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DO (1276, 51, 2) DIFFERENCE SETS EXIST?

ADEGOKE S. A. OSIFODUNRIN

Abstract. It is known that the (v, k, 2) symmetric designs otherwise called bi-
planes exist for some integer values k < 16. Based on the relationship between
symmetric designs and difference sets, we investigate the existence of (1276, 51, 2)
difference sets. Some authors have established the non existence of abelian (1276,
51, 2) difference sets. Using representation and algebraic number theories, we show
that this difference sets do not exist in most groups of order 1276.

1. Introduction

Suppose that G is a multiplicative group of order v and D is k-subset of G with

k < v. Then D is a (v, k, λ) difference set if every non-identity element of G can

be reproduced exactly λ times by the multi-set {d1d
−1
2 : d1, d2 ∈ D, d1 6= d2}. The

natural number n := k − λ characterizes D and is called the order of the difference

set. Usually, we say that D is abelian (resp. non-abelian or cyclic) difference set if

the underlying group G is abelian (resp. non-abelian or cyclic).

A (v, b, r, k, λ) design is an incidence structure consisting of points P, |P| = v and

blocks B, |B| = b in which distinct points of P are arranged such that each block is

incident with k points, each point is incident with r distinct blocks and every pair of

points is incident with λ blocks. In this case, v > 1, b are positive integers and r, k, λ

are non negative integers. A symmetric design is basically a (v, b, r, k, λ) design in

which b = v and r = k. The relationship between symmetric designs and difference

sets is that a symmetric design admitting a group G as a regular automorphism group
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is isomorphic to the development of the difference set (Theorem 4.2, [9]). This means

that the existence of difference sets implies the existence of symmetric designs with

same parameters. However, the existence of symmetric designs does not necessarily

imply that the corresponding difference sets exist [3].

Symmetric designs with λ = 1 (symmetric 1-designs) are known as projective planes

while symmetric designs with λ = 2 (symmetric 2-designs) are known as biplanes.

Projective planes are known to exist for every prime power [6]. Since there are infinite

number of projective planes, many researchers wonder whether the same is true of

biplanes. To date, biplanes exist only for (v, k, 2) with k = 3, 4, 5, 6, 9, 11 and 13.

Daniel Hughes and L. J. Dickey [4] showed with the aid of computer that there are

no other biplanes in Singer groups with n = k − 2 ≤ 5000. Contracted multiplier

test [7] was used to show that (1276, 51, 2) difference set does not exist in C1276

while Kopilovich [8] showed that (C2)
2 × C11 × C29 does not admit this difference

set. There are 11 groups of order 1276 out of which 2 are abelian. Our focus is on

the non-abelian groups of order 1276 but the approach incorporates all groups of this

order. In this paper, G is a group of order 1276 and N is a normal subgroup of G of

an appropriate order. To achieve our objective, we compute difference set images in

factor groups of orders 2, 4, 44, 58 and 116. The main result of this paper is

Theorem 1.1. There are no (1276, 51, 2) difference sets except possibly in C11 ×
(C29 o C4) or C319 o C4.

Section 2 reproduces the basic results in representation and algebraic number the-

ories required for this work while in Sections 3 and 4, we prove the main theorem by

showing that some factor groups of G do not admit the difference sets.

2. Preliminary results

Let Z and C be the ring of integers and field of complex numbers respectively.

Suppose that G is a group of order v and D is a (v, k, λ) difference set in a group

G. We sometimes view the elements of D as members of the group ring Z[G], which

is a subring of the group algebra C[G]. Thus, D represents both subset of G and

element
∑

g∈D g of Z[G]. The sum of inverses of elements of D is D(−1) =
∑

g∈D g−1.

Consequently, D is a difference set if and only if

(2.1) DD(−1) = n · 1G + λG and DG = kG.
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A C-representation of G is a homomorphism, χ : G → GL(d,C), where GL(d,C) is

the group of invertible d × d matrices over C. The positive integer d is the degree

of χ. A linear representation (character) is a representation of degree one. The set

of all linear representations of G is denoted by G∗. G∗ is an abelian group under

multiplication and if G′ is the derived group of G, then G∗ is isomorphic to G/G′.

A representation is said to be non trivial if there exist x ∈ G such that χ(x) 6= Id,

where Id is the d × d identity matrix and d is the degree of the representation. The

least positive integer m′ is the exponent of the group G if gm′
= 1 for all g ∈ G.

If ζm′ := e
2π
m′ i is a primitive m′-th root of unity, then Km′ := Q(ζm′) (known as the

splitting field of G) is the cyclotomic extension of the field of rational numbers, Q.

Without loss of generality, we may replace C by the field Km′ . This field is a Galois

extension of degree φ(m′), where φ is the Euler function. If G is a cyclic group, then

a basis for Km′ over Q is S = {1, ζm′ , ζ2
m′ , . . . , ζ

φ(m′)−1
m′ }. S is also the integral basis

for Z[ζm′ ]. With this background and for any abelian group G, we define the central

primitive idempotents in C[G] as

(2.2) eχi
=

χi(1)

|G|
∑

g∈G

χi(g)g−1 =
1

|G|
∑

g∈G

χi(g)g,

where χi is an irreducible character of G. The set {eχi
: χi ∈ G∗} is a basis for

C[G]. Notice that
∑

eχ = 1 and every element A ∈ C[G] can be expressed uniquely

by its image under the character χ ∈ G∗, where G is an abelian group. That is,

A =
∑

χ∈G∗ χ(A)eχ.

Suppose that χ is a non-trivial representation of G and σ is a Galois automorphism

of Km′ fixing Q. For any g ∈ G, σ acts on the entries of the matrix χ(g) in the natural

way and the function σ(χ) is also a group representation. In this case, χ and σ(χ) are

algebraically conjugate. It can be shown that algebraic conjugacy is an equivalence

relation. This brings us to an instrument, called an alias that is an interface between

the values of group rings and combinatorial analysis. Aliases are members of group

ring. They enable us to transfer information from C[G] to group algebra Q[G] and

then to Z[G]. Let G be an abelian group and Ω = {χ1, χ2, · · · , χh}, be the set of

characters of G. The element β ∈ Z[G] is known as Ω-alias if for A ∈ Z[G] and all

χi ∈ Ω, χi(A) = χi(β). Since A =
∑

χ∈G∗ χ(A)eχ, we can replace the occurrence of

χ(A), which is a complex number by Ω-alias, β, an element of Z[G]. Furthermore, two

characters of G are algebraic conjugate if and only if they have the same kernel and
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we denote the set of equivalence classes of G∗ by G∗/ ∼. Primitive idempotents give

rise to rational idempotents as follows: If Km′ is the Galois field over Q, then central

rational idempotents in Q[G] are obtained by summing over the equivalence classes

Xi = {χi : χi ∼ χj} on the eχ’s under the action of the Galois group of Km′ over Q.

That is,

[eχi
] =

∑

eχj∈Xi

eχj
, i = 1, . . . , s.

In particular, if G is a cyclic group of the form Cpm = 〈x : xpm
= 1〉 (p is prime)

whose characters are of the form χi(x) = ζ i
pm , i = 0, . . . , pm − 1, then the rational

idempotents are

(2.3) [eχ0 ] =
1

pm
〈x〉,

and 0 ≤ j ≤ m− 1

(2.4) [eχ
pj

] =
1

pj+1

(
p〈xpm−j〉 − 〈xpm−j−1〉

)
.

The following theorem is usually employed in the search of difference sets [12].

Theorem 2.1. Let G be an abelian group and G∗/ ∼ be the set of equivalence classes

of characters. Suppose that {χo, χ1, . . . , χs} is a system of distinct representatives for

the equivalence classes of G∗/ ∼. Then for A ∈ Z[G], we have

(2.5) A =
s∑

i=o

αi[eχi
],

where αi is any χi-alias for A.

Equation (2.5) is known as the rational idempotent decomposition of A.

Dillon [1] proved the following results which will be used to obtain difference set

images in dihedral group of a certain order if the difference images in the cyclic group

of same order are known.

Theorem 2.2 (Dillon Dihedral Trick). Let H be an abelian group and let G be the

generalized dihedral extension of H. That is, G = 〈q, H : q2 = 1, qhq = h−1,∀h ∈ H〉.
If G contains a difference set, then so does every abelian group which contains H as

a subgroup of index 2.

Corollary 2.1. If the cyclic group Z2m does not contain a (nontrivial) difference set,

then neither does the dihedral group of order 2m.
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Suppose that ψ : G −→ G/N is a homomorphism, then we can extend ψ, by

linearity, to the corresponding group rings. Given that D is a (v, k, λ) difference

set in G, a group of order v and H is a homomorphic image of G with kernel N .

Then the difference set image in H (also called the contraction of D with respect

to the kernel N) is the multi-set D/N = ψ(D) = {dN : d ∈ D}. Furthermore, if

T ∗ = {1, t1, . . . , th} is a left transversal of N in G, then D̂ =
∑

tj∈T ∗ djtjN , where the

integer dj = |D ∩ tjN | is called the intersection number of D with respect to N .

In this work, we shall always use the notation D̂ for ψ(D), and denote the number of

times di equals i by mi ≥ 0.

Suppose that χ is any non-trivial representation of degree d and χ(D̂) ∈ Z[ζ],

where ζ is the primitive root of unity. Suppose that x ∈ G is a non identity element.

Then, χ(xG) = χ(x)χ(G) = χ(G). This shows that (χ(x) − 1)χ(G) = 0. Since x is

not an identity element, (χ(x) − 1) 6= 0 and χ(G) = 0 (Z[ζ] is an integral domain).

Consequently, χ(D)χ(D) = n · Id + λχ(G) = n · Id, where Id is the d × d identity

matrix. The following lemma extends this property to D̂.

Lemma 2.1. Let D be a difference set in a group G and N be a normal subgroup of

G. Suppose that ψ : G −→ G/N is a natural epimorphism. Then

(a) D̂D̂(−1) = n · 1G/N + |N |λ(G/N)

(b)
∑

d2
i = n + |N |λ

(c) χ(D̂)χ(D̂) = n · Id, where χ is a non-trivial representation of G/N of degree

d and Id is the d× d identity matrix.

The character value of χ(D̂) is given by the following lemma.

Lemma 2.2. Suppose that G is group of order v with normal subgroup N such that

G/N is abelian. If D̂ ∈ Z[G/N ] and χ ∈ (G/N)∗ then

|χ(D̂)| =




k, if χ is a principal character of G/N√
k − λ, otherwise.

The next lemma is a necessary condition (but not sufficient) for the existence of

difference set image in G/N .

Lemma 2.3 (The Variance Technique). Suppose that D is a (v, k, λ) difference set

in a group G of order v and H is a factor group of G with kernel N . Let D̂ be the

difference set image in H and T ∗ be a left transversal of N in G such that {di} is a
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sequence of intersection numbers and {mi}, where mi is the number of times di equals

i. Then

(2.6)
|N |∑

i=0

mi = |H|;
|N |∑

i=0

imi = k and
|N |∑

i=0

i(i− 1)mi = λ(|N | − 1)

The method used in this paper is known as representation theoretic method made

popular by Leibler ([12]). Some authors like Iiams [5] and Smith [16] have used this

method in search of difference sets. This approach entails the computation of ΩG/N ,

the set of difference set images in the factor group of G of least order. We garner

information about D as we gradually increase the size of the factor group. If at a

point the distribution list ΩG/N is empty, then the group G with factor group G/N

does not admit (v, k, λ) difference sets. We use Lemmas 2.1, 2.2 and the difference

set equation (2.5) to obtain ΩG/N .

We need the aliases in order to successfully obtain the difference set images. Sup-

pose that G/N is an abelian factor group of exponent m′ and D̂ is a difference

set image in G/N . If χ is not a principal character of G/N , then by Lemma 2.1,

χ(D̂)χ(D̂) = n. The determination of the alias requires the knowledge of how the

ideal generated by χ(D̂) factors in cyclotomic ring Z[ζm′ ], where ζm′ is the m′-th root

of unity. Thus, χ(D̂)χ(D̂) = n is an algebraic equation in Z[ζm′ ] and χ(D̂) is an

algebraic number of length
√

n. The image of Z[G/N ] is Z[ζm′ ]. If δ := χ(D̂), then

by (2.5), we seek a group ring, Z[G/N ] element say α such that χ(α) = δ. The task

of solving the algebraic equation δδ̄ = n is sometimes made easier if we consider the

factorization of principal ideals (δ)(δ̄) = (n). To achieve this,

(a) we must look for all principal ideals π ∈ Z[ζm] such that ππ̄ = (n)

(b) for each such ideals, we find a representative element, say δ with δδ̄ = n and

(c) for each δ, we find an alias α ∈ Z[G/N ] such that χ(α) = δ.

Using algebraic number theory, we can easily construct the ideal π. The daunting

task is to find an appropriate element δ ∈ π. Suppose we are able to find δ =
∑φ(m)−1

i=0 diζ
i
m ∈ Z[ζm] such that δδ̄ = n, where φ is the Euler φ-function. We use a

theorem due to Kronecker [14, 15] that states that any algebraic integer all whose

conjugates have absolute value 1 must be a root of unity. If there is any other solution

to the algebraic equation, then it must be of the form δ′ = δu[13], where u = ±ζj
m is

a unit. To construct alias from this information, we choose a group element g that
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is mapped to ζm and set α :=
∑φ(m)−1

i=0 dig
i such that χ(α) = δ. Hence, the set of

complete aliases is {±αgj : j = 0, 1, . . . , m− 1}.
We use the following result to determine the number of factors of an ideal in a ring:

Suppose p is any prime and m′ is an integer such that gcd (p,m′) = 1. Suppose that

d is the order of p in the multiplicative group Z∗m′ of the modular number ring Zm′ .

Then the number of prime ideal factors of the principal ideal (p) in the cyclotomic

integer ring Z[ζm′ ] is φ(m′)
d

, where φ is the Euler φ-function, i.e. φ(m′) = |Z∗m′| [10].

For instance, the ideal generated by 7 has four factors in Z[ζm′ ],m′ = 29, 58 while

the ideal generated by 7 is prime in Z[ζ2s ], s = 1, 2. On the other hand, since 2s is a

power of 2, then the ideal generated by 2 is said to completely ramifies as power of

(1− ζ2s) = (1− ζ2s) in Z[ζ2s ].

According to Turyn [18], an integer n is said to be semi-primitive modulo m′ if

for every prime factor p of n, there is an integer i such that pi ≡ −1 (mod m′).

In this case, −1 belongs to the multiplicative group generated by p. Furthermore,

n is self conjugate modulo m′ if every prime divisor of n is semi primitive modulo

m′
p, m′

p is the largest divisor of m′ relatively prime to p. This means that every

prime ideals over n in Z[ζm′ ] are fixed by complex conjugation. For instance, 75 ≡
−1 (mod m′), where m′ = 11, 22, 44, 88 and 7 ≡ −1 (mod m′), where m′ = 2, 4.

Thus, 〈7〉 is fixed by conjugation in Z[ζm′ ]. In this paper, we shall use the phrase

m factors trivially in Z[ζm′ ] if the ideal generated by m is prime(or ramifies) in Z[ζm′ ]

or m is self conjugate modulo m′. In this case if D̂ is the difference set image of

order n = m2 in H, where H is a group with exponent m′ and χ is a non-trivial

representation of H then χ(D̂) = mζ i
m′ , ζm′ is the m′-th root of unity [15].

As stated earlier, the ideal generated by 7 has four factors in Z[ζm′ ], where m′ =

29, 58. Since Z[ζ58] = Z[−ζ29] = Z[ζ29], we focus on Z[ζ29] [15]. Suppose σ ∈
Gal(Q(ζ29)/Q), where σ(ζ29) = ζ7

29. This automorphism split the basis elements of

Q(ζ29) into four orbits as A := ζ29+ζ7
29+ζ20

29 +ζ24
29 +ζ23

29 +ζ16
29 +ζ25

29 , B := ζ2
29+ζ14

29 +ζ11
29 +

ζ19
29 +ζ17

29 +ζ3
29+ζ21

29 , A and B. It is easy to see that (7) = (1+A)(1+B)(1+A)(1+B).

Put π1 = (1 + A) and π2 = (1 + B). Let δ1 = 1 + A and δ2 = 1 + B be repre-

sentatives of these ideals. Then the solutions to δδ̄ = 72 are, δ1δ2δ̄1δ̄2 = 7, δ2
1δ

2
2,

δ̄2
1 δ̄

2
2, δ2

1δ2δ̄2, δ2
1 δ̄

2
2, δ1δ̄1δ̄

2
2, δ1δ

2
2 δ̄1, δ2δ̄

2
1 δ̄2 or δ2

2 δ̄
2
1. A Galois automorphism breaks

this solution set into three classes: δ1δ2δ̄1δ̄2 = 7; δ2
1δ

2
2, δ2

2 δ̄
2
1, δ2

1 δ̄
2
2, δ̄2

1 δ̄
2
2; and δ1δ̄1δ̄

2
2,



486 ADEGOKE S. A. OSIFODUNRIN

δ1δ
2
2 δ̄1, δ2δ̄

2
1 δ̄2, δ2

1δ2δ̄2. Since we want the solutions to equivalence, we pick one alge-

braic number from each class and hence, δ = 7, δ2
1δ2δ̄2 = 1 + 2ζ29 + 3ζ2

29 + 3ζ3
29 +

2ζ7
29 + 3ζ11

29 + 3ζ14
29 + 2ζ16

29 + 3ζ17
29 + 3ζ19

29 + 2ζ20
29 + 3ζ21

29 + 2ζ23
29 + 2ζ24

29 + 2ζ25
29 or δ2

1δ
2
2 =

1+3ζ29+2ζ4
29+2ζ5

29+2ζ6
29+3ζ7

29+2ζ9
29+2ζ13

29 +3ζ16
29 +3ζ20

29 +2ζ22
29 +3ζ23

29 +3ζ24
29 +3ζ25

29 +2ζ28
29 .

Based on the above information, if D̂ is a (1276, 51, 2) difference set in C29, then

the possible alias, α in the rational idempotent decomposition of D̂ is one of the two

forms:

(a) α = ±7xr,

(b) α = ±(1+3x+2x4 +2x5 +2x6 +3x7 +2x9 +2x13 +3x16 +3x20 +2x22 +3x23 +

3x24 + 3x25 + 2x28)xs′ or ±(1 + 2x + 3x2 + 3x3 + 2x7 + 3x11 + 3x14 + 2x16 +

3x17 + 3x19 + 2x20 + 3x21 + 2x23 + 2x24 + 2x25)xt, x is a generator of C29 and

r, s′, t = 0, . . . , 28.

On the other hand, if D̂ is a (1276, 51, 2) difference set in Cm′ ,m′ = 11, 22, 44, then

the possible alias, α in the rational idempotent decomposition of D̂ is α = ±7xr. The

above discussion is fundamental to the choices of aliases in the later sections.

We now look at norm and trace of algebraic numbers in cyclotomic field, Q(ζm)

where m > 2. If m is an odd prime say p, then the minimum polynomial of ζp, over

Q is f(t) = tp−1 + tp−2 + · · · + t + 1 and [Q(ζp) : Q] = p − 1 ([17], page 64). The

minimum polynomial of ζ i
p 6= 1, 1 ≤ i ≤ p− 1 is also f(t) as ζ i

p is a pth root of unity

and consequently, f(t) =
∏p−1

i=1 (t− ζ i
p) and ζ i

p are the conjugates of ζp. The functions

σi : Q(ζp) → C defined by σi(ζp) = ζ i
p are monomorphisms and for any arbitrary

element β =
∑p−2

j=0 αjζ
j
p ∈ Q(ζp), σi(

∑p−2
j=0 αjζ

j
p) =

∑p−2
j=0 αjσi(ζ

j
p) =

∑p−2
j=0 αjζ

ij
p , αj ∈

Q. We now give the definition of norm and trace of an element β.

Definition 2.1. Based on the preamble above, the norm and trace of β are respec-

tively,

(2.7) N(β) =
p−1∏

i=1

σi(β) and T (β) =
p−1∑

i=1

σi(β).

Example 2.1. Suppose that p = 5 and ζ5 = e
2πi
5 with β = 5+2ζ5+2ζ2

5 , then the length

of β is σ1(β)σ4(β) = ββ̄ = 33+14ζ5 +10ζ2
5 +10ζ3

5 +14ζ4
5 = 21+2

√
5, since ζ5 + ζ4

5 =
−1+

√
5

2
. Thus, N(β) = (21 + 2

√
5)(21 − 2

√
5) = 421. Also, T (β) =

∑4
i=1 σi(β) = 16

as
∑4

i=0 ζ i = 0.
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Finally, suppose that H is a group of order 2h with a central involution z. We take

T = {ti : i = 1, . . . , h} to be the transversal of 〈z〉 in H so that every element in

H is viewed as tiz
j, 0 ≤ i ≤ h, j = 0, 1. Denote the set of all integral combinations,

∑h
i=1 aiti of elements of T, ai ∈ Z by Z[T ]. Using the two representations of subgroup

〈z〉 and Frobenius reciprocity theorem [11], we may write any element X of the group

ring Z[H] in the form

(2.8) X = X

(
1 + z

2

)
+ X

(
1− z

2

)
.

Furthermore, let A be the group ring element created by replacing every occurrence

of z in X by 1. Also, let B be the group ring element created by replacing every

occurrence of z in H by −1. Then

(2.9) X = A

(〈z〉
2

)
+ B

(
2− 〈z〉

2

)
,

where A =
∑h

i=1 aiti and B =
∑h

j=1 bjtj, ai, bj ∈ Z. As X ∈ Z[H], A and B are both

in Z[T ] and A ≡ B (mod 2). We may equate A with the homomorphic image of X

in G/〈z〉. Consequently, if X is a difference set, then the coefficients of ti in the

expression for A will be intersection number of X in the coset 〈z〉 [3]. In particular,

it can be shown that if K is a subgroup of a group H such that

(2.10) H ∼= K × 〈z〉,

then the difference set image in H is

(2.11) D̂ = A

(〈z〉
2

)
+ gB

(
2− 〈z〉

2

)
,

where g ∈ H, A is a difference set in K, α = k+
√

n
|K| or α = k−√n

|K| , B = A−αK and k is

the size of the difference set. (2.11) is true as long as |K| | (k+
√

n) or |K| | (k−√n).

In the next two sections, we analyze the (1276, 51, 2) difference set images in factor

groups of orders 44, 58 and 116.

3. Difference set images in 2-groups

We compute difference set images in G/N ∼= H, where H is a group of order

2m,m = 1, 2.
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3.1. The C2 image. Suppose H = C2 = 〈x : x2 = 1〉 and D̂ =
∑

djx
j, j = 0, 1 is

the difference set image in H. We view this group ring element as a 1× 2 array with

columns indexed by powers of x. The characters of H are of the form χj(x) = (−1)j,

j = 0, 1. By applying the map x 7→ 1 on D̂, we get d0+d1 = 51. Also the map x 7→ −1

on D̂ yields d0 − d1 = ±7. We translate D̂, if necessary, to obtain d0 − d1 = 7. By

solving the system of equations d0 + d1 = 51 and d0 − d1 = 7, the unique element in

ΩC2 is A = 29 + 22x.

We now obtain difference set images in groups of order 4.

3.2. The Group 4 images. Suppose H ∼= C4 = 〈x : x4 = 1〉 and the difference

set in H is D̂ =
∑3

j=0 djx
j. This group ring element is viewed as a 1 × 4 array with

columns indexed by powers of x. The characters of H are of the form χj(x) = ij,

where j = 0, 1, 2, 3 and i is the fourth root of unity. The rational idempotents are:

[eχ0 ] = 1
4
〈x〉; [eχ1 ] = 1

4
(2〈x2〉 − 〈x〉); [eχ2 ] = 1

2
(2 − 〈x2〉). Out of these 3 rational

idempotents, only [eχ1 ] does not have 〈x2〉 in its kernel. The linear combination of

those idempotents having 〈x2〉 in their kernel is A 〈x2〉
2

, where A is the difference set

image in C2. Thus, the difference set image is

(3.1) D̂ = A
〈x2〉
2

+ αχ1 [eχ1 ],

where αχ1 = ±7xs, s = 0, 1, 2, 3. By translating, if necessary, the unique element of

ΩC4 , up to equivalence, is A1 = 7 + 11〈x〉. Similarly, if H ∼= C2 × C2 = 〈x, y : x2 =

y2 = [x, y] = 1〉, then the difference set image is 7 + 11(1 + x)(1 + y).

4. Difference set images in groups of order 44, 58 and a group of

order 116

4.1. Difference set images in groups of order 44.

4.1.1. The C11 image. Suppose that G/N ∼= C11 = 〈x : x11 = 1〉 and D̂ =
∑10

i=0 dix
i

is the difference image in G/N . Using the fact that if χ is a non trivial character of

G/N , then χ(D̂) = ±7ζ i
11, i = 0, . . . , 10, up to equivalence, A = 7 + 4〈x〉 is the only

difference set image in G/N .

4.1.2. The C22 and D11 images. Suppose that G/N ∼= C22 = 〈x, y : x11 = y2 = 1 =

[x, y]〉 and D̂ =
∑10

i=0

∑1
j=0 dijx

iyj is the difference image in G/N . Using (2.11) with

K = C11, α = 4 and |K| = 11 we obtain, up to equivalence, A1 = 7 + 2〈x〉〈y〉 as

the only difference set image in G/N .The Dillon dihedral technique can be used to
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show that A1 is also the only difference set image in G/N ∼= D11 = 〈x, y : x11 = y2 =

1, yxy = x−1〉.

4.1.3. The C22 × C2, C44 and D22 images. It is easy to show that if G/N ∼= C44 =

〈x : x44 = 1〉, then the difference set image is A2 = 7 + 〈x〉. Also, if G/N ∼= D22 =

〈x, y : x22 = y2 = 1, yxy = x−1〉 the difference set image is A3 = 7 + 〈x〉〈y〉. Finally,

if G/N ∼= C22 × C2 = 〈x, y, z : x11 = y2 = z2 = 1 = [x, y] = [y, z] = [x, z]〉 then the

difference set image is A4 = 7 + 〈x〉〈y〉〈z〉.

4.2. The C29 image. Suppose that G/N ∼= C29 = 〈x : x29 = 1〉 and D̂ =
∑28

i=0 dix
i

is the difference image in G/N . The characters of C29 are of the form χs(x) = ζs,

s = 0, . . . , 28, where ζ29 is the twenty-ninth root of unity. Thus, the two rational

idempotents of G/N are:

[eχ0 ] =
1

29
〈x〉 and [eχ1 ] =

1

29
(29− 〈x〉)

and the difference set equation is

(4.1) D̂ = αχ0 [eχ0 ]± αχ1 [eχ1 ]

with αχ0 ∈ Z, αχ1 ∈ Z[ζ29]. As χ0 is the trivial character, then χ0(D̂) = αχ0 = 51

and αχ1 ∈ {±7xs,±(1 + 3x + 2x4 + 2x5 + 2x6 + 3x7 + 2x9 + 2x13 + 3x16 + 3x20 +

2x22 +3x23 +3x24 +3x25 +2x28)xs′ ,±(1+2x+3x2 +3x3 +2x7 +3x11 +3x14 +2x16 +

3x17 + 3x19 + 2x20 + 3x21 + 2x23 + 2x24 + 2x25)xs′′)}, s, s′, s′′ = 0, . . . , 28. We replace

D̂ by D̂ζs
29 or D̂x, if necessary to obtain αχ1 to be a1 = 7, a2 = 1 + 3x + 2x4 +

2x5 + 2x6 + 3x7 + 2x9 + 2x13 + 3x16 + 3x20 + 2x22 + 3x23 + 3x24 + 3x25 + 2x28 or a3 =

1+2x+3x2+3x3+2x7+3x11+3x14+2x16+3x17+3x19+2x20+3x21+2x23+2x24+2x25.

Thus, the difference set equation becomes

(4.2) D̂ =
51

29
〈x〉 ± ai

29
(29− 〈x〉), i = 1, 2, 3,

where a1

29
(29−〈x〉) = 7

29
(29−〈x〉), a2

29
(29−〈x〉) = 1

29
(−7+51x−36x2−36x3 +22x4 +

22x5+22x6+51x7−36x8+22x9−36x10−3x11−36x12+22x13−36x14−36x15+51x16−
36x17−36x18−36x19+51x20−36x21+22x22+51x23+51x24+51x25−36x26−36x27+22x28

and a3

29
(29− 〈x〉) = 1

29
(−7 + 22x + 51x2 + 51x3− 36x4− 36x5− 36x6 + 22x7− 36x8−

36x9−36x10 +51x11−36x12−36x13 +51x14−36x15 +22x16 +51x17−36x18 +51x19 +

22x20 + 51x21 − 36x22 + 22x23 + 22x24 + 22x25 − 36x26 − 36x27 − 36x28.

Thus, the solutions to (4.2) are:
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(a) E1 = −7 + 2〈x〉 , which is not viable since intersection number must be non

negative integer

(b) E2 = 2+3x2 +3x3 +x4 +x5 +x6 +3x8 +x9 +3x10 +3x11 +3x12 +x13 +3x14 +

3x15 + 3x17 + 3x18 + 3x19 + 3x21 + x22 + 3x26 + 3x27 + x28

(c) E3 = 2 + x + 3x4 + 3x5 + 3x6 + x7 + 3x8 + 3x9 + 3x10 + 3x12 + 3x13 + 3x15 +

x16 + 3x18 + x20 + 3x22 + x23 + x24 + x25 + 3x26 + 3x27 + 3x28.

Only E2 and E3 are elements of ΩC29 .

4.3. Groups of order 58. Let N be an appropriate normal subgroup of G such

that G/N ∼= C58 = 〈x, y : x29 = y2 = 1 = [x, y]〉 = C29 × 〈y〉. We view the difference

set image in G/N as D̂ =
∑28

i=0

∑1
j=0 dijx

iyj. This group is of the form (2.10). Take

K = C29, α = 2 and k = 51. Then (2.11) becomes D̂ = Ei

(
1+y
2

)
+ Bjg

(
1−y
2

)
, i = 2, 3

where g ∈ G/N , Ei is a viable difference set image in C29 and Bj = Ej−2K, j = 1, 2, 3.

We look at two situations. In the first instance, D̂ = Ei

(
1+y
2

)
+ B1g

(
1−y
2

)
has

no integer solution because of the number of fractions in Ei

(
1+y
2

)
exceeds those of

B1g
(

1−y
2

)
. Hence, Ei

(
1+y
2

)
and B1g

(
1−y
2

)
are not compatible to produce integer

solutions. Secondly, D̂ = Ei

(
1+y
2

)
+ Bjg

(
1−y
2

)
, i, j = 2, 3 has integer solutions but

some entries are negative. Thus, ΩC58 is empty. The Dillon dihedral trick shows that

D29 does not admit (1276, 51, 2) difference sets.

At this stage, we have ruled out the existence of (1276, 51, 2) difference sets in

all groups of order 1276 except C11 × (C29 o C4) or C319 o C4 with GAP[2] library

numbers [1276, 5] and [1276, 6] respectively. These two surviving groups have F116

as a factor group. We now explore the difference set images in this group.

4.4. The group F116 = C29 o C4. Suppose that G/N ∼= C17 o C4 = 〈x, y : x29 =

y4 = 1, yxy−1 = x17〉. This group is the third group in the GAP[2] list of groups

of order 116. We express the difference set image in G/N , if it exists, as D̂ =
∑28

s=0

∑3
t=0 ds,tx

syt. This difference set image is viewed as a 4 × 29 matrix with the

columns indexed by the powers of x and rows by powers of y. Since (G/N)/〈x〉 ∼= C4,

the map x 7→ 1 give rise to a system of equations

28∑

s=0

ds0 = a0,
28∑

s=0

ds1 = a1,
28∑

s=0

ds2 = a2,
28∑

s=0

ds3 = a3,(4.3)

where (a1t) = A1 is a 1×4 matrix and the difference set image in C4. The group G/N

has seven equivalent degree four representations. One of them (ζ is the twenty-ninth
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root of unity) is

χ : x 7→




ζ 0 0 0
0 ζ17 0 0
0 0 ζ28 0
0 0 0 ζ12


 , y 7→




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 .

By applying this representation to D̂, we get

χ(D̂) =




A B C D

σ(D) σ(A) σ(B) σ(C)

C̄ D̄ Ā B̄

σ̄(B) σ̄(C) σ̄(D) σ̄(A)




,

where A =
∑28

s=0 ds0ζ
s, B =

∑28
s=0 ds1ζ

s, C =
∑28

s=0 ds2ζ
s, D =

∑28
s=0 ds3ζ

s and σ(ζ) =

ζ17. By solving χ(D̂)χ(D̂) = 49I4, where I4 is a 4 × 4 identity matrix, we get 16

equations which are equivalent to the following system:

AĀ + BB̄ + CC̄ + DD̄ = 49(4.4)

AC = −BD(4.5)

The coset bound of difference set image in G/N is 11 and using the variance

trick equations, the possible distributions of this difference set image are 06914651,

071142213141, 0721392441, 0721402133, 0731372432, 0741342731, 075131210. The distribution

06914651 means that the intersection number 0 occurs 69 times, intersection number

1 occurs 46 times while intersection number 5 occurs only once. Without loss of

generality, we take
28∑

s=0

ds0 = 18,
28∑

s=0

ds1 = 11,
28∑

s=0

ds2 = 11,
28∑

s=0

ds3 = 11,(4.6)

One way to decide the existence or otherwise of the difference set image in G/N is to

use the multiplicative property of norm of algebraic integers on (4.5). Consequently, if

AC = −BD, then N(A)N(C) = N(B)N(D). We need the converse of this statement.

If p is any prime such that p | N(A)N(C), then p | N(A) or p | N(C). Thus, p | N(B)

or p | N(D). The objective is to combine this information with each of the seven

possible distributions of the difference set image in G/N to either construct difference

set images or show that none exists. For instance, take the distribution 06914651. The

intersection number 5 is unique and without loss of generality, set d00 = 5. Then

dst = 0 or 1 for s 6= 0 and t 6= 0. Thus, A = 5+
∑28

s=1 ds0ζ
s and

∑28
s=1 ds0 = 13. Notice

that in this case, all the algebraic numbers B, C and D are like. However, there are
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228 possible values of N(A) and 229 values of N(B), N(C) or N(D). This remaining

part is inconclusive, requires more work and we hope to report on it soon.
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