SHAMOYAN 2

Abstract. We introduce and study properties of certain new harmonic function
spaces in products of upper half spaces. Norm estimates for the so called expanded
Bergman projection are obtained. Sharp theorems on multipliers acting on certain
Sobolev type spaces of harmonic functions on the unit ball are obtained.

1. Introduction, preliminaries and auxiliary results

The main goal of this paper is to introduce and study properties of certain new

harmonic function spaces on the poly upper half space (Rn+1
+ )m and to solve trace

problems for such spaces. Solutions of trace problems in various functional spaces in

complex function theory are based on estimates of Bergman type integral operators

in various domains in Cn, see for example [8], [9], [17], [19], and references therein.

In harmonic function spaces we used the same idea in [4]. The second section of

this paper provides some new estimates for such integral operators in the upper half

space. Generally speaking, trace operator is acting on functions f(z1, . . . , zm) defined

on a product Ωm of domains in Rk, that is zj ∈ Ω ⊂ Rk, 1 ≤ j ≤ m. However, when

such a function f is a product of m functions f1, . . . , fm we start to deal with multi

functional spaces. In the third section we provide a sharp embedding theorem for

such spaces.
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In the last section we give characterizations of the spaces of multipliers acting from

Sobolev type mixed norm spaces of harmonic functions on the unit ball into various

spaces of harmonic functions on the unit ball.

We set H = {(x, t) : x ∈ Rn, t > 0} ⊂ Rn+1. For z = (x, t) ∈ H we set z = (x,−t).

We denote the points in H usually by z = (x, t) or w = (y, s). The Lebegue measure

is denoted by dm(z) = dz = dxdt or dm(w) = dw = dyds. We also use measures

dmλ(z) = tλdxdt, λ ∈ R.

We use common convention regarding constants: letter C denotes a constant which

can change its value from one occurrence to the next one. Given two positive quan-

tities A and B, we write A ³ B if there are two constants c, C > 0 such that

cA ≤ B ≤ CA.

The space of all harmonic functions in a domain Ω is denoted by h(Ω). Weighted

harmonic Bergman spaces on H are defined, for 0 < p < ∞ and λ > −1, as usual:

Ap
λ = Ap

λ(H) =

{
f ∈ h(H) : ‖f‖Ap

λ
=

(∫

H
|f(z)|pdmλ(z)

)1/p

< ∞
}

.

For ~α = (α1, . . . , αm) ∈ Rm we have a product measure dm~α on Hm defined by

dm~α(z1, . . . , zm) = dmα1(z1) . . . dmαm(zm) and we set Lp
~α = Lp(Hm, dm~α), 0 < p < ∞,

and Ap
~α = Lp

~α ∩ h(Hm). We denote by Ãp
~α the subspace of Ap

~α consisting of functions

which are harmonic in each of the variables z1, . . . , zm separately.

We denote by B the open unit ball in Rn and by S = ∂B the unit sphere in Rn. We

denote polar coordinates in B by x = rx′, or y = ρy′, where x′, y′ ∈ S and r = |x|,
ρ = |y|. Accordingly, the surface measure on S is denoted by dx′ or dy′.

Using multi index notation we set, for a function f ∈ CN(Ω) and N ∈ N:

|∇Nf(x)| =
√ ∑

|γ|=N

|Dγf(x)|2, x ∈ Ω.

For 0 < p < ∞, 0 ≤ r < 1 and f ∈ C(B) we set

Mp(f, r) =
(∫

S
|f(rx′)|pdx′

)1/p

,

with the usual modification to cover the case p = ∞. For 0 < p ≤ ∞, 0 < q < ∞,

α > 0 and f ∈ C(B) we consider mixed (quasi)-norms ‖f‖p,q,α defined by

(1.1) ‖f‖p,q,α =
(∫ 1

0
Mp(f, r)q(1− r2)αq−1rn−1dr

)1/q

,
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again with the usual modification to cover the case q = ∞, and the corresponding

spaces of harmonic functions

Bp,q
α (B) = Bp,q

α = {f ∈ h(B) : ‖f‖p,q,α < ∞}.
For details on these spaces we refer to [8], Chapter 7. Also, for N ∈ N we have (quasi)

norms

‖f‖DNBp,q
α

= |f(0)|+ ‖∇Nf‖p,q,α, f ∈ CN(B),

and the corresponding spaces of harmonic functions:

DNBp,q
α = {f ∈ h(B) : ‖f‖DNBp,q

α
< ∞}.

We note that Ap
α = Bp,p

α+1
p

, therefore we have also spaces DNAp
α. All of the above

spaces are complete metric spaces, DNBp,q
α is a Banach space for min(p, q) ≥ 1 and

DNAp
α is a Banach space for p ≥ 1.

We also consider harmonic Triebel-Lizorkin spaces on the unit ball in Rn, these

were introduced in [3] where embedding and multiplier results on these spaces can be

found.

Definition 1.1. Let 0 < p, q < ∞ and α > 0. The harmonic Triebel-Lizorkin space

F p,q
α (B) = F p,q

α consists of all functions f ∈ h(B) such that

(1.2) ‖f‖F p,q
α

=

(∫

S

(∫ 1

0
|f(rx′)|p(1− r)αp−1dr

)q/p

dx′
)1/q

< ∞.

These spaces are complete metric spaces, for min(p, q) ≥ 1 they are Banach spaces.

Harmonic function spaces in the upper half spaces were studied recently in [10],

[11], [14], [15].

Definition 1.2. For a function f : Hm → C we define Trf : H → C by Trf(z) =

f(z, . . . , z).

Let X ⊂ h(Hm). The trace of X is Trace X = {Tr f : f ∈ X}.
We denote the Poisson kernel for H by P (x, t), i.e.

P (x, t) = cn
t

(|x|2 + t2)
n+1

2

, x ∈ Rn, t > 0.

For k ∈ N0 a Bergman kernel Qk(z, w), where z = (x, t) ∈ H and w = (y, s) ∈ H, is

defined by

Qk(z, w) =
(−2)k+1

k!

∂k+1

∂tk+1
P (x− y, t + s).

We need the following result from [8] which justifies terminology.
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Theorem 1.1. Let 0 < p < ∞ and α > −1. If 0 < p ≤ 1 and k ≥ α+n+1
p

− (n + 1)

or 1 ≤ p < ∞ and k > α+1
p
− 1, then

(1.3) f(z) =
∫

H
f(w)Qk(z, w)skdyds, f ∈ Ap

α, z ∈ H.

The following elementary estimate of this kernel is contained in [8]:

(1.4) |Qk(z, w)| ≤ C|z − w|−(k+n+1), z = (x, t), w = (y, s) ∈ H.

Most of the results in the next two sections rely on the following three lemmas.

Lemma 1.1. [20] There exists a collection {∆k}∞k=1 of closed cubes in H with sides

parallel to coordinate axes such that

1o ∪∞k=1∆k = H and diam∆k ³ dist(∆k, ∂H).

2o The interiors of the cubes ∆k are pairwise disjoint.

3o If ∆∗
k is a cube with the same center as ∆k, but enlarged 5/4 times, then the

collection {∆∗
k}∞k=1 forms a finitely overlapping covering of Rn+1

+ , i.e. there is

a constant C = Cn such that
∑

k χ∆∗
k
≤ C.

Lemma 1.2. [7] Let ∆k and ∆∗
k be the cubes from the previous lemma and let (xk, tk)

be the center of ∆k. Assume f is subharmonic in H. Then, for 0 < p < ∞ and

α > 0, we have

(1.5) tαp−1
k max

∆k

|f |p ≤ C

|∆∗
k|

∫

∆∗
k

tαp−1|f(x, t)|pdxdt, k ≥ 1.

Lemma 1.3. [20] Let ∆k and ∆∗
k are as in the previous lemma, let ζk = (ξk, ηk) be

the center of the cube ∆k. Then we have:

(1.6) mλ(∆k) ³ ηn+1+λ
k ³ mλ(∆

∗
k), λ ∈ R,

(1.7) |w − z| ³ |ζk − z|, w ∈ ∆∗
k, z ∈ H,

(1.8) t ³ ηk, (x, t) ∈ ∆∗
k.

Lemma 1.4. [11] If α > −1 and n + α < 2γ − 1, then

(1.9)
∫

H

tαdz

|z − w|2γ
≤ Csα+n+1−2γ, w = (y, s) ∈ H.

For w = (y, s) ∈ H we set Qw to be the cube, with sides parallel to the coordinate

axis, centered at w with side length equal to s.
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2. Expanded Bergman projections and related operators

In this section we provide new estimates for certain new integral operators closely

connected with trace problem.

For any two m-tuples (m ≥ 1) of reals ~a = (a1, . . . , am) and ~b = (b1, . . . , bm) we

define an integral operator

(2.1) (S~a,~bf)(z1, . . . , zm) =
m∏

j=1

t
aj

j

∫

H

f(w)s−n−1+
∑m

j=1
bj

∏m
j=1 |zj − w|aj+bj

dw, zj = (xj, tj) ∈ H.

This operator can be called an expanded Bergman projection in the upper half space,

it is well defined for z1, . . . , zm ∈ H and f(w) ∈ L1(H, s−n−1−
∑m

j=1
bj). A unit ball

analogue of this operator was used in [17], see also [22]. We can write this operator

in the following form:

(S~a,~bf)(z1, . . . , zm) = (N~a,~bf)(z1, . . . , zm)
m∏

j=1

t
aj

j ,

where

N~a,~bf(z1, . . . , zm) =
∫

H

f(w)s−n−1+
∑m

j=1
bj

∏m
j=1 |zj − w|aj+bj

dw.

We also consider related integral operators Sk
a,b, where a > 0, b > −1 defined by

(2.2) Sk
a,bf(z) = ta

∫

∆k

sbf(w)dw

|z − w|n+1+a+b
, z = (x, t) ∈ H, k ≥ 1,

and we set

(2.3) S̃a,bf(z) = Sk
a,bf(z), z ∈ ∆k.

Analogous operators acting on analytic functions in the unit ball in Cn appeared

in [13].

We need the following definition, generalizing the concept of Muckenhoupt weight

to the upper half space. Analogous weights in the unit ball in Cn were considered in

[13] where a result analogous to Theorem 2.1 was proven.

Definition 2.1. Let 1 < p < ∞ and let 1/p + 1/q = 1. A positive locally integrable

function V on H belongs to the MH(p) class if

(2.4) sup
w∈H

(
1

|Qw|
∫

Qw

V (z)dz

) (
1

|Qw|
∫

Qw

V (z)−q/pdz

)p/q

< ∞.
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We remark here that an equivalent definition arises if in the above supremum we

replace the family of cubes Qw, w ∈ H with the family ∆k, k ≥ 1. This easily follows

from the fact that there is a constant N = Nn such that each cube Qw can be covered

by at most Nn cubes from the family ∆k, and the selected cubes have sizes comparable

to the size of Qw.

Note that V (z) = tα is in MH(p) for all 1 < p < ∞ and all real α.

Theorem 2.1. Let 0 < σ < ∞, 1 < p < ∞ and V ∈ MH(p). Then for every

f ∈ Lp
loc(H) we have

(2.5)
∞∑

k=1

(∫

∆k

|S̃k
a,bf(z)|pV (z)dm(z)

)σ/p

≤ C
∞∑

k=1

(∫

∆k

|f(z)|pV (z)dm(z)
)σ/p

.

Proof. Let q be the exponent conjugate to p. Let us fix k ≥ 1. We have, using Lemma

1.3 and Holder’s inequality:
∫

∆k

|S̃k
a,bf(z)|pV (z)dm(z) ≤

∫

∆k

(
ta

∫

∆k

sb|f(w)|dw

|z − w|n+1+a+b

)p

V (z)dz

≤ Cη
−p(n+1)
k

∫

∆k

V (z)dz
(∫

∆k

|f(w)|V (w)1/pV (w)−1/pdw
)p

≤ Cη
−p(n+1)
k

∫

∆k

V (z)dz
(∫

∆k

V (w)−q/pdw
)p/q ∫

∆k

|f(w)|pV (w)dw

≤ C
∫

∆k

|f(w)|pV (w)dw,

and this clearly proves the theorem. ¤

The following proposition is analogous to Proposition 1 from [17], the proof we

present below follows the same pattern as the one provided in [17] for the case of the

unit ball in Cn.

Proposition 2.1. Let 1 < p < ∞, a, b ∈ Rm and s1, . . . , sm > −1 satisfy paj >

−1 − sj and p(mbj − n) > (m − 1)(n + 1) + msj + 1 for j = 1, . . . ,m. Set λ =

(m− 1)(n + 1) +
∑m

j=1 sj. Then there is a constant C > 0 such that

(2.6)
∫

H
· · ·

∫

H
|(S~a,~bf)(z1, . . . , zm)|pdms1(z1) . . . dmsm(zm) ≤ C‖f‖p

Lp(H,dmλ)

for every f ∈ Lp(H, dmλ).

Proof. Let 1/p + 1/q = 1. Choose γ > 0 such that

pγ < p(mbj − n)− (m− 1)(n + 1)−msj − 1, j = 1, . . . , m.
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Set α = 1
m

(γ − 1
q
) and choose β such that β + mα = −n − 1 +

∑m
j=1 bj, i.e. β =

−n−1+
∑m

j=1 bj−γ + 1
q
. Since paj + sj +1 > 0 we can choose, for each j = 1, . . . , m,

ej such that

n + 1

mq
+ α < ej <

n + 1

mq
+ α +

paj + sj + 1

p
.

Finally, set dj = aj + bj − ej.

After these preparations, we choose f ∈ Lp(H, dmλ) and obtain, using Holder

inequality with system of m + 1 exponents p,mq, . . . , mq:

|N~a,~bf(z1, . . . , zm)| ≤
∫

H

|f(w)|s−n−1+
∑m

j=1
bj

∏m
j=1 |zj − w|aj+bj

dw

=
∫

H

|f(w)|sβ

∏m
j=1 |zj − w|dj

m∏

j=1

sα

|zj − w|ej
dw

≤
(∫

H

|f(w)|pspβdw∏m
j=1 |zj − w|pdj

)1/p m∏

j=1

(∫

H

sqmα

|zj − w|qmej
dw

) 1
qm

≤ C

(∫

H

|f(w)|pspβdw∏m
j=1 |zj − w|pdj

)1/p m∏

j=1

t
α−ej+

n+1
qm

j ,

where, at the last step, we used Lemma 1.4. Therefore we have

|S~a,~bf(z1, . . . , zm)|p ≤ C
∫

H

|f(w)|pspβdw∏m
j=1 |zj − w|pdj

m∏

j=1

t
p(aj+α−ej+

n+1
qm

)

j .

Hence, using Fubini’s theorem and Lemma 1.4 we obtain

∫

H
· · ·

∫

H
|(S~a,~bf)(z1, . . . , zm)|pdms1(z1) . . . dmsm(zm)

≤ C
∫

H
|f(w)|pspβ




∫

H
· · ·

∫

H

m∏

j=1

t
sj+p(aj+α−ej+

n+1
qm

)

j

|zj − w|pdj
dz1 . . . dzm


 dw

= C
∫

H
|f(w)|pspβ




m∏

j=1

∫

H

t
sj+p(aj+α−ej+

n+1
qm

)

j

|zj − w|pdj
dzj


 dw

= C
∫

H
|f(w)|psθdw,
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where we have, see Lemma 1.4,

θ = pβ +
m∑

j=1

[sj + p(aj + α− ej + (n + 1)/qm)− pdj + n + 1]

=
m∑

j=1

sj + m(n + 1) +
p(n + 1)

q
+ p


β + mα +

m∑

j=1

(aj − ej − dj)




=
m∑

j=1

sj + (n + 1)(m +
p

q
) + p


−n− 1 +

m∑

j=1

(bj + aj − ej − dj)


 = λ

and this ends the proof. ¤

Next we consider another class of integral operators, see [18] for similar operators

acting on analytic functions in poly balls and for an analogue of Proposition 2.2 below.

For any two m-tuples ~a = (a1, . . . , am) and ~b = (b1, . . . , bm) of reals we set

(R~a,~bg)(w) = s−m(n+1)+
∑m

j=1
bj

∫

H
· · ·

∫

H
g(z1, . . . , zm)

m∏

j=1

t
aj

j

|zj − w|aj+bj
dz1 . . . dzm,

where w = (y, s) ∈ H and g ∈ L1
~a. Next, for k ∈ N0 we define an integral operator

(Rkg)(w) =
∫

H
· · ·

∫

H
g(z1, . . . , zm)

m∏

j=1

Qk(zj, w)dmk(z1) . . . dmk(zm), w ∈ H.

In fact, this operator is the trace operator on a suitable space. Indeed we have

(Rkg)(w) = g(w), g ∈ Ãp
~α, α = (α1, . . . , αm),

if p, n and αj satisfy conditions from Theorem 1.1.

The following proposition is well known in the case of analytic functions in the unit

ball in Cn, see [22], it was extended to analytic functions on poly balls in [18] and

here we deal with harmonic functions in the poly half space.

Proposition 2.2. Let 1 ≤ p < ∞ and ~a,~b, ~α ∈ Rm. If p > 1 we assume these

parameters satisfy the following conditions:

q(aj − αj) > −1− αj, 1 ≤ j ≤ m,

q(m(bj + αj)− n) > (m− 1)(n + 1) + mαj + 1, 1 ≤ j ≤ m,

where q is the exponent conjugate to p. If p = 1 we assume m(αj + bj) > n and

αj < aj for j = 1, . . . , m. Set λ = (m− 1)(n + 1) +
∑m

j=1 αj. Then

(2.7) ‖R~a,~bg‖Lp(H,dmλ) ≤ C‖g‖Lp
~α
, g ∈ Lp

~α.
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Proof. We follow the same method as in [18], adapted to our situation. Let us start

with the case p = 1. By Fubini’s theorem we have

‖R~a,~bg‖L1(H,dmλ) =
∫

H
|(R~a,~bg)(w)|sλdw

≤
∫

H
· · ·

∫

H
|g(z1, . . . , zm)|

m∏

j=1

t
aj

j

∫

H

s−n−1+
∑m

j=1
(αj+bj)dw∏m

j=1 |zj − w|aj+bj
dz1 . . . dzm.(2.8)

Next we use Holder’s inequality with m functions and Lemma 1.4 to obtain:

∫

H

s−n−1+
∑m

j=1
(αj+bj)dw∏m

j=1 |zj − w|aj+bj
≤

m∏

j=1

(∫

H

s−n−1+m(αj+bj)dw

|zj − w|m(aj+bj)

)1/m

≤C
m∏

j=1

t
αj−aj

j .

This estimate, combined with (2.8) settles the case p = 1.

Next we assume 1 < p < ∞. Let q be the exponent conjugate to p. Using identity
∫

H
(R~a,~bg)(w)f(w)dmλ(w)

=
∫

H




∫

H
· · ·

∫

H
g(z1, . . . , zm)

m∏

j=1

t
aj

j

|zj − w|aj+bj
dz1 . . . dzm




f(w)s−n−1+
∑m

j=1
(αj+bj)dw

=
∫

H
· · ·

∫

H
g(z1, . . . , zm)




∫

H
s−n−1+

∑m

j=1
(αj+bj)

∏m
j=1 t

aj−αj

j f(w)dw
∏m

j=1 |zj − w|aj+bj




dmα1(z1) . . . dmαm(zm),

valid for, for example, continuous compactly supported f ∈ Lq(dmλ) and g ∈ Lp
~α we

see that the conjugate operator R?
~a,~b

is equal to S~a−~α,~b+~α. However, the last one is

bounded from Lq(dmλ) to Lq
~α by Proposition 2.1 and therefore R~a,~b : Lp

~α → Lp(dmλ)

is also bounded. ¤

Using (1.4) we see that |Rkg(w)| ≤ (R~a,~b|g|)(w) where aj = k and bj = n + 1 for

j = 1, . . . , m. This observation leads to the following corollary.

Corollary 2.1. Let k ∈ N0, 1 ≤ p < ∞ and αj > −1 for j = 1, . . . , m. If p = 1 we

assume αj < k for 1 ≤ j ≤ m, if 1 < p < ∞ we assume

q(k − αj) > −1− αj, 1 ≤ j ≤ m,

q(m(n + 1 + αj)− n) > (m− 1)(n + 1) + mαj + 1, 1 ≤ j ≤ m.
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Set λ = (m− 1)(n + 1) +
∑m

j=1 αj. Then the operator Sk maps Lp
~α continuously into

Lp(H, dmλ).

3. Trace theorems and embedding theorems for multi functional

spaces of harmonic functions

In this section we give an estimate of the Ap
λ-norm of trace, Theorem 3.1 below.

Theorem 3.2 is a sharp embedding result obtained using norm estimate of the oper-

ator S~a,~b, while Theorem 3.3 is a sharp embedding theorem closely connecting trace

operator and multi functional spaces. At the end of this section we consider Carleson

type conditions adapted to multi functional setting for positive Borel measures on

poly upper half spaces, see Definition 3.1 and Theorem 3.4.

Lemma 3.1. [4] Let 0 < p < ∞ and s1, . . . , sm > −1. Set λ = (m−1)(n+1)+
∑m

j=1 sj.

Then there is a constant C > 0 such that for all f ∈ h(Hm) we have

(3.1)
∫

H
|Tr f(z)|pdmλ(z) ≤ C

∫

H
· · ·

∫

H
|f(z1, . . . , zm)|pdms1(z1) . . . dmsm(zm).

A holomorphic version of the following theorem appeared in [12].

Theorem 3.1. Let α > −1, assume fi ∈ h(Ht) for i = 1, . . . , m. Let 0 < pi, qi < ∞
satisfy

∑m
i=1

pi

qi
= 1 and assume βi = (n+1+α)qi

tmpi
− (n + 1) > −1 for 1 ≤ i ≤ m. Then

∫

H
|Tr f1(w)|p1 . . . |Tr fm(w)|pmsαdw(3.2)

≤C
m∏

i=1




∫

H
· · ·

∫

H
|fi(w1, . . . , wt)|qi

t∏

j=1

sβi
j dw1 . . . dwt




pi/qi

.

Proof. Let us denote the integral appearing in (3.2) by I. Using Lemma 1.1 and

Lemma 1.3 we obtain

I =
∞∑

k=1

∫

∆k

m∏

i=1

|fi(w, . . . , w)|pisαdw ≤ C
∞∑

k=1

ηn+1+α
k sup

w∈∆k

m∏

i=1

|fi(w, . . . , w)|pi

≤ C
∞∑

k=1

ηn+1+α
k

m∏

i=1

sup
w∈∆k

|fi(w, . . . , w)|pi

≤ C
∞∑

k=1

ηn+1+α
k

m∏

i=1

sup
w1,...,wt∈∆k

|fi(w1, . . . , wt)|pi(3.3)

≤ C
∞∑

k1=1

· · ·
∞∑

kt=1


 sup

wj∈∆kj

|f1(w1, . . . , wt)|p1 · · · sup
wj∈∆kj

|fm(w1, . . . , wt)|pm




× η
n+1+α

t
k1

· · · η
n+1+α

t
kt

.(3.4)
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The last inequality follows from the fact that for k1 = · · · = km = k expression in

(3.4) reduces to (3.3). Next we apply generalized Holder’s inequality with exponents

qi/pi, 1 ≤ i ≤ m, to the last multiple sum and obtain

I ≤ C




∞∑

k1,...,kt=1

sup
wj∈∆kj

|f1(w1, . . . , wt)|q1(ηk1 . . . ηkt)
(n+1+α)q1

mtp1




p1/q1

× . . .

×



∞∑

k1,...,kt=1

sup
wj∈∆kj

|fm(w1, . . . , wt)|qm(ηk1 . . . ηkt)
(n+1+α)qm

mtpm




pm/qm

.(3.5)

Since

(3.6) sup
wj∈∆kj

|fj(w1, . . . , wt)|qj ≤ C
∫

w1∈∆∗
k1

. . .
∫

wt∈∆∗
kt

|fj|qjdw1 . . . dwt

t∏

i=1

η−n−1
ki

we obtain, using finite overlapping property of ∆∗
k:

Ij =
∞∑

k1,...,kt=1

sup
wj∈∆kj

|fj(w1, . . . , wt)|qj(ηk1 . . . ηkt)
(n+1+α)qj

mtpj

≤ C
∞∑

k1,...,kt=1

∫

w1∈∆∗
k1

. . .
∫

wt∈∆∗
kt

|fj|qjdw1 . . . dwt

t∏

i=1

η
βj

ki

≤ C
∞∑

k1,...,kt=1

∫

w1∈∆∗k1

. . .
∫

wt∈∆∗kt

|fj|qjs
βj

1 . . . s
βj

t dw1 . . . dwt

≤ C
∫

H
· · ·

∫

H
|fj(w1, . . . , wt)|qj(s1 . . . st)

βjdw1 . . . dwt.

This, in combination with (3.5), suffices to establish needed estimate. ¤

The theorem below was announced, without proof, in [17] for 0 < p < ∞. A proof

for the case 0 < p ≤ 1 was given in [4], here we settle the remaining case 1 < p < ∞.

Theorem 3.2. Let 1 < p < ∞, s1, . . . , sm > −1 and set λ = (m−1)(n+1)+
∑m

j=1 sj.

Then

(3.7) Ap
λ ⊂ Trace Ãp−→s ⊂ Trace Ap−→s ⊂ Lp(Rn+1

+ , dmλ).

In particular, if f ∈ Ap−→s and if Tr f is harmonic, then Tr f ∈ Ap
λ.

Proof. The second inclusion in (3.7) is trivial while the third one follows from Lemma

3.1. Let us prove the first inclusion, we fix g ∈ Ap
λ. Let us choose k ∈ N0 such that

p(n + k + 1) > (m− 1)(n + 1) + msj + pn + 1 for 1 ≤ j ≤ m and set

f(z1, . . . , zm) =
∫

H
Qk(

z1 + · · ·+ zm

m
,w)g(w)skdw, z1, . . . , zm ∈ H.
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We have, by Theorem 1.1, Tr f = g. Since the kernel Qk(m
−1(z1 + · · · + zm), w)

is harmonic in each of the variables z1, . . . , zm it follows that the same is true for

f(z1, . . . , zm). Using estimate (1.4) and classical inequality between arithmetic and

geometric mean we obtain

(3.8) |f(z1, . . . , zm)| ≤ C
∫

H

|g(w)|skdw
∣∣∣ z1+···+zm

m
− w

∣∣∣
k+n+1 ≤ C

∫

H

|g(w)|skdw
∏m

j=1 |zj − w|n+k+1
m

.

Hence |f(z1, . . . , zm)| ≤ C(S~a,~b |g|)(z1, . . . , zm) where aj = 0 and bj = (n + k + 1)/m

for j = 1, . . . , m. Now an application of Proposition 2.1 completes the proof. ¤

Lemma 3.2. Let 0 < q, σ < ∞ and α > −1. Then we have
∞∑

k=1

ηn+1
k

(∫

∆k

|f(z)|σdmα(z)
) q

σ ≤ C
∫

H

(∫

Qw

|f(z)|σdmα(z)
) q

σ

dw, f ∈ h(H).

This is a special case of Lemma 6 from [16], in fact harmonicity of f is not needed

here.

Lemma 3.3. Let 0 < qi ≤ p < ∞ and let xi,k ≥ 0 for 1 ≤ i ≤ m and k ≥ 1. Then:
( ∞∑

k=1

xp
1,kx

p
2,k . . . xp

m,k

)1/p

≤
m∏

i=1

(
xqi

i,1 + xqi
i,2 + · · ·

)1/qi

.

Proof. Since the lq norm of a sequence is a decreasing function of q we can assume

qi = p for all i = 1, . . . , m. But in this special case our inequality is equivalent to
∞∑

k=1

xp
1,kx

p
2,k . . . xp

m,k ≤
m∏

i=1

(
xp

i,1 + xp
i,2 + · · ·

)

and this is clearly true. ¤

Theorem 3.3. Let 0 < p < ∞ and let, for i = 1, . . . , m, 0 < qi, σi, < ∞, αi > −1.

Assume qi ≤ p for i = 1, . . . , m. Let µ be a positive Borel measure on H. Then the

following two conditions are equivalent:

1o For any harmonic function f(z1, . . . , zm) on Hm that splits into a product of

harmonic functions fi(zi) ∈ h(H), i.e f(z1, . . . , zm) =
∏m

j=1 fj(zj) we have

(3.9)
(∫

H
|Tr f(z)|pdµ(z)

)1/p

≤ C
m∏

i=1

(∫

H

(∫

Qw

|fi(z)|σidmαi
(z)

)qi/σi

dw

)1/qi

.

2o The measure µ satisfies the following Carleson-type condition:

(3.10) µ(∆k) ≤ Cη
p
∑m

i=1

(
n+1+αi

σi
+n+1

qi

)

k , k ≥ 1.
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Proof. Set θ = p
∑m

i=1

(
n+1+αi

σi
+ n+1

qi

)
and θi = p

(
n+1+αi

σi
+ n+1

qi

)
, 1 ≤ i ≤ m. Using

a covering argument one easily shows that for any positive measurable function u :

H→ R we have

(3.11)
∞∑

k=1

ηn+1
k

(∫

∆∗
k

u(z)dmα(z)

)β

³
∞∑

k=1

ηn+1
k

(∫

∆k

u(z)dmα(z)
)β

, β > 0.

Let us assume (3.10) holds. Then we have, using Lemma 1.1 and Lemma 1.2
∫

H
|Tr f(z)|pdµ(z) =

∞∑

k=1

∫

∆k

|Tr f(z)|pdµ(z)

≤
∞∑

k=1

µ(∆k) max
z∈∆k

|Tr f(z)|p

≤ C
∞∑

k=1

ηθ
k

m∏

i=1

(
max
z∈∆k

|fi(z)|σi

)p/σi

= C
∞∑

k=1

m∏

i=1

ηθi
k

(
max
z∈∆k

|fi(z)|σi

)p/σi

≤ C
∞∑

k=1

m∏

i=1

ηθi
k

(
η−n−1−αi

k

∫

∆∗
k

|fi(z)|σidmαi
(z)

)p/σi

=C
∞∑

k=1

m∏

i=1

η
p n+1

qi
k

(∫

∆∗
k

|fi(z)|σidmαi
(z)

)p/σi

= C
∞∑

k=1

xp
1,kx

p
2,k . . . xp

m,k, xi,k = η
n+1
qi

k

(∫

∆∗k
|fi(z)|σidmαi

(z)

)1/σi

.

Now an application of Lemma 3.3 followed by (3.11) gives

(∫

H
|Tr f(z)|pdµ(z)

)1/p

≤ C
m∏

i=1




∞∑

k=1

ηn+1
k

(∫

∆∗
k

|fi(z)|σidmαi
(z)

)qi/σi



1/qi

≤ C
m∏

i=1

( ∞∑

k=1

ηn+1
k

(∫

∆k

|fi(z)|σidmαi
(z)

)qi/σi
)1/qi

,

which, in view of Lemma 3.2, is sufficient to derive (3.9).

We give an outline of proof of the reverse implication. Namely, one uses test

functions

f(z1, . . . , zm) =
m∏

j=1

fj(zj), fj(z) = fθk,l(z) =
∂l

∂tl
1

|z − θk|n−1
, 1 ≤ j ≤ m,

where l is sufficiently large, θk is suitably chosen point near ζk, see [4] and the proof

of Theorem 4 from [16] for these choices. The right hand side of (3.9) is estimated
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with help of pointwise estimates of fw,l from [4] and Lemma 1.4. We leave details to

the interested reader. ¤

Definition 3.1. Let µ be a positive Borel measure on Hm and let r1, . . . , rm > 0. We

say µ is an (r1, . . . , rm)-Carleson measure if

(3.12) ‖µ‖(r1,...,rm) = sup
w1,...,wm∈H

µ(Qw1 × · · · ×Qwm)

sr1
1 . . . srm

m

< ∞, wj = (yj, sj).

The following theorem, which is an analogue of Theorem 2 from [17], see also [22],

gives an equivalent description of (r1, . . . , rm)-Carleson measures.

Theorem 3.4. Let µ be a positive Borel measure on Hm. Assume r1, . . . , rm > n and

τ1, . . . , τm > 0. Then µ is an (r1, . . . , rm)-Carleson measure if and only if

(3.13) ‖µ‖∗(r1,...,rm) = sup
w1,...,wm∈H

∫

Hw1

. . .
∫

Hwm

m∏

j=1

s
τj

j

|zj − wj|rj+τj
dµ(z1, . . . , zm) < ∞,

where Hwj
= {w ∈ H : s ≤ 3sj}.

Moreover, ‖µ‖(r1,...,rm) ³ ‖µ‖∗(r1,...,rm).

Proof. Assume (3.13) holds and choose w1, . . . , wm ∈ H. Then we have, using Lemma

1.3,

‖µ‖∗(r1,...,rm) ≥
∫

Qw1

· · ·
∫

Qwm

m∏

j=1

s
τj

j

|zj − wj|rj+τj
dµ(z1, . . . , zm)

≥ C
µ(Qw1 × · · ·Qwm)

sr1
1 . . . srm

m

,

which implies that µ is an (r1, . . . , rm)-Carleson measure. Note that in this implication

we did not use conditions on the parameters.

Now we assume µ is an (r1, . . . , rm)-Carleson measure. Let us, moreover, assume

m = 1. We choose w = (y, s) ∈ H, in order to simplify notation we assume y = 0.

Let Γ = Zn be the integer lattice in Rn. We have a partition of Hw into layers

Hk,s = {z ∈ H : 2−ks ≤ t < 3 ·2−ks}, k ∈ N0. Moreover, each layer Hk,s is partitioned

into congruent cubes Qk,ξj
with centers θk,j = (2−ksξj, 2

−ks), where ξj ∈ Γ. Since

(3.14) |z − (0,−s)| ³
√

s2 + |2−ksξj|2, z ∈ Qk,ξj
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we obtain
∫

H

sτdµ(z)

|z − w|r+τ
=

∞∑

k=0

∫

Hk,s

sτdµ(z)

|z − w|r+τ

= sτ
∞∑

k=0

∑

ξj∈Γ

∫

Qk,ξj

dµ(z)

|z − w|r+τ

≤ ‖µ‖rs
τ
∞∑

k=0

∑

ξj∈Γ

(2−ks)r

(s2 + |2−ksξj|2) r+τ
2

= ‖µ‖r

∞∑

k=0

∑

ξj∈Γ

(2−k)r

(1 + |2−kξj|2) r+τ
2

≤ C‖µ‖r

∞∑

k=0

2−kr
∫

Rn

dx

(1 + |2−kx|2)r+τ

= C‖µ‖r

∞∑

k=0

2−kr
∫ ∞

0

rn−1dr

[1 + (2−kr)2]
r+τ
2

= C‖µ‖r

∞∑

k=0

2−k(r−n)
∫ ∞

0

tn−1dt

(1 + t2)
r+τ
2

= C(‖µ‖r, r, n, τ).

The general case, with m variables, is treated similarly: instead of ordinary sums

and integrals one encounters multiple sums and integrals; we leave details to the

reader. ¤

Remark 3.1. In the above theorem it is not possible to replace integration over Hwj

with integration over H, i.e. the global variant of this theorem is not true. In fact, a

counterexample is obtained by taking m = 1, n = 1, r = 2, τ = 1 and µ =
∑

k≥1 22kδzk
,

where zk = (0, 2k).

4. Multipliers between spaces of harmonic functions on the unit ball

The goal of this section is to extend our previous results on multipliers, see [3], to

more general harmonic function spaces, involving derivatives. We restrict ourselves

to the three theorems below, though other results from our previous work can be

generalized similarly. Let us recall some standard notation and facts on spherical

harmonics, see [21] for a detailed exposition.

Let Y
(k)
j be the spherical harmonics of order k, j ≤ 1 ≤ dk, on S. The spherical

harmonics Y
(k)
j , (k ≥ 0, 1 ≤ j ≤ dk), form an orthonormal basis of L2(S, dx′). Every
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f ∈ h(B) has an expansion

f(x) = f(rx′) =
∞∑

k=0

rkbk · Y k(x′),

where bk = (b1
k, . . . , b

dk
k ), Y k = (Y

(k)
1 , . . . , Y

(k)
dk

) and bk · Y k is interpreted in the scalar

product sense: bk · Y k =
∑dk

j=1 bj
kY

(k)
j . We often write, to stress dependence on a

function f ∈ h(B), bk = bk(f) and bj
k = bj

k(f), in fact we have linear functionals bj
k,

k ≥ 0, 1 ≤ j ≤ dk, on the space h(B).

We denote the Poisson kernel for the unit ball by P (x, y′), it is given by

P (x, y′) = Py′(x)

=
∞∑

k=0

rk
dk∑

j=1

Y
(k)
j (y′)Y (k)

j (x′)

=
1

nωn

1− |x|2
|x− y′|n , x = rx′ ∈ B, y′ ∈ S.

The Bergman kernel for the harmonic Bergman space Ap
m, m > −1 is the following

function

Qm(x, y) = 2
∞∑

k=0

Γ(m + 1 + k + n/2)

Γ(m + 1)Γ(k + n/2)
rkρkZ

(k)
x′ (y′), x = rx′, y = ρy′ ∈ B,

see [3] and references therein for estimates of this kernel.

Let us recall some definitions from [2].

Definition 4.1. For a double indexed sequence of complex numbers

c = {cj
k : k ≥ 0, 1 ≤ j ≤ dk}

and a harmonic function f(rx′) =
∑∞

k=0 rk ∑dk
j=1 bj

k(f)Y
(k)
j (x′) we define

(c ∗ f)(rx′) =
∞∑

k=0

dk∑

j=1

rkcj
kb

j
k(f)Y

(k)
j (x′), rx′ ∈ B,

if the series converges in B. Similarly we define convolution of f, g ∈ h(B) by

(f ∗ g)(rx′) =
∞∑

k=0

dk∑

j=1

rkbj
k(f)bj

k(g)Y
(k)
j (x′), rx′ ∈ B,

it is easily seen that f ∗ g is defined and harmonic in B.
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Definition 4.2. For t > 0 and a harmonic function f(x) =
∑∞

k=0 rkbk(f) · Y k(x′) on

B we define a fractional derivative of order t of f by the following formula:

(Λtf)(x) =
∞∑

k=0

rk Γ(k + n/2 + t)

Γ(k + n/2)Γ(t)
bk(f) · Y k(x′), x = rx′ ∈ B.

Clearly, for f ∈ h(B) and t > 0 the function Λtf is also harmonic in B.

Definition 4.3. Let X and Y be subspaces of h(B). We say that a double indexed

sequence c is a multiplier from X to Y if c∗ f ∈ Y for every f ∈ X. The vector space

of all multipliers from X to Y is denoted by MH(X,Y ).

We associate to such a sequence c a harmonic function

(4.1) gc(x) = g(x) =
∑

k≥0

rk
dk∑

j=1

cj
kY

(k)
j (x′), x = rx′ ∈ B,

and express our conditions in terms of fractional derivatives of gc.

Lemma 4.1. [1] If f : Ω → R is harmonic in Ω ⊂ Rn and if N ∈ N, then |∇Nf |p is

subharmonic for p ≥ n
n+N

.

In particular, |∇Nf | is subharmonic and hence M1(∇Nf, r) is increasing for any

f ∈ h(B).

The following three theorems have derivative free counterparts, see [3].

Theorem 4.1. Let 1 < s < ∞, α, β > 0, N ∈ N, m > α − 1 and 0 < p ≤ 1.

Then c ∈ MH(DNB1,p
α , Hs

β) if and only if the function g = gc satisfies the following

condition

(4.2) Ls(g) = sup
0≤ρ<1

sup
y′∈S

(1− ρ)m+1+N+β−α
(∫

S
|Λm+1(g ∗ Px′)(ρy′)|sdx′

)1/s

< ∞.

Proof. In proving sufficiency of the condition (4.2) we follow closely arguments pre-

sented in the proof of Theorem 4 from [2]. Namely, let us assume Ls(g) < ∞, take

f ∈ DNB1,p
α and set h = c ∗ f . Since ∇Nh = c ∗ ∇Nf , Lemma 6 from [2] gives

(4.3) ∇Nh(r2x′) = 2
∫ 1

0

∫

S
Λm+1(g ∗ Pξ)(rRx′)∇Nf(rRξ)(1−R2)mRn−1dξdR
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and this allows us to obtain the following estimate:

Ms(∇Nh, r2)

≤ 2
∫ 1

0
(1−R2)mRn−1

∥∥∥∥
∫

S
Λm+1(g ∗ Pξ)(rRx′)∇Nf(rRξ)dξ

∥∥∥∥
Ls(S,dx′)

dR

≤ 2
∫ 1

0
(1−R2)mRn−1M1(∇Nf, rR) sup

ξ∈S
‖Λm+1(g ∗ Pξ)(rRx′)‖LsdR

≤ CLs(g)
∫ 1

0
(1−R)mM1(∇Nf, rR)(1− rR)α−β−m−1−NdR

≤ CLs(g)
∫ 1

0
M1(∇Nf, rR)(1− rR)α−β−N−1dR

≤ CLs(g)
∫ 1

0
M1(∇Nf, rR)

(1−R)α

(1− rR)β+N+1
dR.

Note that M1(∇Nf, rR) is increasing in 0 ≤ R < 1, therefore we can combine Lemma

3 from [2] and the above estimate to obtain, for 1/2 ≤ r < 1:

Mp
s (∇Nh, r2) ≤ CLp

s(g)
∫ 1

0
Mp

1 (∇Nf, rR)
(1−R)αp+p−1

(1− rR)pβ+(N+1)p
dR

≤ CLp
s(g)(1− r)−pβ−Np

∫ 1

0
Mp

1 (∇Nf,R)(1−R)αp−1dR

≤ CLp
s(g)(1− r)−pβ−Np‖f‖p

DNB1,p
α

.

Therefore Ms(∇Nh, r2) ≤ CLs(g)(1 − r)−β−N‖f‖DNB1,p
α

, which implies Ms(h, r) ≤
CLs(g)(1−r)−β. Now we prove necessity of condition (4.2). Let us set fy = Qm(x, y)

and Fy(x) = ∇Nfy(x) = ∇N
x Qm(x, y), x, y ∈ B. Then using estimate

∇N
x Qm(x, y)| ≤ C|ρx− y′|−n−N−m, x = rx′, y = ρy′, x′, y′ ∈ S

we obtain M1(Fy, r) ≤ C(1 − |y|r)−m−N−1. Hence ‖Fy‖B1,p
α
≤ C(1 − |y|)α−m−1−N

which means ‖fy‖DNB1,p
α
≤ C(1− |y|)α−m−1−N . Setting hy = Mcfy one obtains, as in

Lemma 8 from [2], the estimate

(∫

S
|Λm+1(g ∗ Px′)(ρy′)|sdx′

)1/s

≤ (1− |y|)−β‖hy‖Hs
β
.

Since, by continuity of Mc, ‖hy‖Hs
β
≤ C‖fy‖DB1,p

α
the proof is completed by combining

the above estimates. ¤

Since DNAp
α = DNBp,p

α+1
p

, taking p = 1 we obtain the following corollary.



TRACE THEOREMS IN HARMONIC FUNCTION SPACES 429

Corollary 4.1. Let 1 < s < ∞, α, β > 0, N ∈ N and m > α − 1. Then c ∈
MH(DNA1

α, Hs
β) if and only if the function g = gc satisfies the following condition

(4.4) Ks(g) = sup
0≤ρ<1

sup
y′∈S

(1− ρ)m+N+β−α
(∫

S
|Λm+1(g ∗ Px′)(ρy′)|sdx′

)1/s

< ∞.

Analogously to the proof of Theorem 4.1, one can modify proofs presented in [2]

and [3] to obtain the following two theorems.

Theorem 4.2. Let 1 ≤ p ≤ q ≤ ∞, 1 ≤ s ≤ ∞, N ∈ N and m > α − 1. Then for

a double indexed sequence c = {cj
k : k ≥ 0, 1 ≤ j ≤ dk} the following conditions are

equivalent:

(1) c ∈ MH(DNB1,p
α , Bs,q

β ),

(2) The function g(x) =
∑

k≥0 rk ∑dk
j=1 cj

kY
(k)
j (x′) is harmonic in B and satisfies

the following condition

(4.5) Ns(g) = sup
0≤ρ<1

sup
y′∈S

(1− ρ)β−α+m+N+1
(∫

S
|Λm+1(g ∗ Px′)(ρy′)|sdx′

)1/s

< ∞.

Theorem 4.3. Let 0 < p ≤ 1 ≤ q ≤ ∞, N ∈ N and m > α − 1. Then for a double

indexed sequence c = {cj
k : k ≥ 0, 1 ≤ j ≤ dk} the following conditions are equivalent:

(1) c ∈ MH(DNB1,p
α , F q,1

β ),

(2) The function g(x) =
∑

k≥0 rk ∑dk
j=1 cj

kY
(k)
j (x′) is harmonic in B and satisfies

the following condition

(4.6) N1(g) = sup
0≤ρ<1

sup
y′∈S

(1− ρ)β−α+m+N+1
∫

S
|Λm+1(g ∗ Px′)(ρy′)|dx′ < ∞.
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[19] R. F. Shamoyan, O. R. Mihić, On some inequalities in holomorphic function theory in polydisk
related to diagonal mapping, Czechoslovak Mathematical Journal, 60 (135) (2010), 351–370.

[20] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ.
Press, Princeton, New Jersey, 1970.

[21] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univer-
sity Press, 1971.

[22] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.

1 Department of Mathematics,
University of Belgrade,
Serbia
E-mail address: arsenovic@matf.bg.ac.rs

2 Department of Mathematics,
Bryansk University,
Russia
E-mail address: rshamoyan@yahoo.com


