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THE SPECTRUM OF NEIGHBORHOOD CORONA OF GRAPHS
INDULAL GOPALAPILLAI

ABSTRACT. Given two graphs G with vertices {v1,vo,...,v,} and G, the neigh-
bourhood corona, G1% G2 is the graph obtained by taking n copies of G5 and for
each i, making all vertices in the i*" copy of G5 adjacent with the neighbours of
vi, 9 =1,2,...,n. In this paper a complete description of the spectrum and eigen-
vectors of G1%Gs is given when G5 is regular, thus adding to the class of graphs
whose spectrum is completely known.

1. INTRODUCTION

Let G = (V,E) be a simple graph with vertex set V' = {vy,vq,...,v,}. The
adjacency matrix of G is an n x n matrix denoted by A(G) = [a;;] and is defined as
a;; = 1 if v; and v; are adjacent in G, 0 otherwise. The spectrum of G is defined
as sp(G) = {A1, A, ..., \n} where Ay > Ay > A\, are the eigenvalues A(G). The
Laplacian matrix of G, denoted by L(G) is defined as D(G) — A(G) where D(G) is
the diagonal degree matrix of G. The Laplacian spectrum of G is defined as

S(G) = {61, 92, e ,Hn}
where 0 = 6 < 0y < --- < 0, are the eigenvalues of L(G). We refer \;(G) and 6,(G)

the spectral radius and Laplacian spectral radius, respectively. A plethora of papers
have been available on works related to spectrum and Laplacian spectrum of a graph.
See [2, 6, 7] and the references cited therein.

The corona of two graphs is defined in [4] and there have been some results on the

corona of two graphs [3]. The complete information about the spectrum of the corona
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of two graphs G, H in terms of the spectrum of G, H are given in [1]. A new variance
of corona is defined in [5] and discussed its spectrum and the number of spanning
trees.

In this paper we define another variation of corona of two graphs and discuss its
spectrum , thus adding to the class of graphs whose spectrum is completely known.

The discussion in subsequent sections are based upon the following definition.

Definition 1.1. Let GG; and G5 be two graphs on n; and nsy vertices, m; and my
edges respectively. Then the neighborhood corona, G1% G5 is the graph obtained by
taking n; copies of G and for each 7, making all vertices in the i*" copy of G5 adjacent

with the neighbors of v;, i = 1,2,...,n.

The neighborhood corona G % G5 of G and G5 has ny+mninsy vertices and mq(2ns+
1) + nymg edges and when Gy = K, G1k G5 is the splitting graph defined in [8].

Note that in general this operation is not commutative.

Ezxample 1.1. The following figure illustrates Definition 1.1.

FIGURE 1. Csx K>

Throughout this paper we consider only simple graphs. In this paper, we give
a complete description of the eigenvalues and the corresponding eigenvectors of the
adjacency matrix of G;% G5 when G is regular.

Let A = (ai;), B be matrices. Then the Kronecker product of A and B is defined
in [2] as the partition matrix (a;; B) and is denoted by A® B. The row vector of size
n with all entries equal to one is denoted by 7, and the identity matrix of order n is
denoted by I,.
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2. THE SPECTRUM OF G %G5
In this section we obtain the spectrum of G;% G2 when G5 is regular.

Theorem 2.1. Let Gy be a graph with spectrum {uy > po > ... > pn, } and Go, a

t—regular graph with spectrum {m =t >mne > ... > n,,}. Then the spectrum o(G)
of G1 Gy consists of the numbers

pi (= 8+ dnop? g+t — (g — £) 4 dnopl?

2 ’ 2 ’

each with multiplicity one together with n;, j = 2,3,...,n2, each with multiplicity n,.

1=1,2,...,nq,

Proof. Let V(Gy) = {vi,vy,...,v,}, the vertices in the "™ copy of G be
{ui,uy, ..., ul,} and W; = {uj,u5,...,uj'}. Then with the vertex partition

Vumw,ywselU---UW,,, the adjacency matrix of G;% G4 can be written in the block

form

7
n2

(o ® A(G1))" A(G) @ Ly, |
Let X; be an eigenvector of A(G1) corresponding to the eigenvalue p;, i = 1,2,...,n4.

i+t (g — 1) + dnops? i+t — /(g — ) + dnops?

Let §; = 5 and 51 = 5 . Now we
shall consider two cases.
Case 1. u; # 0.
In this case it is easy to observe that §; # ¢ and b #* —t.
0; — t
Now ®; = 1L Xi is an eigenvector of A(G1% G2) with an eigenvalue ¢;. This
j’nz X XZ
is because _ A(Gy) . A(Gy) 5 —t
In ® 1 - X;
A(G1HGy) - @ = | . ! 2 A
@xa o=, S Kicaern o,

(2

0; —t

)

((6; — 1) + nops) X;
(6 = 1) +1) jny @ X;
0; — 1
Xi
jng ® XZ

0; —t
( i + 712/%) X
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Similarly, it can be proved that ®; = 1L; | is an eigenvector of A (G1%G>3)

with an eigenvalue oi.
Case 2. p; = 0.

In this case observe that §; =t and 51 = 0.

Let @Y = l j ((§)§X» ] Now ®! is an eigenvector of A (G;%G3) with an eigenvalue
no 7
2
it (s — 1) + dngp?
t= - \/(MQ ) 2/ , i = 0. This is because

A<G1*G2)@?:l A(Gy) jm@A(Gl)H 0 ]

(jnz ® A (Gl))T A (G2) ® [nl an & Xz
. 0

— 0 _ 0

Similarly, it can be proved that (iJ? = [ X ] is an eigenvector of A (G1%G5) with

0
. m—l—t—\/(,ui—t)Q—i-llng,u?
an eigenvalue 0 = 5 , i = 0.
it (s — 1)+ dngp?
Thus we get 2n; eigenvalues K \/(,u 5 ) 2/ of A(G1%Gs) with eigen-
vectors described earlier.
Now let Y; be an eigenvector of A(G3) with an eigenvalue n;, ¢ = 2,3,...,n9.

Since G is regular, by Perron-Frobenius theory that Y; is orthogonal to the all one

vector. Let e/ be an ny x 1 column vector with ¢'" entry equal to one and all other

entries equal to zero. Now W = v @gei ] is an eigenvector of A (G1%G2) with
J ni
an eigenvalue 7; for each 7 = 1,2,...,n;. This is because

, A ' A
aexen = | o S Hanad | e,
_ [ 0 ]
nj Y ®en,
= nj\I/;.
The multiplicity of 7; follows from the observation that \Il; is an eigenvector for

each i = 1,2,...,ny. Thus we have listed niny + ns eigenvectors for A (G % G2) and
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by the very construction, they are all linearly independent and as A (G1%G2) has a

basis consisting of linearly independent eigenvectors, the theorem follows. 0

3. THE LAPLACIAN SPECTRUM OF G %G5

In this section we obtain the Laplacian spectrum of G1%G-.
Let V(G1) = {v1,v2,...,0,, }, the vertices in the i copy of Gy be {ul, ub, ... ul }

and Wj = {uj,u3,...,uj"}. Then with the vertex partition VUW,UWoU---UW,,,
we have the following degree relations in G % Go:
dega, xq, Vi = degg, v; (ng + 1)
dega, xa, u; =degg, u; +degg, v, i=1,2,...,n1; j=1,2,... ny.
Thus the degree diagonal matrix D(G;% G2) can be written in the block form
(ny +1)D (Gy) Jne @0
l (ne ®0)" D (Ga) ® I, + I, ® D (G1) ] '
Let L(Gy) and L(Gs) respectively denote the Laplacian matrices of Gy and G, then
the Laplacian matrix, L(G1%Gs) of G1% G is the block matrix
(na+ 1) L(Gy) —Jny, @ A(G1)
[ (s ® A(G1))" L(Go) ® I, + I, ® D (G1) ] '
In what follows, we give a complete description of the Laplacian eigenvalues and
eigenvectors of Gy %Gy for an r-regular graph G; and any graph G5. Note that if
G is an r-regular graph with adjacency spectrum {r = Ay > Xo,..., \,}, then its
Laplacian spectrum is {0 = 0; <Oy =1 — Xy < ... <6, =7 — N\, }.

Theorem 3.1. Let Gy be an r-reqular graph with adjacency spectrum {r = u; >

W2y oy i}, S(Gh) = {01,602, ...,0,,} and Gy be a graph with S(Ge) = {11, T2, ..., Ty }-

Then the Laplacian spectrum of G1%Go consists of the numbers

(ns+ 1) 7 + 6+ \/((na + 1) 7+ 6,)% + 46; (no8; — r (205 + 1))
: ,

(na 4+ 1)1 +0; — /((na + 1) 7 + 6:)* + 46; (nof; — r (20 + 1))
5 :

together with (1; + 1) of multiplicity ny for each j =2,3,...,ns.

Proof. Let X; be an eigenvector with an eigenvalue p; of A(Gy). As Gy is r-regular,

X; is an eigenvector of L(G1) with an eigenvalue 0; = r — p;.
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Let

2

o; =

and

(na+ 1) 7+ 6; — \/((na + 1) 7 + 0,)* + 46; (no; — 7 (205 + 1))
T 2 .
Now we shall consider two cases.

Case 1. u; # 0 or in other words 0; # r.

We observe that o;, 6; = r only when 6; = r and hence o;, ; # r when u; # 0. Now

g;—T
in this case, ©; = in is an eigenvector of L(G1% G3) with an eigenvalue
Jnax1 @ X;

0;.
This is because

L(G1%G2)0;

. o, —T
_ (ne+1)L (Gl)T —Jny ® A(G1) ] 0. _ rXi
| (<dne ® A(G1))" L(Go) ® Iy +71y @ Iy || 51 0 x,

o, —T

) <(n2 + l()ei(%r(:ifi:)—):wo B L(Ga) L jnyxa

o;—T
% ){Z
=0; [ .Qi -r

,]n2><1 ® XZ
5’2‘ - T
Similarly, it can be proved that ©; = | 0, —r~ ' | is an eigenvector of L(G1%G2)
jn2><1 & X’L

with an eigenvalue ;.
Case 2. u; =0 or in other words 6; =r

In this case by applying similar arguments we used in the above discussion it can

be showed that [ )él ] and [

) respectively are the eigenvectors with
Jnax1 @ X ] P Y &

eigenvalues

(ng+1)r+6; + \/((ng + 1) 7+ 6,)* + 46, (ns0; — r (2ns + 1))
2

0; = = (TLQ -+ 1)7“
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and
(na + 1) 7+ 0; — /((na + 1) 7 + 6:)* + 46, (nof; — r (205 + 1))
g; = =T
2
Now let Z1, Z, ..., Z,, be the set of eigenvectors of L(Gs). Then, as shown in the
0

proof of Theorem 2.1, it can be shown that Q; = 1 is an eigenvector of

Zj (%9 6%1
L(G1%Gy) with an eigenvalue 7; 4+ r of multiplicity ny for j = 2,3,...,ne. Thus we
get nyng + no eigenvectors for L (G1% G5) and by the very construction, they are all

linearly independent. Thus, the theorem is proved. U

3.1. An application. As an application of the above results, in this section we obtain
an expression for the number of spanning trees of Gy % G2 for an r-regular graph G
with S(Gy) = {0=104,0s,...,0,,} and Gy with S(G3) = {7, 72,...,Tn,}. From the
Matrix-Tree theorem [2] the number of spanning trees of G is
0505 ...0,

t(G1) = Tl
Theorem 3.2. Let G be a connected r-regular graph with S(G1) = {0 = 01,04, ...,0,,}
and Gy be any arbitrary graph with S(Go) = {11, T2,..., Tn, }. Let t(G1) be the number
of spanning trees of G1. Then

ni n2

t(Gi1kGa) =1t (G1) [ ((2n2 + 1) r — nab)) H (15 +7r)".

=2
Proof. Using the notations in Theorem 3.1, we have 0;6; = 6; ((2ny + 1) r — nsb;),
o1=(na+1)r;60 =0fori=2,3,...,ny. Thus

(ng + 1) r X 'ﬁg 91 ((2712 + 1) r— ngﬁz) X ﬁQ (Tj + T)”l
i= j=

Gk G) = ny (ng + 1)
=rt (Gy) f[ ((2ng + 1) r — nob;) ﬁ (15 + )"

Corollary 3.1.
tH(Kp K Ky,y)
=2 (ny 4 ne — 1) (0 = 1) (2ne 4+ 1) (ng — 1) — nyng)™ .

Proof. The proof follows from the fact that 0; = ny, i = 2,3,...,n1; 77, = ng, Jj =
2,3,...,n9; 7 =n1 — 1 and t(K,,) = n}* 2 O
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