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WEAK AND STRONG CONVERGENCE OF COMMON FIXED

POINTS FOR ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE

MAPPINGS IN BANACH SPACES

GURUCHARAN SINGH SALUJA

Abstract. In this paper, we give necessary and sufficient condition for strong con-
vergence of three-step iteration process with errors for approximating common fixed
point for asymptotically quasi-nonexpansive type mappings and also prove weak
convergence of three-step iteration process with errors for approximating common
fixed point for said mappings in Banach spaces. The results presented in this paper
extend and improve the corresponding results [1, 5, 6, 10, 11, 14] and many others.

1. Introduction

It is well known that the concept of asymptotically nonexpansive mappings was in-

troduced by Goebel and Kirk [2] who proved that every asymptotically nonexpansive

self-mapping of nonempty closed bounded and convex subset of a uniformly convex

Banach space has fixed point. In 1973, Petryshyn and Williamson [9] gave necessary

and sufficient conditions for Mann iterative sequence ([7]) to converge to fixed points

of quasi-nonexpansive mappings. In 1997, Ghosh and Debnath [1] extended the re-

sults of Petryshyn and Williamson [9] and gave necessary and sufficient conditions

for Ishikawa [3] iterative sequence to converge to fixed points for quasi-nonexpansive

mappings.
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Liu [6] extended results of [1, 9] and gave necessary and sufficient conditions for

Ishikawa iterative sequence with errors to converge to fixed point of asymptotically

quasi-nonexpansive mappings. In 2002, Xu and Noor [14] introduced and studied a

three-step scheme to approximate fixed points of asymptotically nonexpansive map-

pings.

In 2006, Quan [10] studied some necessary and sufficient conditions for three-step

Ishikawa iterative sequences with error terms for uniformly quasi-Lipschitzian map-

pings to converge to fixed points. The results presented in [10] extend and improve

the corresponding results of Liu [5, 6], Xu and Noor [14] and many others.

The purpose of this paper is to investigate some necessary and sufficient condi-

tions for three-step iterative sequences with error terms for asymptotically quasi-

nonexpansive type mappings to converge to common fixed points in Banach spaces.

The results obtained in this paper extend and improve the corresponding results of

[1, 5, 6, 10, 11, 14] and many others.

2. Preliminaries

Definition 2.1. Let E be a real Banach space, C be a nonempty convex subset of

E and F (T ) denotes the set of fixed points of T . Let T : C → C be a mapping:

(1) T is said to be asymptotically nonexpansive if there exists a sequence {un} ⊂
[0,∞) with un → 0 as n →∞ such that

‖T nx− T ny‖ ≤ (1 + un) ‖x− y‖ ,(2.1)

for all x, y ∈ C and n ≥ 1.

(2) T is said to be asymptotically quasi-nonexpansive if F (T ) 6= ∅ and there exists

a sequence {un} ⊂ [0,∞) with un → 0 as n →∞ such that

‖T nx− p‖ ≤ (1 + un) ‖x− p‖ ,(2.2)

for all x ∈ C, p ∈ F (T ) and n ≥ 1.

(3) T is said to be asymptotically nonexpansive type [4], if

lim sup
n→∞

{
sup

x,y∈C

(
‖T nx− T ny‖ − ‖x− y‖

)}
≤ 0.(2.3)

(4) T is said to be asymptotically quasi-nonexpansive type [11], if F (T ) 6= ∅ and

lim sup
n→∞

{
sup

x∈C, p∈F (T )

(
‖T nx− p‖ − ‖x− p‖

)}
≤ 0.(2.4)
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Remark 2.1. It is easy to see that if F (T ) is nonempty, then asymptotically nonexpan-

sive mapping, asymptotically quasi-nonexpansive mapping and asymptotically non-

expansive type mapping all are the special cases of asymptotically quasi-nonexpansive

type mappings.

Definition 2.2. Let E be a normed linear space, C be a nonempty convex subset

of E, and T : C → C a given mapping. Then for arbitrary x1 ∈ C, the iterative

sequences {xn}, {yn}, {zn} defined by

zn = (1− γn − νn)xn + γnT
n
3 xn + νnun, n ≥ 1,

yn = (1− βn − µn)xn + βnT n
2 zn + µnvn, n ≥ 1,

xn+1 = (1− αn − λn)xn + αnT n
1 yn + λnwn, n ≥ 1,(2.5)

where {un}, {vn}, {wn} are bounded sequences in C and {αn}, {βn}, {γn}, {λn},
{µn}, {νn} are appropriate sequences in [0, 1], is called the three-step iterative se-

quence with error terms of T .

We note that the usual modified Ishikawa and Mann iterations are special cases of

the above three-step iterative scheme. If γn = νn = 0 and T1 = T2 = T , then (2.5)

reduces to the usual modified Ishikawa iterative scheme with errors,

yn = (1− βn − µn)xn + βnT
nxn + µnvn, n ≥ 1,

xn+1 = (1− αn − λn)xn + αnT
nyn + λnwn, n ≥ 1,(2.6)

where {vn}, {wn} are bounded sequences in C and {αn}, {βn}, {λn}, {µn} are ap-

propriate sequences in [0, 1].

If βn = µn = 0, then (2.6) reduces to the usual modified Mann iterative scheme

with errors,

x1 ∈ C,

xn+1 = (1− αn − λn)xn + αnT
nxn + λnwn, n ≥ 1,(2.7)

where {wn} is a bounded sequence in C and {αn}, {λn} are appropriate sequences in

[0, 1].

We say that a Banach space E satisfies the Opial’s condition [8] if for each sequence

{xn} in E weakly convergent to a point x and for all y 6= x

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖ .
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The examples of Banach spaces which satisfy the Opial’s condition are Hilbert

spaces and all Lp[0, 2π] with 1 < p 6= 2 fail to satisfy Opial’s condition [8].

Let K be a nonempty closed convex subset of a Banach space E. Then I − T

is demiclosed at zero if, for any sequence {xn} in K, condition xn → x weakly and

limn→∞ ‖xn − Txn‖ = 0 implies (I − T )x = 0.

In the sequel, we shall need the following lemma:

Lemma 2.1. (see [13]) Let {an} and {bn} be sequences of nonnegative real numbers

satisfying the inequality

an+1 ≤ an + bn, n ≥ 1.

If
∑∞

n=1 bn < ∞, then limn→∞ an exists. In particular, if {an} has a subsequence

converging to zero, then limn→∞ an = 0.

3. Main Results

In this section, we prove weak and strong convergence theorems of three-step iter-

ation scheme with errors for asymptotically quasi-nonexpansive type mappings in a

real Banach space.

Theorem 3.1. Let E be a real Banach space, C be a nonempty closed convex subset

of E. Let Ti : C → C, (i = 1, 2, 3) be uniformly L-Lipschitzian asymptotically quasi-

nonexpansive type mappings with F = ∩3
i=1F (Ti) 6= ∅. Let {xn} be the sequence

defined by (2.5) with the restrictions
∑∞

n=1 αn < ∞ and
∑∞

n=1 λn < ∞. Then {xn}
converges to a common fixed point of the mappings T1, T2 and T3 if and only if

lim inf
n→∞ d(xn, F ) = 0,

where d(x, F ) = infp∈F d(x, p).

Proof. The necessity is obvious. Thus we only prove the sufficiency. Let p ∈ F . It

follows from (2.4) that

lim sup
n→∞

{
sup

x∈C, p∈F

(
‖T nx− p‖ − ‖x− p‖

)}
≤ 0.

This implies that for any given ε > 0, there exists a positive integer n0 such that for

n ≥ n0 we have

sup
x∈C, p∈F

(
‖T nx− p‖ − ‖x− p‖

)
< ε.(3.1)
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Since {xn}, {yn}, {zn} ⊂ C, we have

‖T n
3 xn − p‖ − ‖xn − p‖ < ε, ∀p ∈ F, ∀n ≥ n0

‖T n
2 zn − p‖ − ‖zn − p‖ < ε, ∀p ∈ F, ∀n ≥ n0

‖T n
1 yn − p‖ − ‖yn − p‖ < ε, ∀p ∈ F, ∀n ≥ n0.(3.2)

Thus for each n ≥ 0 and for any p ∈ F , using (2.5), and (3.2), we have

‖zn − p‖ = ‖(1− γn − νn)xn + γnT
n
3 xn + νnun − p‖

≤ (1− γn − νn) ‖xn − p‖+ γn ‖T n
3 xn − p‖

+νn ‖un − p‖
≤ (1− γn − νn) ‖xn − p‖+ γn[‖xn − p‖+ ε]

+νn ‖un − p‖
≤ ‖xn − p‖+ γnε + νn ‖un − p‖ ,(3.3)

using (2.5) and (3.3), we have

‖yn − p‖ = ‖(1− βn − µn)xn + βnT
n
2 zn + µnvn − p‖

≤ (1− βn − µn) ‖xn − p‖+ βn ‖T n
2 zn − p‖

+µn ‖vn − p‖
≤ (1− βn − µn) ‖xn − p‖+ βn[‖zn − p‖+ ε]

+µn ‖vn − p‖
≤ (1− βn − µn) ‖xn − p‖+ βn ‖zn − p‖+ βnε

+µn ‖vn − p‖
≤ (1− βn − µn) ‖xn − p‖

+βn

[
‖xn − p‖+ γnε + νn ‖un − p‖

]

+βnε + µn ‖vn − p‖
≤ ‖xn − p‖+ βnε(1 + γn) + βnνn ‖un − p‖

+µn ‖vn − p‖
≤ ‖xn − p‖+ 2βnε + νn ‖un − p‖+ µn ‖vn − p‖ ,(3.4)
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again using (2.5) and (3.4), we have

‖xn+1 − p‖ = ‖(1− αn − λn)xn + αnT
n
1 yn + λnwn − p‖

≤ (1− αn − λn) ‖xn − p‖+ αn ‖T n
1 yn − p‖

+λn ‖wn − p‖
≤ (1− αn − λn) ‖xn − p‖+ αn[‖yn − p‖+ ε]

+λn ‖wn − p‖
≤ (1− αn − λn) ‖xn − p‖

+αn

[
‖xn − p‖+ 2βnε + νn ‖un − p‖+ µn ‖vn − p‖

]

+αnε + λn ‖wn − p‖
≤ ‖xn − p‖+ αnε(1 + 2βn) + αnνn ‖un − p‖

+αnµn ‖vn − p‖+ λn ‖wn − p‖
≤ ‖xn − p‖+ 3αnε + αn ‖un − p‖+ αn ‖vn − p‖

+λn ‖wn − p‖
= ‖xn − p‖+ Hn,(3.5)

where

Hn = 3αnε + αn ‖un − p‖+ αn ‖vn − p‖+ λn ‖wn − p‖ .

Since by hypothesis
∑∞

n=1 αn < ∞,
∑∞

n=1 λn < ∞ and {un}, {vn}, {wn} are bounded

in C, it follows that
∑∞

n=1 Hn < ∞. From (3.5) and Lemma 2.1, we have limn→∞ ‖xn − p‖
exists. Also from (3.5), we obtain

d(xn+1, F ) ≤ d(xn, F ) + Hn,(3.6)

for all n ≥ 1. From Lemma 2.1 and (3.6), we know that limn→∞ d(xn, F ) exists. Since

lim infn→∞ d(xn, F ) = 0, we have that limn→∞ d(xn, F ) = 0.

Now, we shall prove that {xn} is a Cauchy sequence. Let limn→∞ ‖xn − p‖ = r.

For any given ε > 0, since {un}, {vn}, {wn} are bounded in C, there exists a constant

K > 0, such that for all n ≥ 1, ‖xn − p‖ ≤ K, ‖un − p‖ ≤ K, ‖vn − p‖ ≤ K,

‖wn − p‖ ≤ K hold. Because
∑∞

n=1 αn < ∞,
∑∞

n=1 λn < ∞, there exists a positive

integer n1, such that for all n ≥ n1, we have

∞∑

i=n

αi <
ε

2(4K + 3ε)
,

∞∑

i=n

λi <
ε

4K
.(3.7)
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From (2.5) and (3.4), it can be obtained that

‖xn+1 − xn‖ = ‖αn(T n
1 yn − xn) + λn(wn − xn)‖

≤ αn ‖T n
1 yn − xn‖+ λn ‖wn − xn‖

≤ αn ‖T n
1 yn − p‖+ αn ‖xn − p‖+ λn ‖wn − p‖+ λn ‖xn − p‖

≤ αn[‖yn − p‖+ ε] + αn ‖xn − p‖+ λn ‖wn − p‖+ λn ‖xn − p‖
≤ αn

[
‖xn − p‖+ 2βnε + νn ‖un − p‖+ µn ‖vn − p‖

]
+ αnε

+αn ‖xn − p‖+ λn ‖wn − p‖+ λn ‖xn − p‖
≤ (2αn + λn) ‖xn − p‖+ αnε(1 + 2βn) + αnνn ‖un − p‖

+αnµn ‖vn − p‖+ λn ‖wn − p‖
≤ 2αn ‖xn − p‖+ 3αnε + λn ‖xn − p‖+ αn ‖un − p‖

+αn ‖vn − p‖+ λn ‖wn − p‖
≤ 4αnK + 3αnε + 2λnK

= (4K + 3ε)αn + 2λnK.(3.8)

Thus for all n ≥ n1 and m ≥ 1, we have

‖xn+m − xn‖ ≤
m∑

i=1

‖xn+i − xn+i−1‖

≤ (4K + 3ε)
m∑

i=1

αn+i−1 + 2K
m∑

i=1

λn+i−1

< (4K + 3ε).
ε

2(4K + 3ε)
+ 2K.

ε

4K
= ε.(3.9)

This implies that {xn} is a Cauchy sequence. Thus limn→∞ xn exists. Let limn→∞ xn =

p. We shall prove that p is a common fixed point, that is, p ∈ F .

Since limn→∞ xn = p, for all ε1 > 0, there exists a positive integer n2 such that

when n ≥ n2, we have

‖xn − p‖ <
ε1

2(L + 1)
.(3.10)

Moreover, limn→∞ d(xn, F ) = 0 implies that there exists a positive integer n3 ≥ n2,

such that when n ≥ n3, we have

d(xn, F ) <
ε1

2(L + 1)
, d(xn3 , F ) <

ε1

2(L + 1)
.(3.11)
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Thus there exists a p∗ ∈ F , such that

‖xn3 − p∗‖ = d(xn3 , p
∗) <

ε1

2(L + 1)
.(3.12)

It follows from (3.10), (3.12) and for i = 1, 2, 3 that

‖Tip− p‖ = ‖Tip− p∗ + p∗ − xn3 + xn3 − p‖
≤ ‖Tip− p∗‖+ ‖xn3 − p∗‖+ ‖xn3 − p‖
≤ L ‖p− p∗‖+ ‖xn3 − p∗‖+ ‖xn3 − p‖
≤ L ‖xn3 − p‖+ L ‖xn3 − p∗‖+ ‖xn3 − p∗‖

+ ‖xn3 − p‖
≤ (L + 1) ‖xn3 − p‖+ (L + 1) ‖xn3 − p∗‖
< (L + 1).

ε1

2(L + 1)
+ (L + 1).

ε1

2(L + 1)
= ε1.(3.13)

By the arbitrariness of ε1 > 0, we have Tip = p for i = 1, 2, 3, that is, p is a common

fixed point of the mappings T1, T2 and T3. This completes the proof. ¤

Theorem 3.2. Let E be a real Banach space, C be a nonempty closed convex subset

of E. Let Ti : C → C, (i = 1, 2, 3) be uniformly L-Lipschitzian asymptotically quasi-

nonexpansive type mappings with F = ∩3
i=1F (Ti) 6= ∅. Let {xn} be the sequence

defined by (2.5) with the restrictions
∑∞

n=1 αn < ∞ and
∑∞

n=1 λn < ∞. Then {xn}
converges to a common fixed point p of the mappings T1, T2 and T3 if and only if

there exists some infinite subsequence of {xn} which converges to p.

Proof. The proof of Theorem 3.2 follows from Lemma 2.1 and Theorem 3.1. ¤

Theorem 3.3. Let E be a real Banach space, C be a nonempty closed convex subset

of E. Let Ti : C → C, (i = 1, 2, 3) be uniformly L-Lipschitzian asymptotically quasi-

nonexpansive type mappings with F = ∩3
i=1F (Ti) 6= ∅. Let {xn} be the sequence

defined by (2.5) with the restrictions
∑∞

n=1 αn < ∞ and
∑∞

n=1 λn < ∞. Suppose that

the mappings T1, T2 and T3 satisfy the following conditions:

(i) limn→∞ ‖xn − T1xn‖ = 0, limn→∞ ‖xn − T2xn‖ = 0, limn→∞ ‖xn − T3xn‖ = 0;

(ii) there exists a constant A > 0 such that
{
‖xn − T1xn‖+ ‖xn − T2xn‖+ ‖xn − T3xn‖

}
≥ Ad(xn, F ), ∀n ≥ 1.

Then {xn} converges strongly to a common fixed point of the mappings T1, T2 and T3.



WEAK AND STRONG CONVERGENCE OF COMMON FIXED 459

Proof. From conditions (i) and (ii), we have limn→∞ d(xn, F ) = 0, it follows as in the

proof of Theorem 3.1, that {xn} must converges strongly to a common fixed point of

the mappings T1, T2 and T3. This completes the proof. ¤

Theorem 3.4. Let E be a real Banach space satisfying Opial’s condition and C be a

weakly compact subset of E. Let Ti : C → C, (i = 1, 2, 3) be uniformly L-Lipschitzian

asymptotically quasi-nonexpansive type mappings. Let {xn} be the sequence defined

by (2.5) with the restrictions
∑∞

n=1 αn < ∞ and
∑∞

n=1 λn < ∞. Suppose that T1, T2

and T3 have a common fixed point, I − Ti for i = 1, 2, 3 is demiclosed at zero and

{xn} is an approximating common fixed point sequence for Ti for i = 1, 2, 3, that is,

limn→∞ ‖xn − Tixn‖ = 0, for i = 1, 2, 3. Then {xn} converges weakly to a common

fixed point of the mappings T1, T2 and T3.

Proof. First, we show that ωw(xn) ⊂ F = ∩3
i=1F (Ti). Let xnk

→ x weakly. By

assumption, we have limn→∞ ‖xn − Tixn‖ = 0 for i = 1, 2, 3. Since I−Ti for i = 1, 2, 3

is demiclosed at zero, x ∈ F = ∩3
i=1F (Ti). By Opial’s condition, {xn} possesses only

one weak limit point, that is, {xn} converges weakly to a common fixed point of the

mappings T1, T2 and T3. This completes the proof. ¤

Example 3.1. Let E be the real line with the usual norm | · | and K = [0, 1]. Define

T1, T2, T3 : K → K by

T1x = sin x, x ∈ [0, 1],

T2x = x/3, x ∈ [0, 1],

T3x = x/2, x ∈ [0, 1],

for x ∈ K. Obviously T1(0) = 0, T2(0) = 0 and T3(0) = 0, that is, 0 is a common

fixed point of T1, T2 and T3, that is, F = F (T1)∩F (T2)∩F (T3) = {0}. Now we check

that T1, T2 and T3 are asymptotically quasi-nonexpansive type mappings. In fact, if

x ∈ [0, 1] and p = 0 ∈ [0, 1], then

|T1x− p| = |T1x− 0| = | sin x− 0| = | sin x| ≤ |x| = |x− 0| = |x− p|,
that is

|T1x− p| ≤ |x− p|.
That is, T1 is quasi-nonexpansive. It follows that T1 is uniformly quasi-1 Lipschitzian

and asymptotically quasi-nonexpansive with kn = 1 for each n ≥ 1 and hence it is
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asymptotically quasi-nonexpansive type mapping since

|T1x− p| − |x− p| ≤ 0, ∀p ∈ F (T1), ∀x ∈ K.

Therefore we have

lim sup
n→∞

{
sup

x∈K, p∈F (T1)
{|T1x− p| − |x− p|}

}
≤ 0.

This implies that T1 is an asymptotically quasi-nonexpansive type mapping. Similarly

for the mappings T2 and T3, we have

|T2x− p| = |T2x− 0| = |x/3− 0| = 1/3|x| ≤ |x| = |x− 0| = |x− p|,

that is

|T2x− p| ≤ |x− p|,
and

|T2x− p| − |x− p| ≤ 0, ∀p ∈ F (T2), ∀x ∈ K.

Therefore we have

lim sup
n→∞

{
sup

x∈K, p∈F (T2)
{|T2x− p| − |x− p|}

}
≤ 0.

Similarly

|T3x− p| = |T3x− 0| = |x/2− 0| = 1/2|x| ≤ |x| = |x− 0| = |x− p|,

that is

|T3x− p| ≤ |x− p|,
and

|T3x− p| − |x− p| ≤ 0, ∀p ∈ F (T3), ∀x ∈ K.

Therefore we have

lim sup
n→∞

{
sup

x∈K, p∈F (T3)
{|T3x− p| − |x− p|}

}
≤ 0.

Thus we see that T2 and T3 are also asymptotically quasi-nonexpansive type mappings.

Remark 3.1. The main result of this paper can be extended to a finite family of

asymptotically quasi-nonexpansive type mappings {Ti : 1 ≤ i ≤ N} by introducing

the following iteration scheme:

Let T1, T2, . . . , TN : C → C be N asymptotically quasi-nonexpansive type mappings.

Let x1 ∈ C be a given point. Then the sequence {xn} defined by
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xn+1 = (1− an1 − bn1)xn + an1T
n
1 yn1 + bn1un1 ,

yn1 = (1− an2 − bn2)xn + an2T
n
2 yn2 + bn2un2 ,

...(3.14)

yn(N−2)
= (1− an(N−1)

− bn(N−1)
)xn + an(N−1)

T n
N−1yn(N−1)

+ bn(N−1)
un(N−1)

,

yn(N−1)
= (1− anN

− bnN
)xn + anN

T n
Nxn + bnN

unN
, n ≥ 1,

is called N -step iterative sequence with errors of T1, T2, . . . , TN , where {uni
}∞n=1, i =

1, 2, . . . , N , are N bounded sequences in C, and {ani
}∞n=1, {bni

}∞n=1, i = 1, 2, . . . , N ,

are N appropriate sequences in [0, 1].

Remark 3.2. Theorem 3.1 extends, improves and unifies the corresponding results of

[1, 5, 6, 9, 11, 12]. Especially Theorem 3.1 extends, improves and unifies Theorem 1

and 2 in [6], Theorem 1 in [5] and Theorem 3.2 in [12] in the following ways:

(1) The asymptotically quasi-nonexpansive mapping in [5], [6] and [12] is extended

to more general asymptotically quasi-nonexpansive type mapping.

(2) The usual Ishikawa iteration scheme in [5], the usual modified Ishikawa itera-

tion scheme with errors in [6] and the usual modified Ishikawa iteration scheme

with errors for two mappings are extended to the three-step iteration scheme

with errors for three mappings.

Remark 3.3. Theorem 3.2 extends, improves and unifies Theorem 3 in [6] and Theorem

3.3 extends, improves and unifies Theorem 3 in [5] in the following aspects:

(1) The asymptotically quasi-nonexpansive mapping in [5] and [6] is extended to

more general asymptotically quasi-nonexpansive type mapping.

(2) The usual Ishikawa iteration scheme in [5] and the usual modified Ishikawa

iteration scheme with errors in [6] are extended to the three-step iteration

scheme with errors for three mappings.

Remark 3.4. Our results also extend the corresponding results of Quan [10] to the

case of more general class of uniformly quasi-Lipschitzian mapping considered in this

paper.

Remark 3.5. Our results also extend the corresponding results of Xu and Noor [14]

to the case of more general class of asymptotically nonexpansive mapping considered

in this paper.
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Remark 3.6. Theorem 3.4 extends and improves Theorem 2.6 and 2.7 of Sahu and

Jung [11] to the case of modified three-step iteration scheme with errors considered

in this paper.

Acknowledgement: The author thanks the referee for his valuable suggestions

and comments on the manuscript.
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